Lecture 7: Fundamental solutions using distribution theory. The fundamental solution E of a partial differential operator $P(D)=\sum a_{\alpha} \partial^{\alpha}$ is defined by

$$
P(D) E=\delta
$$

Using the fundamental solution one can solve the equation

$$
P(D) u=F,
$$

In fact $u=E * F$ satisfies

$$
P(D)(E * F)=(P(D) E) * F=\delta * F=F
$$

That you can let the derivatives fall on either factor follows from writing out the convolution integral and differentiating below the integral sign.

Let us first derive the fundamental solution of \triangle, i.e. E such that $\triangle E=\delta$.
Since \triangle and $\delta(x)$ are invariant under rotations we expect $E(x)$ to be invariant, i.e. $E(x)=f(|x|)$, where $|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ and f is a distribution.
If f is smooth when $x \neq 0$ we have
$\Delta f(|x|)=\sum_{j} \partial_{j} \partial_{j} f(|x|)=\sum_{j} \partial_{j}\left(f^{\prime}(|x|) \frac{x_{j}}{|x|}\right)=\sum_{j} f^{\prime \prime}(|x|) \frac{x_{j}^{2}}{|x|^{2}}+f^{\prime}(|x|)\left(\frac{1}{|x|}-\frac{x_{j}^{2}}{|x|^{3}}\right)=0$
and hence

$$
f^{\prime \prime}(r)+\frac{n-1}{r} f^{\prime}(r)=0, \quad r=|x| \neq 0
$$

which has the solution

$$
f(r)=c_{n} r^{-n+2}, \quad n>2, \quad \text { and } \quad f(r)=c_{2} \ln r, \quad n=2 .
$$

We claim that for the right choice of constant c_{n}, in the sense of distribution theory

$$
\triangle E(x)=\delta(x), \quad \text { if } \quad E(x)=f(|x|),
$$

i.e. we need to prove that

$$
\langle\triangle E, \phi\rangle=\langle E, \triangle \phi\rangle=\phi(0)=\langle\delta, \phi\rangle, \quad \phi \in C_{0}^{\infty} .
$$

Recall the divergence theorem (see e.g. Evans Appendix C)

$$
\int_{\Omega} \partial_{j} u d x=\int_{\partial \Omega} u n_{j} d S
$$

where n is the outward unit normal. If we apply this to $u v$ in place of u we get the integration by parts formula

$$
\int_{\Omega} v \partial_{j} u d x=-\int_{\Omega} u \partial_{j} v d x+\int_{\partial \Omega} u v n_{j} d S
$$

We have if $n>2$:

$$
\begin{gathered}
\langle E, \Delta \phi\rangle=\int \frac{c_{n}}{|x|^{n-2}} \triangle \phi(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} \frac{c_{n}}{|x|^{n-2}} \sum_{j} \partial_{j}\left(\partial_{j} \phi(x)\right) d x \\
\left.=\lim _{\varepsilon \rightarrow 0}-\int_{|x| \geq \varepsilon} \sum_{j} \partial_{j} \frac{c_{n}}{|x|^{n-2}} \partial_{j} \phi(x)\right) d x+\int_{|x|=\varepsilon} \frac{c_{n}}{|x|^{n-2}} \sum_{j} \frac{x_{j}}{|x|} \partial_{j} \phi(x) d S \\
=\lim _{\varepsilon \rightarrow 0} \sum_{j} \int_{|x| \geq \varepsilon} \partial_{j}^{2}\left(\frac{c_{n}}{|x|^{n-2}}\right) \phi(x) d x+\int_{|x|=\varepsilon} \frac{c_{n}}{|x|^{n-2}} \frac{x_{j}}{|x|} \partial_{j} \phi(x) d S-\int_{|x|=\varepsilon} \partial_{j}\left(\frac{c_{n}}{|x|^{n-2}}\right) \phi(x) \frac{x_{j}}{|x|} d S
\end{gathered}
$$

Here the first term vanishes because $\triangle|x|^{-n+2}=0$, when $x \neq 0$. The second term is bounded by $\sup _{x}|\partial \phi(x)| c_{n} \varepsilon^{-n+2} \int_{|x|=\varepsilon} d S \leq C \varepsilon \rightarrow 0$. The last term is

$$
c_{n} \int_{|x|=\varepsilon} \frac{n-2}{|x|^{n-1}} \phi(x) d S=\frac{c_{n}(n-2)}{\varepsilon^{n-1}} \int_{|x|=\varepsilon} \phi(x) d S \rightarrow c_{n}(n-2) \phi(0) \int_{|x|=1} d S
$$

Problem 7.1 Prove the Divergence theorem.

The fundamental solution for the wave equation

$$
\square E=\delta(t, x), \quad \square=\partial_{t}^{2}-\triangle, \quad(t, x) \in \mathbf{R}^{1+n}
$$

is not hard to derive from the symmetries as well. Since \square is invariant under Lorentz transformations we expect the fundamental solution $E(t, x)$ to be invariant under Lorentz transformations as well, which means that it should be of the form $E(t, x)=f\left(t^{2}-|x|^{2}\right)$, where f is a distribution. Plugging this into the equation gives after some calculation

$$
\begin{equation*}
4 \rho f^{\prime \prime}(\rho)+2(1+n) f^{\prime}(\rho)=0, \quad \rho=t^{2}-|x|^{2} \tag{7.1}
\end{equation*}
$$

when $(t, x) \neq(0,0)$. This has the solution

$$
\left\{\begin{array}{l}
f(\rho)=c_{1} H(\rho), \quad \text { if } \quad n=1 \tag{7.2}\\
f(\rho)=c_{2} H(\rho) \rho^{-1 / 2}, \quad \text { if } n=2 \\
f(\rho)=c_{3} \delta(\rho), \quad \text { if } n=3
\end{array}\right.
$$

The constants can be calculated in the same way as we did for the fundamental solution of \triangle.

$$
\left\{\begin{array}{l}
E(t, x)=c_{1} H(t-|x|), \quad \text { if } \quad n=1 \tag{7.3}\\
E(t, x)=c_{2} H(t-|x|)\left(t^{2}-|x|^{2}\right)^{-1 / 2}, \quad \text { if } \quad n=2 \\
E(t, x)=c_{3} \delta\left(t^{2}-|x|^{2}\right) H(t), \quad \text { if } \quad n=3
\end{array}\right.
$$

Problem 7.2: Show in each case that (7.2) is a solution of (7.1).
Problem 7.3: If $n=3$ prove that

$$
\begin{equation*}
\delta\left(t^{2}-|x|^{2}\right) H(t)=\delta(t-|x|) / 2|x| \tag{7.4}
\end{equation*}
$$

Problem 7.4 Prove that $E(t, x)$ given above are fundamental solutions of \square and find the constants c_{n}.

Using the fundamental solution E for \square we can now solve the Cauchy problem

$$
\begin{gathered}
\square u(t, x)=F \\
u(0, x)=f(x), \quad u_{t}(0, x)=g(x)
\end{gathered}
$$

In fact let $u_{0}(t, x)=u(t, x) H(t)$ and $F_{0}(t, x)=F(t, x)=H(t)$ then

$$
\begin{aligned}
& \quad \square u_{0}(t, x)=\square u(t, x) H(t)=(\square u(t, x)) H(t)+2 u_{t}(t, x) \delta(t)+u(t, x) \delta^{\prime}(t) \\
& =F(t, x) H(t)+2 u_{t}(0, x) \delta(t)+u(0, x) \delta^{\prime}(t)-u_{t}(0, x) \delta(t)=F_{0}(t, x)+g(x) \delta(t)+f(x) \delta^{\prime}(t)
\end{aligned}
$$

and hence
$u_{0}(t, x)=E *\left(F_{0}(t, x)+g(x) \delta(t)+f(x) \delta^{\prime}(t)\right)=E * F_{0}+E *(g(x) \delta(t))+\partial_{t} E *(f(x) \delta(t))$
Let us now derive the solution formula if $n=3$ in which case $E(t, x)=\delta(t-$ $|x|) / 4 \pi|x|$ and hence
Problem 7.5 Show that
$E * F_{0}(t, x)=\iint F_{0}(t-s, x-y) \delta(s-|y|) \frac{1}{4 \pi|y|} d y d s=\int_{|y| \leq t} \frac{F_{0}(t-|y|, x-y)}{4 \pi|y|} d y$
and that

$$
E *(g(x) \delta(t))=t \int_{\omega \in S^{2}} \frac{g(x-t \omega)}{4 \pi} d S(\omega)
$$

where $d S(\omega)$ is the surface measure on the sphere S^{2}.

