
Lecture 7: Fundamental solutions using distribution theory. The funda-
mental solution E of a partial differential operator P (D)=

∑
aα∂

α is defined by

P (D)E = δ

Using the fundamental solution one can solve the equation

P (D)u = F,

In fact u = E ∗ F satisfies

P (D)(E ∗ F ) = (P (D)E) ∗ F = δ ∗ F = F

That you can let the derivatives fall on either factor follows from writing out the
convolution integral and differentiating below the integral sign.

Let us first derive the fundamental solution of △, i.e. E such that △E = δ.
Since △ and δ(x) are invariant under rotations we expect E(x) to be invariant, i.e.

E(x) = f(|x|), where |x| =
√
x2
1 + · · ·+ x2

n and f is a distribution.
If f is smooth when x ̸= 0 we have

△f(|x|) =
∑
j

∂j∂jf(|x|) =
∑
j

∂j

(
f ′(|x|) xj

|x|

)
=

∑
j

f ′′(|x|)
x2
j

|x|2
+f ′(|x|)

( 1

|x|
−

x2
j

|x|3
)
= 0

and hence

f ′′(r) +
n− 1

r
f ′(r) = 0, r = |x| ̸= 0

which has the solution

f(r) = cnr
−n+2, n > 2, and f(r) = c2 ln r, n = 2.

We claim that for the right choice of constant cn, in the sense of distribution theory

△E(x) = δ(x), if E(x) = f(|x|),

i.e. we need to prove that

⟨△E, ϕ⟩ = ⟨E,△ϕ⟩ = ϕ(0) = ⟨δ, ϕ⟩, ϕ ∈ C∞
0 .

Recall the divergence theorem (see e.g. Evans Appendix C)∫
Ω

∂ju dx =

∫
∂Ω

unjdS

where n is the outward unit normal. If we apply this to uv in place of u we get the
integration by parts formula∫

Ω

v∂ju dx = −
∫
Ω

u∂jv dx+

∫
∂Ω

uvnjdS.
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We have if n > 2:

⟨E,△ϕ⟩ =
∫

cn
|x|n−2

△ϕ(x) dx = lim
ε→0

∫
|x|≥ε

cn
|x|n−2

∑
j

∂j(∂jϕ(x)) dx

= lim
ε→0

−
∫
|x|≥ε

∑
j

∂j
cn

|x|n−2
∂jϕ(x)) dx+

∫
|x|=ε

cn
|x|n−2

∑
j

xj

|x|
∂jϕ(x) dS

= lim
ε→0

∑
j

∫
|x|≥ε

∂2
j

( cn
|x|n−2

)
ϕ(x) dx+

∫
|x|=ε

cn
|x|n−2

xj

|x|
∂jϕ(x) dS−

∫
|x|=ε

∂j(
cn

|x|n−2
)ϕ(x)

xj

|x|
dS

Here the first term vanishes because △|x|−n+2 = 0, when x ̸= 0. The second term
is bounded by supx |∂ϕ(x)|cnε−n+2

∫
|x|=ε

dS ≤ Cε → 0. The last term is

cn

∫
|x|=ε

n− 2

|x|n−1
ϕ(x) dS =

cn(n− 2)

εn−1

∫
|x|=ε

ϕ(x)dS → cn(n− 2)ϕ(0)

∫
|x|=1

dS

Problem 7.1 Prove the Divergence theorem.
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The fundamental solution for the wave equation

�E = δ(t, x), � = ∂2
t −△, (t, x) ∈ R1+n

is not hard to derive from the symmetries as well. Since � is invariant under
Lorentz transformations we expect the fundamental solution E(t, x) to be invariant
under Lorentz transformations as well, which means that it should be of the form
E(t, x) = f(t2 − |x|2), where f is a distribution. Plugging this into the equation
gives after some calculation

(7.1) 4ρf ′′(ρ) + 2(1 + n)f ′(ρ) = 0, ρ = t2 − |x|2

when (t, x) ̸= (0, 0). This has the solution

(7.2)


f(ρ) = c1H(ρ), if n = 1

f(ρ) = c2H(ρ)ρ−1/2, if n = 2

f(ρ) = c3δ(ρ), if n = 3

The constants can be calculated in the same way as we did for the fundamental
solution of △.

(7.3)


E(t, x) = c1H(t− |x|), if n = 1

E(t, x) = c2H(t− |x|)(t2 − |x|2)−1/2, if n = 2

E(t, x) = c3δ(t
2 − |x|2)H(t), if n = 3

Problem 7.2: Show in each case that (7.2) is a solution of (7.1).
Problem 7.3: If n = 3 prove that

(7.4) δ(t2 − |x|2)H(t) = δ(t− |x|)/2|x|
Problem 7.4 Prove that E(t, x) given above are fundamental solutions of � and
find the constants cn.

Using the fundamental solution E for � we can now solve the Cauchy problem

�u(t, x) = F

u(0, x) = f(x), ut(0, x) = g(x)

In fact let u0(t, x) = u(t, x)H(t) and F0(t, x) = F (t, x) = H(t) then

�u0(t, x) = �u(t, x)H(t) = (�u(t, x))H(t) + 2ut(t, x)δ(t) + u(t, x)δ′(t)

= F (t, x)H(t)+2ut(0, x)δ(t)+u(0, x)δ′(t)−ut(0, x)δ(t) = F0(t, x)+g(x)δ(t)+f(x)δ′(t)

and hence

u0(t, x) = E∗
(
F0(t, x)+g(x)δ(t)+f(x)δ′(t)

)
= E∗F0+E∗(g(x)δ(t))+∂tE∗(f(x)δ(t))

Let us now derive the solution formula if n = 3 in which case E(t, x) = δ(t −
|x|)/4π|x| and hence
Problem 7.5 Show that
(7.5)

E ∗F0(t, x) =

∫ ∫
F0(t− s, x− y) δ(s−|y|) 1

4π|y|
dyds =

∫
|y|≤t

F0(t− |y|, x− y)

4π|y|
dy

and that

E ∗ (g(x)δ(t)) = t

∫
ω∈S2

g(x− tω)

4π
dS(ω)

where dS(ω) is the surface measure on the sphere S2.


