
Lecture 3: The Fourier transform. The Fourier transform F : f → f̂ is
defined to be

(3.1) f̂(ξ) =

∫
Rn

f(x) e−ix·ξ dx.

The Fourier transform is invertible, in fact we will prove Fourier’s inversion formula:

(3.2) f(x) =
1

(2π)n

∫
Rn

f̂(ξ) eix·ξ dx

The Fourier transform makes sense for a very general class of functions and even
distributions. However, it is natural to first define it for a more restrictive class
and afterwards extend the definition by continuity. This is the Schwartz class S
consisting of all infinitely differentiable functions that are rapidly decreasing:

sup
x

|xβ∂αϕ(x)| <∞

for all multi-indices α and β. The importance of this class is that F : S → S.
which follows from the following identities for the Fourier transform:

(3.3) F : ∂jf(x) → iξj f̂(ξ), F : xjf(x) → i∂j f̂(ξ)

(3.3) follows from integrating by parts in (3.1) respectively differentiating below
the integral sign. That F : S → S now follows using (3.1) and integrating by parts

ξα∂βξ ϕ̂(ξ) =

∫
ξα(−i)|β|xβe−ix·ξϕ(x) dx = (−1)|α|(−i)|α|

∫
∂αx

(
xβϕ(x)

)
dx

which can be bounded by supx
∣∣∂αx (xβϕ(x))∣∣(1 + |x|)1+n

∫
(1 + |x|)−1−ndx ≤ C,

since ϕ ∈ S.
Note also that by changing variables we get two more simple properties

(3.4) F : f(ax) → a−nf̂(ξ/a), F : f(x+ h) → f̂(ξ)eih·ξ

The proof of (3.2) uses:

Lemma 3.1.

(3.5) F : e−|ax|2/2 → (2π)n/2a−ne−|ξ/a|2/2

Proof. Let ϕ(x) = e−|x|2/2. Since (∂j + xj)ϕ(x) = 0 it follows from (4) that (iξj +

i∂j)ϕ̂(ξ) = 0, j = 1, ..., n. This differential equation has the solution ϕ̂(ξ) =

cne
−|ξ|2/2. In fact, if we integrate it for j = 1 we get ϕ̂(ξ) = F2(ξ2, · · · , ξn)e−ξ21/2.

Plugging this into the same equation gives (iξk + i∂k)F2(ξ2, ·, ξn) = 0, for k ≥ 2.

Integrating this equation for k = 2 gives F2(ξ2, · · · , ξn) = F3(ξ3, · · · , ξn)e−ξ22/2.

Repeating this gives that ϕ̂(ξ) = cne
−ξ21/2 · · · e−ξ2n/2 = cne

−|ξ|2/2. It therefore only

remains to calculate cn. However, by (3.1) cn = ϕ̂(0) =
∫
e−|x|2/2 dx. If n = 2 this

integral can easily be calculated by introducing polar coordinates
∫
R2 e

−|x|2/2 dx =

2π
∫∞
0
e−r2/2 r dr = 2π. In general we can write

∫
Rn e

−|x|2/2 dx = (
∫
R
e−x2

1/2 dx1)
n

and
∫
R
e−x2

1/2 dx1 = (
∫
R2 e

−|x|2/2 dx)1/2 so cn = (2π)n/2. �
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Lemma 3.2. If ϕ ∈ S set ϕε(x) = ϕ(x/ε)/εn, then∫
f(x)ϕε(x) dx =

∫
f(εx)ϕ(x) dx→ f(0)

∫
ϕ(x) dx ε→ 0, for f ∈ S

Proof. Since |f(εx)ϕ(x)| ≤ supy |f(y)| |ϕ(x)| the lemma follows from the theorem of
Dominated converge. It is also easy to prove directly; since
|f(εx)ϕ(x) − f(0)ϕ(x)| ≤ ε supy ||y|f ′(y)| |ϕ(x)| the difference of the two integrals
is bounded by Cε. �

We also have

(3.6)

∫
ϕ̂ψ dξ =

∫
ϕψ̂dx, ϕ, ψ ∈ S

In fact, both sides of (6) are equal to the double integral∫∫
ϕ(x)ψ(ξ) e−ix·ξ dxdξ

It follows from using (3.3) that it suffices to prove (3.2) for x = 0 since its translation
invariant. Using (3.6) gives∫

ϕ̂(x) f(εx) dx =

∫
ϕ(εξ) f̂(ξ) dξ

By Lemma 2 we get as ε→ 0∫
ϕ̂(x) dx f(0) = ϕ(0)

∫
f̂(ξ) dξ

Picking ϕ(x) = e−|x|2/2 we get from Lemma 1 and its proof that
∫
ϕ̂(x) dx = (2π)n

and Fourier’s inversion formula (3.2) follows. Using Fourier’s inversion formula and
(3.6) we get Parseval’s formula

(3.7)

∫
ϕ(x)ψ(x) dx =

1

(2π)n

∫
ϕ̂(ξ)ψ̂(ξ) dξ

In particular; ∫
|ϕ(x)|2 dx =

1

(2π)n

∫
|ϕ̂(ξ)|2 dξ.

We can therefore extend the Fourier transform by continuity to a map F : L2 → L2.
(This follows since for any f ∈ L2 one can find a sequence of functions fn ∈ S such

that fn → f in L2 and it follows that f̂n ∈ S converges in L2 to some function f̂ .)
It also follows that

n∑
i=1

∫
|∂iϕ(x)|2 dx =

1

(2π)n

n∑
i=1

∫
|ξiϕ̂(ξ)|2 dξ =

1

(2π)n

∫
|ξ|2|ϕ̂(ξ)|2 dξ

It is now natural to define the Sobolev norms

(3.8) ∥ϕ∥Hs =

√∫
(1 + |ξ|2)s|ϕ̂(ξ)|2 dξ

For integer values of s this corresponds to L2 norms of derivatives of ϕ, but the
norm makes sense and is useful also for real s. This shows that there is a relation
between decay of the Fourier transform and regularity of the function.
Problem 3.1 Find the Fourier transform of e−|x|, x ∈ R.
Problem 3.2 Find the inverse Fourier transform of sin |ξ|/|ξ|, ξ ∈ R.
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Lecture 4: Solving initial value problem with the Fourier transform. Recall
that the Fourier transform is given by

(4.1) f̂(ξ) =

∫
f(x)e−ixξ dx

Let the convolution be defined by

(4.2) K ∗ g(x) =
∫
K(y)g(x− y) dy =

∫
K(x− y)g(y) dy

It is easy to see that

(4.3) F : f ∗ g → f̂ ĝ

The heat equation. Let us now look on the heat equation

∂tu(t, x)−△u(t, x) = 0(4.3)

u(0, x) =g(x)(4.4)

taking the Fourier transform with respect to the space variables only:

(4.5) û(t, ξ) =

∫
u(t, x) e−ix·ξ dx

gives

∂tû(t, ξ) + |ξ|2û(t, ξ) = 0(4.6)

û(0, ξ) =ĝ(ξ)(4.7)

Hence

(4.8) û(t, ξ) = e−t|ξ|2 ĝ(ξ)

By Lemma 3.1 with a = 1/
√
2t

(4.9) Kt(x) = F−1(e−t|ξ|2)(x) =
1

(4πt)n/2
e−|x|2/4t, t > 0

and by (4.3)

(4.10) u(t, x) = Kt ∗ g(x) =
∫

1

(4πt)n/2
e−|x−y|2/4tg(y) dy, t > 0

Problem 4.1: Verify directly that Kt ∗ g(x) → g(x), when t→ 0.
We can solve the inhomogeneous problem

∂tw(t, x)−△w(t, x) = F (t, x)

w(0, x) =0
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using the formula for the homogeneous problem. We claim that

w(t, x) =

∫ t

0

ws(t, x) ds

where ws is the solution of

∂tws(t, x)−△ws(t, x) = 0

w(s, x) = gs(x) =F (s, x)

In fact

(∂t +△)

∫ t

0

ws(t, x) ds = wt(t, x) +

∫ t

0

(∂t +△)ws(t, x) ds = F (t, x)

We have

ws(t, x) = Kt−s ∗ gs(x) =
∫

1

(4π(t− s))n/2
e−|x−y|2/4(t−s)F (s, y) dy

and hence

w(t, x) =

∫ t

0

Kt−s ∗ gs(x) ds =
∫ t

0

∫
1

(4π(t− s))n/2
e−|x−y|2/4(t−s)F (s, y) dy ds

More generally, the solution to the inhomogeneous problem

∂tv(t, x)−△v(t, x) = F (t, x)

v(0, x) =g

is linearity given by

v(t, x) = u(t, x) + w(t, x) = Kt ∗ g(x) +
∫ t

0

Kt−s ∗ gs(x) ds = . . . .

The Schrödinger equation. Let us now consider the Schrödinger equation

i∂tu(t, x) +△u(t, x) = 0(4.11)

u(0, x) =g(x)(4.12)

taking the Fourier transform û(t, ξ) =
∫
u(t, x) e−ix·ξ dx gives

i∂tû(t, ξ)− |ξ|2û(t, ξ) = 0(4.13)

û(0, ξ) =ĝ(ξ)(4.14)

Hence

(4.15) û(t, ξ) = e−it|ξ|2 ĝ(ξ)
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By Formally replacing t by it in (4.9) we get

(4.16) Kt(x) = F−1(eit|ξ|
2

)(x) =
1

(4πit)n/2
ei|x|

2/4t, t > 0

where we interpret i1/2 as eiπ/4, and if we can justify (4.16) we get

(4.17) u(t, x) = Kt ∗ g(x) =
∫

1

(4πit)n/2
ei|x−y|2/4tg(y) dy

Now for t > 0 it is easy to see by direct calculation that

(4.18) (i∂t +△)Kt = 0

But

(4.19) (i∂t +△)

∫
Kt(x− y) g(y) dy =

∫
(i∂t +△)Kt(x− y) g(y) dy = 0

so (4.17) is a solution of (4.11). However, it still remains to prove that Kt ∗ g(x) →
g(x), when t→ 0, which requires stationary phase which we will deal with later on.
One can also prove that (4.16) follows from (4.9) by analytic continuation, once we
show that that the Fourier transform of Kt is well defined. Since Kt /∈ L2 we so
far have not defined its Fourier transform.

The wave equation. Let us now look on the wave equation

∂2t u(t, x)−△u(t, x) = 0(4.20)

u(0, x) = f(x), ut(0, x) = g(x)(4.21)

taking the Fourier transform û(t, ξ) =
∫
u(t, x) e−ix·ξ dx gives

∂2t û(t, ξ) + |ξ|2û(t, ξ) = 0(4.22)

û(0, ξ) = f̂(ξ), ∂tû(0, ξ) = ĝ(ξ)(4.23)

It is easy to see that this second order ODE has the solution

(4.24) û(t, ξ) = cos (t|ξ|) f̂(ξ) + sin (t|ξ|)
|ξ|

ĝ(ξ)

The inverse Fourier transform of cos (t|ξ|) and sin (t|ξ|)/|ξ| are so far not defined
since these functions are not in L2, in Rn, if n ≥ 2. not functions but distributions.
In fact the inverse Fourier transform of these functions can not even be defined as
a function. Instead we will in the next section define the inverse Fourier transform
of these functions as distributions.
Problem 4.2 If ξ ∈ R find the inverse Fourier transform of cos (t|ξ|) = cos (tξ) =(
eitξ + e−itξ

)
/2 and sin (t|ξ|)/|ξ| = sin (tξ)/ξ and use it to obtain the following

integral representation of the solution of (4.20)-(4.21):

(4.25) u(t, x) =
1

2

(
f(x+ t) + f(x− t)

)
+

1

2

∫ x+t

x−t

g(y) dy

Problem 4.3 Show that

|∂tû(t, ξ)|2 + | |ξ|û(t, ξ)|2 = |ĝ(ξ)|2 + | |ξ|f̂(ξ)|2

and use it to prove the energy identity∫
|∂tu(t, x)|2 +

n∑
i=1

|∂iu(t, x)|2 dx =

∫
|g|2 +

n∑
i=1

|∂if |2 dx
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Problem 4.4. Show that that the solution to the inhomogeneous wave equation

∂2tw(t, x)−△w(t, x) = F (t, x)

w(0, x) = 0, (∂tw)(0, x) = 0

is given by w(t, x) =
∫ t

0
ws(t, x) ds, where ws are the solutions to

∂2tws(t, x)−△ws(t, x) = 0

ws(s, x) = 0, (∂tws)(s, x) = gs(x) = F (s, x)

Some fundamental solutions using the Fourier transform. Let us first con-
sider the transport equation

∂tu(t, x)+∂xu(t, x) = 0,(3.10)

u(0, x) = g(x)(3.11)

Let û(t, ξ) =
∫
u(t, x)e−ixξ dx be the Fourier transform of u(t, x) with respect to x

for t fixed. Then

∂tû(t, ξ)+iξû(t, ξ) = 0,(3.12)

û(0, ξ) = ĝ(ξ)(3.13)

Solving the PDE (3.10)-(3.11) now reduces to solving the ODE (3.12)-(3.13) for
fixed ξ:

(3.14) û(t, ξ) = e−iξtĝ(ξ)

Taking the inverse Fourier transform gives

(3.15) u(t, x) =
1

2π

∫
eixξe−iξtĝ(ξ)dξ =

1

2π

∫
ei(x−t)ξ ĝ(ξ)dξ = g(x− t)

Note also that by (3.15) |û(t, ξ)| = |ĝ(ξ)| so by Parseval’s formula (3.6) we get the
energy identity

(3.16)

∫
|u(t, x)|2 dx =

∫
|g(x)|2 dx

and more generally ∥u(t, ·)∥Hs = ∥g∥Hs . One can now also solve the inhomogeneous
problem

∂tu(t, x)+∂xu(t, x) = F (t, x),

u(0, x) = 0

We claim that u(t, x) =
∫ t

0
us(t, x) ds where us is the solution of

∂tus(t, x)+∂xus(t, x) = 0,

us(s, x) = gs(x) = F (s, x)

In fact

(∂t + ∂x)

∫ t

0

us(t, x) ds = ut(t, x) +

∫ t

0

(∂t + ∂x)us(t, x) ds = F (t, x)

It follows that is given by a translation of the solution of (3.10)-(3.11) so

us(t, x) = F
(
s, x− (t− s)

)
so

u(t, x) =

∫ t

0

us(t, x) ds =

∫ t

0

F
(
s, x− (t− s)

)
ds


