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Introduction

We consider Euler’s equations

(1.1)
(
∂t + vk∂k

)
vj = −∂jp, j = 1, ..., n in D, where ∂i = ∂/∂xi

describing the motion of an perfect incompressible fluid in vacuum:

(1.2) div v = ∂kv
k = 0 in D

where v = (v1, ..., vn) and D ⊂ [0, T ]×Rn are to be determined. Here vk = δkivi = vk and we have used
the summation convention that repeated upper and lower indices are summed over. Given a simply
connected bounded domain D0 ⊂ Rn and initial data v0, satisfying the constraint div v0 = 0, we want
to find a set D ⊂ [0, T ]×Rn and a vector field v solving (1.1)-(1.2) and satisfying the initial conditions

(1.3)

{ {x; (0, x) ∈ D} = D0

v = v0, on {0} × D0

Let Dt = {x ∈ Rn; (t, x) ∈ D}. We also require the boundary conditions on the free boundary ∂Dt;

(1.4)

{
p = 0, on ∂Dt

vN = κ, on ∂Dt

for each t, where N is the exterior unit normal to ∂Dt, vN = N ivi and κ is the normal velocity of ∂Dt.
The second condition can also be expressed as (∂t+v

k∂k)|∂D ∈ T (∂D). We will prove a priori bounds
for the initial value problem (1.1)-(1.4), in Sobolev spaces under the assumption

(1.5) ∇N p ≤ −ε < 0, on ∂Dt, where ∇N = N i∂xi .

(1.5) is a natural physical condition since the pressure p has to be positive in the interior of the
fluid. It is essential for the well posedness in Sobolev spaces. Taking the divergence of (1.1):

(1.6) −△p = (∂jv
k)∂kv

j , in Dt, p = 0, on ∂Dt
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In the irrotational case (1.5) always hold, as shown in [CL,W1,W2]. Then (curl v)ij=∂iv
j− ∂jv

i=0 so
△p<0 and hence p>0 and (1.5) hold by the strong maximum principle (see [GT]).

The incompressible perfect fluid is to be thought of as an idealization of a liquid. For small bodies
like water drops surface tension should help holding it together and for larger denser bodies like stars
its own gravity should play a role. Here we neglect the influence of such forces. Instead it is the
incompressibility condition that prevents the body from expanding and it is the fact that the pressure
is positive that prevents the body from breaking up in the interior. Let us also point out that, from
a physical point of view one can alternatively think of the pressure as being a small positive constant
on the boundary instead of vanishing. The aim of this paper is to show that we have a priori bounds
in Sobolev spaces for the free boundary problem (1.1)-(1.5) in any number of space dimensions. What
makes this problem difficult is that the regularity of the boundary enters to highest order. Roughly
speaking, the velocity tells the boundary where to move and the boundary is the zero set of the pressure
that determines the acceleration.

It is generally possible to prove local existence for analytic data for a free interface between two
fluids with the same normal component of the velocity, see [BG] and [Ni] for the irrotational case.
However, this type of problem might be subject to instability in Sobolev norms.The classical examples
are Rayleigh-Taylor instability which occurs in a local linear analysis when a heavier fluid lies above a
lighter fluid in a gravitational field and Kelvin-Helmholtz instability which occurs when the tangential
velocities of the two fluids along the interface are different, see e.g. [BCS]. In our case its the first kind of
instability that we must exclude. No gravitational fields are present in our problem, however a uniform
exterior gravitational field would not make a difference because it can be transformed away by going to
an accelerated frame. It is condition (1.5) which excludes the possibility of this kind of instability. In
fact, without taking into account the sign condition (1.5) the problem is actually ill-posed in Sobolev
spaces, see [Eb1],

Some existence results in Sobolev spaces are known in the irrotational case, for the closely related
water wave problem which describes the motion of the surface of the ocean under the influence of earth’s
gravity. In that problem, the gravitational field can be considered as uniform, and as we remarked above,
this problem reduces to our problem by going to an accelerated frame. The domain Dt is unbounded
for the water wave problem coinciding with a half-space in the case of still water. Nalimov[Na] and
Yosihara[Y] proved local existence in Sobolev spaces in two space dimensions for initial conditions
sufficiently close to still water. Beale, Hou and Lowengrab[BHL] have given an argument to show that
problem is linearly well posed in a weak sense in Sobolev spaces, assuming a condition, which can
be shown to be equivalent to (1.5). The condition (1.5) prevents the Rayleigh-Taylor instability from
occurring when the water wave turns over. Recently Wu[W1,2] proved local existence in general in two
and three dimensions for the water wave problem. Wu showed that (1.5) holds for an unbounded domain
in the irrotational case. More importantly Wu[W2] is the first existence result in three space dimensions
in Sobolev spaces; going from two to three dimensions required introduction of new techniques.

The method of proof in the above papers relies heavily on the assumption that the velocity is curl-
free, hence satisfies Laplace’s equation in the interior. This makes possible the reduction of the problem
to a problem involving the boundary alone. In this reduction the Dirichlet to Neumann map enters and
it is estimated in fractional Sobolev spaces on the boundary. In the general case, with non vanishing
curl, no existence results in Sobolev spaces are known. However, recently Ebin[Eb2] announced a local
existence result for the same equations but with the boundary condition containing surface tension,
which makes the problem more regular.

We prove a priori bounds in the case of non vanishing vorticity in any number of space dimensions.
We also show that the Sobolev norms remain bounded essentially as long as (1.5) hold, the second
fundamental form of the surface is bounded and the first order derivatives of the velocity are bounded.
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The proof works with lower regularity assumptions on initial data. This is partly due to the fact that
our result is in terms of norms in the Eulerian space coordinates and the second fundamental form of
the free surface. The norms are hence independent of a parametrization of the boundary so we do not
have to be concerned with the possibility of a parametrization becoming singular. On the other hand it
is more difficult to put up an iteration in this approach. However existence will follow from analogous
estimates and existence in the presence of surface tension, reducing to the estimates presented here in
the limit of vanishing surface tension. Let us also point out that an existence result even for infinitely
differentiable data together with the a priori bounds here imply existence and continuation for low
regularity data. This is in particular true in the irrotational case where existence is known.

Our approach is quite elementary and geometric in nature. We use a new type of energy that
controls the geometry of the free surface. The energy has a boundary part and an interior part, which
allows us to avoid the use of fractional Sobolev spaces on the boundary. The boundary part controls the
norms of the second fundamental form of the free surface, whereas the interior part controls the norms
of the velocity and hence the pressure. We show that the time derivative of the energy is controlled by
the energy. A crucial point is that the time derivative of the interior part will, after integrating by parts,
contribute with a boundary term that exactly cancels the leading order term in the time derivative of
the boundary integral. The equations look ill-posed at first sight, but if one differentiates them one gets
a well-posed system for higher order derivatives of the velocity and the pressure. Our energy contains
the components of this higher order system. In the interior it contains most components and on the
boundary only the tangential components. Due to the fact that the pressure vanishes on the boundary
the tangential components of this higher order system are more regular. Another crucial point is then
to estimate the projection of a tensor to the tangent space of the boundary, which involves the second
fundamental form.

Let us first introduce Lagrangian coordinates. In these coordinates the boundary is fixed. Let Ω be
a domain in Rn and let f0 : Ω → D0 be a diffeomorphism that is volume preserving; det(∂f0/∂y) = 1.
Assume that v(t, x) and p(t, x), (t, x) ∈ D are given satisfying (1.1)-(1.4). The Lagrangian coordinates
x = x(t, y) = ft(y) are given by solving

(1.7)
dx

dt
= v(t, x(t, y)), x(0, y) = f0(y), y ∈ Ω

Then ft : Ω → Dt is a volume preserving diffeomorphism, since div v = 0, and the boundary becomes
fixed in the new y coordinates. Let us introduce the notation

Dt =
∂

∂t

∣∣∣
y=constant

=
∂

∂t

∣∣∣
x=constant

+ vk
∂

∂xk
,(1.8)

for the material derivative and

∂i =
∂

∂xi
=
∂ya

∂xi
∂

∂ya
.(1.9)

Sometimes it is convenient to work in the Eulerian coordinates (t, x) and sometimes it is easier to
work in the Lagrangian coordinates (t, y). In the Lagrangian picture the partial derivative with respect
to the time coordinate has more direct significance than the partial derivative with respect to the time
coordinate in the Eulerian picture. However this is not true for the partial derivatives with respect to the
space coordinates. The notion of space derivative which plays a more significant role in the Lagrangian
picture is that of covariant differentiation with respect to the metric gab(t, y) = δij∂x

i/∂ya ∂xj/∂yb, the
pull back by ft of the Eulerian metric δij on Dt ⊂ Rn. The covariant space derivatives of the Lagrangian
picture are simply and directly related to the partial derivatives with respect to the Cartesian space
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coordinates of the Eulerian picture. We will work mostly in the Lagrangian coordinates in the paper.
However, our statements are coordinate independent and to simply the exposition we will present the
results in the Eulerian picture in the introduction.

In the notation of (1.8)-(1.9) Euler’s equations (1.1) become

(1.10) Dtvi = −∂ip

Note that the commutator satisfies

(1.11)
[
Dt, ∂i

]
= −(∂iv

k)∂k

By (1.11) we obtain the second order equation for the velocity

(1.12) D2
t vi − (∂kp)∂iv

k = −∂iDtp

Our estimates make use of (1.12) restricted to the boundary together with the boundary condition:

(1.13) p = 0, on ∂Dt =⇒ Dtp = 0, on ∂Dt

In the interior we will make use of the equation obtained by taking the curl of (1.10), using (1.11),

Dt(curl v)ij = −(∂iv
k)(curl v)kj + (∂jv

k)(curl v)ki(1.14)

together with

div v = 0, in Dt(1.15)

Taking the divergence of (1.10) respectively (1.12) using (1.11) and (1.15) gives elliptic equations:

△p = −(∂iv
ℓ)∂ℓv

i, in Dt, p = 0 on ∂Dt(1.16)

△Dtp = (∂kp)△vk +G(∂v, ∂2p), in Dt, Dtp = 0 on ∂Dt(1.17)

where G(∂v, ∂2p)=4δij(∂iv
k)∂j∂kp+2(∂iv

j)(∂jv
k)∂kv

i. Equation (1.16) gain regularity; neglecting the
problem with the boundary regularity, one derivative of v in the interior gives two derivatives of p,
which gives a gain of one time derivative of v in (1.10). If curl v=0 then △v=0 so then the equation
for Dtp is as good as the equation for p.

To see the importance of the condition ∇N p≤−ε<0 let us look at a simplified linear model problem,
[CL]: Since p = Dtp = 0 on ∂Dt it follows that ∂ip = Ni∇N p and ∂iDtp = Ni∇NDtp there so by (1.12)

(1.18) D2
t vi − (∇N p)N

k∂ivk = −(∇NDtp)Ni, on ∂Dt

We linearize by taking Dt = Ω and x(t, y) = y, independent of t. In the irrotational case N k∂ivk =
N k∂kvi = ∇N vi and △vi=δjk∂j∂kvi=δjk∂i∂jvk=∂i div v=0. Let us therefore consider the equations

(1.19) D2
t vi + ν−1∇N vi = Fi, on ∂Ω, △vi = 0, in Ω

for a vector field v on Ω, depending on t, where ν and Fi are given functions on Ω and Dt = ∂t. To
simplify further let us assume that ν−1 = ε is constant, F = 0, and Ω is the unit disc in R2. Then the
solutions of △v=0 are given in polar coordinates by v(t, r, θ)=

∑
ck(t)r

|k|eikθ. The boundary condition
4



in (1.19) imply that c′′k(t)+ε|k|ck(t) = 0, with solutions ck(t) = c+k e
tλk + c−k e

−tλk , λk=
√
−ε|k|, so the

high frequencies remain bounded for t> 0 if ε> 0 but they are exponentially increasing if ε< 0. Note
that if data are analytic, i.e. c±k = o(e−δ|k|), δ > 0, then the solution exists independently of the sign
condition. The model problem is related to Enbin’s counterexample. By linearizing around a rigid
rotation v = (x2,−x1) he gets an equation for the variation similar to (1.19) with ν−1 =−∇Np=−1.
(1.19) is also up to terms of lower order the equationWu[W2]uses. Furthermore, a similar model problem
shows up in [CL] when one studies the equation for the derivatives of the velocity (1.24)-(1.25).

The model problem also suggests a candidate for an energy:

E(t) =

∫
Ω

|∂v|2 dx+

∫
∂Ω

|Dtv|2νdS, ν > 0(1.20)

If we differentiate below the integral sign and integrate by parts we get a bound for the energy:

(1.21)
dE

dt
= 2

∫
Ω

∂v ∂Dtv dx+ 2

∫
∂Ω

Dtv D
2
t v νdS +

∫
∂Ω

|Dtv|2DtνdS

= −2

∫
Ω

△v Dtv dx+ 2

∫
∂Ω

Dtv(D
2
t v + ν−1∇N v) νdS +

∫
∂Ω

|Dtv|2DtνdS

≤ 2∥F∥L2(∂Ω,νdS)E
1/2 + ∥ν−1Dtν∥L∞ (∂Ω)E

An easy modification gives (1.21) with an extra term 2∥Dtω∥L2(Ω)E
1/2 also for a divergence free vector

field, div v = 0, with curl v = ω, satisfying D2
t vi+ν

−1Nk∂ivk = Fi on the boundary. This estimate is
however, by itself not good enough to deal with (1.12) since we can not expect a bound for ∥∂Dtp∥L2(∂Ω)

from a bound for ∥∂v∥L2(Ω) due to the loss of regularity in (1.17) in the irrotational case. One derivative
of v in the interior only gives one derivative of Dtp in the interior and restricting to the boundary we
loose half a derivative.

An additional idea is required which has to do with exploiting our special boundary conditions
Dtp = 0. If we modify our energy so it only contains tangential components on and close to the
boundary, then only the projection onto the tangential components of (1.12) on the boundary will
occur in the energy estimate and the tangential components of ∂Dtp vanishes. The components we
loose control over in the energy can then be gotten back by elliptic estimates. Although the pressure
and the regularity of the boundary did not enter in the above simplified model it will enter once we go
to higher-order energies which is needed to close the argument. We will now develop these higher-order
energies.

One can think of (1.10) and (1.12) as a system of equations for v and v̇ = Dtv = −∂p:

Dtvi = −∂ip(1.22)

Dt∂ip+ (∂kp)∂iv
k = ∂iDtp,(1.23)

To see better what goes on let us differentiate once more with respect to the spatial coordinates

Dt∂ivj = −∂i∂jp− (∂iv
k)∂kvj(1.24)

Dt∂i∂jp+ (∂kp)∂i∂jv
k = ∂i∂jDtp− (∂iv

k)∂k∂jp− (∂jv
k)∂k∂ip(1.25)

where we used (1.11).

We want to project (1.25) to the tangent space of the boundary. The orthogonal projection Π to
the tangent space of the boundary, of a (0, r) tensor α is defined to be the projection of each component
along the normal:

(1.26) (Πα)i1...ir = Π j1
i1

· · ·Π jr
ir
αj1...jr , where Π j

i = δ j
i −NiN j ,
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Let ∂i = Π j
i ∂j be a tangential derivative. If q = 0 on ∂Dt it follows that ∂iq = 0 there and

(1.27) (Π∂2q)ij = θij∇N q, where θij = ∂iNj

is the second fundamental form of ∂Dt. In fact,

0 = ∂i∂jq = Π i′

i ∂i′Π
j′

j ∂j′q = Π i′

i Π j′

j ∂i′∂j′q − (∂iNj)N k∂kq −Nj(∂iN k)∂kq = (Π∂2q)ij − θij∇N q

since Nk∂iN k = ∂i(NkN k)/2 = 0.

Our energy for the second order equation (1.25) will be a modification of (1.20) that contains

only the tangential components Π∂Dtv = −Π∂2p on the boundary and (Π̃∂2)v in the interior, where

Π̃ is an extension of the projection to the interior. Taking the time derivative of this energy and
integrating by parts as in (1.21) we will get a boundary term that involves the projection of (1.25).
Because Π∂2Dtp = θ∇NDtp, this can be controlled by one less derivative ∂Dtp. The energy together
with elliptic estimates controls two derivatives of v in the interior so (1.17) gives us two derivatives
of Dtp in the interior and hence one derivative on the boundary. In our discussion so far we have
neglected the problem of boundary regularity, which comes in to highest order. However, our energy
also controls the second fundamental form. By (1.27) and |∇N p| ≥ ε > 0 the boundary part of the
energy |Π∂2p|2 ≥ |θ|2|∇N p|2 ≥ |θ|2ε2, gives an estimate for the second fundamental form θ.

The energies we propose are of the form

(1.28) Er(t) =

∫
Dt

δmnQ(∂rvm, ∂
rvn) dx+

∫
Dt

|∂r−1 curl v|2 dx+

∫
∂Dt

Q(∂rp, ∂rp)νdS

where ν = (−∇N p)
−1. Here Q is a positive definite quadratic form which restricted to the boundary

is the inner product of the tangential components: Q(α, β) = ⟨Πα,Πβ⟩ and in the interior Q(α, α)
increases to the norm |α|2. To be more specific, we define

Q(α, β) = qi1j1 · · · qirjrαi1...irβj1...jr(1.29)

where qij = δij − η(d)2N iN j , d(x) = dist(x, ∂Dt), N i = −δij∂jd.(1.30)

Here η is a smooth cut off function satisfying 0 ≤ η(d) ≤ 1, η(d) = 1, when d < d0/4 and η(d) = 0,
when d > d0/2 and d0 is a fixed number which is smaller than the injectivity radius of the normal
exponential map ι0, defined to be the largest number ι0 such that the map

(1.31) ∂Dt × (−ι0, ι0) → {x ∈ Rn : dist(x, ∂Dt) < ι0}, given by (x, ι) → x = x+ ιN (x),

is an injection. These energies in fact control all components of ∂rv, ∂rp and ∂r−2θ, see (1.41)-(1.42).

We prove an energy estimate implying that the energies are bounded as long as certain a priori
assumptions are true. More specifically; we prove that there are continuous functions Cr such that

(1.32)

∣∣∣∣dEr(t)

dt

∣∣∣∣ ≤ Cr

(
K, 1/ε, L,M,VolDt, E

∗
r−1(t)

)
E∗

r (t), where E∗
r (t) =

r∑
s=0

Es(t)

if 0 ≤ r ≤ 4 or r ≥ n/2 + 3/2, provided that

|θ| ≤ K, 1/ι0 ≤ K on ∂Dt(1.33)

−∇N p ≥ ε > 0, on ∂Dt(1.34)

|∂2p|+ |∇NDtp| ≤ L, on ∂Dt.(1.35)

|∂v|+ |∂p| ≤M in Dt,(1.36)
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The bounds (1.33) gives us control of the geometry of the free surface ∂D. A bound for the second
fundamental form form θ gives a bound for the curvature of ∂Dt and a lower bound for the injectivity
radius of the normal exponential map ι0 measures how far off the surface is from self-intersecting.

Now, the lowest order energy and the volume are in fact conserved;

(1.37) E0(t) =

∫
Dt

δmnvmvndx = E0(0), VolDt =

∫
Dt

dx = VolD0.

Recursively it follows from (1.32) and (1.37):

Theorem 1.1. Let n ≤ 7. Then there are continuous functions Fr, r = 0, 1, ..., with Fr|t=0 = 1, such
that any smooth solution of the free boundary problem for Euler’s equations (1.1)-(1.5), for 0 ≤ t ≤ T ,
that satisfy the a priori assumptions (1.33)-(1.36) also satisfy the energy bound:

(1.38) E∗
r (t) ≤ Fr

(
t,K, 1/ε, L,M,E∗

r−1(0),VolD0

)
E∗

r (0), 0 ≤ t ≤ T,

Most of the a priori bounds (1.33)-(1.36) can be obtained from the energy through (1.41) and (1.42)
below using Sobolev’s lemma if r > (n− 1)/2 + 2. However, the lower bounds for ε and ι0 can not be
obtained in this way but instead one has to try to get evolution equations for these.

Let K(0) and ε(0) be the minimum respectively maximum values such that (1.33) and (1.34) hold
when t = 0.

Theorem 1.2. Let r0 be the smallest integer such that r0 > n/2 + 3/2. Then there are continuous
functions Tr > 0, r = r0, r0 + 1, ..., such that if

(1.39) T ≤ Tr
(
K(0), 1/ε(0), E∗

r0(0),VolD0

)
then any smooth solution of the free boundary problem for Euler’s equations (1.1)-(1.5), for 0 ≤ t ≤ T
satisfies

E∗
r (t) ≤ 2E∗

r (0), 0 ≤ t ≤ T(1.40)

Remarks. The restriction n ≤ 7 in Theorem 1. 1, i.e. the restriction for (1.32) to hold is just a matter
of that the proof becomes simpler in this case. The assumption that VolD0 <∞ is just used to get an
L2 estimate for p so it could be omitted if we add

∫
p2dx to the energy. We only need a lower bound

for the interior radius of injectivity of the normal exponential map in (1.31) for the energy estimates to
hold. The bound for the exterior one is to prevent the surface from self intersecting.

Let us first point out that since div v = 0 and −△p = (∂iv
k)∂kv

i one can use elliptic estimates to
control all components of ∂rv and ∂rp from the tangential components Π∂rp in the energy:

(1.41) ∥∂rv∥2L2(Dt)
+ ∥∂r−1v∥2L2(∂Dt)

+ ∥∂rp∥2L2(∂Dt)
+ ∥∂rp∥2L2(Dt)

≤ C(K,M,VolD0)E
∗
r

A bound for the energy also implies a bound for the second fundamental form of the free boundary:

(1.42) ∥∂r−2θ∥2L2(∂Dt)
≤ C

(
K,L,M, 1/ε,E∗

r−1,VolDt

)
E∗

r

that control the regularity. In fact, we prove higher order versions of the projection formula (1.27):

(1.43) Π∂rq = (∂r−2θ)∇N q +O(∂r−1q) +O(∂r−3θ), if q = 0, on ∂Dt
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Since |∇N p| ≥ ε > 0 it follows from (1.43) that |∂r−2θ| ≤ C|Π∂rp| + O(∂r−1p) + O(∂r−3θ) where the
lower order terms can be bounded using (1.41) and (1.42) for smaller r so (1.42) follows inductively.

Once we have the bound (1.42) for the second fundamental form we can get estimates for any
solution of the Dirichlet problem. In particular since Dtp satisfies the elliptic equation (1.17) we get

(1.44) ∥Π∂rDtp∥2L2(∂Dt)
+ ∥∂r−1Dtp∥2L2(∂Dt)

≤ C
(
K,L,M, 1/ε,E∗

r−1,VolDt

)
E∗

r

This follows from the elliptic estimates, used to prove (1.41), and (1.43) applied to Dtp, where now
∂r−2θ is bounded by (1.42) and ∂r−1Dtp is lower order. Π∂rDtp shows up in the energy estimate when
we take the time derivative of the boundary part of the energy Π∂rp. Although a bound for the energy
implies bounds for all components of ∂rp we can not bound the time derivative of the non-tangential
components on the boundary in the case of non vanishing curl since the elliptic estimates only gives
control of the tangential components Π∂rDtp in (1.44) because of the term with △v in (1.17).

Let us now outline the proof of Theorem 1.1 and Theorem 1.2. First, we explain the proof of the
energy estimate (1.32) which uses integration by parts as in the model problem. Then we give the main
elliptic estimates and the projection formula used in proving (1.41)-(1.44). Finally, we discuss how to
control the geometry of the free surface and the a priori bounds (1.33)-(1.36); the time evolution of ι0,
ε and other geometric quantities that control the Sobolev constants, that is needed for Theorem 1.2.

Energy estimates. (Sections 7,5) We will now outline the proof of the energy estimate (1.32). In
order to take the time derivative of the energy (1.28) we make use of the fact that if f is an arbitrary
function on Dt, depending on t, then

d

dt

∫
Dt

f dx =

∫
Dt

Dtf dx and
d

dt

∫
∂Dt

f dS =

∫
∂Dt

(
Dtf − (∇N vN )f

)
dS

since div v = 0 (this can be seen, e.g. using the Lagrangian coordinates. ) We have

(1.45)
dEr

dt
=

∫
Dt

Dt

(
δmnQ(∂rvm, ∂

rvn) + |∂r−1 curl v|2
)
dx

+

∫
∂Dt

Dt

(
Q(∂rp, ∂rp)ν

)
−Q(∂rp, ∂rp)ν∇N vN dS

The derivatives of the coefficients of Q and the measures can bounded by the constants in (1.33)-(1.36):

(1.46) |Dtq
ij | ≤ CM, |∂qij | ≤ CK, |∇N vN | ≤ CM,

see section 3. The time derivative of the higher order tensors ∂rv and ∂rp can be obtained from
(1.22)-(1.23) by repeated use of (1.11)

Dt∂
rvn = −∂r∂np+

∑
0≤s≤r−1csr(∂

s+1v) · ∂r−svn(1.47)

Dt∂
rp+ (∂kp)∂

rvk = ∂rDtp+
∑

0≤s≤r−2dsr(∂
s+1v) · ∂r−sp(1.48)

where the symmetrized dot-product is defined in Lemma 2.4. Now

(1.49) ∥(∂s+1v)·∂r−sv∥L2(Dt) ≤ C(K)∥∂v∥L∞(Dt)

∑
s≤r

∥∂sv∥L2(Dt), 0 ≤ s ≤ r − 1.
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This is clear for s = 0, r−1 and follows in general by interpolation. Hence by (1.45)-(1.48) and (1.41)

(1.50)
dEr

dt
= −2

∫
Dt

δmnQ
(
∂rvm, ∂n∂

rp
)
dx+ 2

∫
∂Dt

Q
(
∂rp,Dt∂

rp
)
νdS + Lower Order

where ’Lower Order’ means something that is controlled by the energy E∗
r and K,L,M, 1/ε so it can

be bounded by the right hand side of (1.32). If we integrate by parts in the first term we get

(1.51)
dEr

dt
= 2

∫
Dt

δmnQ
(
∂r∂nvm, ∂

rp
)
dx+ 2

∫
∂Dt

Q
(
∂rp,Dt∂

rp− ν−1Nm∂
rvm

)
νdS + L.O.

The first term vanishes since divv=0. Since−ν−1Nm= ∂mp the second is the inner product of Π∂rp and

(1.52) Π
(
Dt∂

rp+ (∂mp)∂
rvm

)
= Π(∂rDtp) +

∑
0≤s≤r−2dsrΠ

(
(∂s+1v) · ∂r−sp

)
by (1.48). Here Π∂rDtp is under control by (1.44) and we really need to use the projection since in
the case of non-vanishing curl we can not control all components of ∂rDtp on the boundary. The other
terms in (1.52) are bounded by the a priori assumptions times (1.41). This is clear for s = 0, r−2 but
dealing with the intermediate terms is the most involved part of the manuscript. This is because the
interpolation has to be done on the boundary and the expression involves non tangential components.
Note that if 0 ≤ r ≤ 2 then the boundary terms simplify and the lower order terms are easily bounded
by (1.32). The boundary terms vanish if r = 0, 1 and if r = 2 then Q(∂2p, ∂2p) = |Π∂2p|2 = |θ|2|∇Np|2,
where |∇Np| ≥ ε > 0 and Q(∂2Dtp, ∂

2Dtp) = |θ|2|∇NDtp|2.

Elliptic estimates using the energy bound. (section 5) The bounds (1.41) follows from:

|∂rv|2 ≤ C
(
δmnQ(∂rvn, ∂

rvm) + |∂r−1 div v|2 + |∂r−1 curl v|2
)

(1.53)

∥∂rp∥2L2(∂Dt)
+ ∥∂rp∥2L2(Dt)

≤ C(K,VolDt)
∑

s≤r

(
∥Π∂sp∥2L2(∂Dt)

+ ∥∂s−1△p∥2L2(Dt)

)
(1.54)

In fact, using that the measure in the boundary part of the energy ≥ ∥∇N p∥−1
L∞dS, respectively (1.16)

and (1.49) we get

(1.55) ∥Π∂rp∥2L2(∂Dt)
≤ ∥∂p∥L∞(∂Dt)Er and ∥∂r−1△p∥2L2(Dt)

≤ C∥∂v∥2L∞(Dt)
Er

(1.53) follows as curl v is the antisymmetric part of ∂v so only the symmetric part of ∂rv needs
to be estimated and, moreover, the first term in the right contains one normal component while, since
NmNn∂mvn=−qmn∂mvn+δ

mn∂mvn, two normal components can be expressed in terms of tangential
components and the divergence. (1.54) follows inductively from the following inequalities

∥∂rp∥2L2(∂Dt)
≤ C∥Π∂rp∥2L2(∂Dt)

+ C
(
∥∂r−1△p∥L2(Dt) +K∥∂rp∥L2(Dt)

)
∥∂rp∥L2(Dt)(1.56)

∥∂rp∥2L2(Dt)
≤ ∥∂rp∥L2(∂Dt)∥∂

r−1p∥L2(∂Dt) + ∥∂r−2△p∥2L2(Dt)
(1.57)

∥p∥L2(Dt) ≤ C(VolDt)
1/n∥△p∥L2(Dt), if p = 0 on ∂Dt(1.58)

The estimate (1.56) follows from repeated use of the fact that the square of the normal derivative

minus the square of the tangential one behaves better on the boundary: Let Q̃ be any quadratic
form acting on (0, r) tensors, constructed from δij and qij and let Ñ = η(d)N be an extension of

the normal to the interior, see (1.30). Let Tij = 2Q̃(∂iα, ∂jα) − δijδ
mnQ̃(∂mα, ∂nα). Then ∂iT

i
j =

2Q̃(△α, ∂jα) + 2δim(∂iQ̃)(∂mα, ∂jα)− δmn(∂jQ̃)(∂mα, ∂nα) so∣∣∣∣∫
∂Dt

(N iN j−qij)Q̃(∂iα, ∂jα)dS

∣∣∣∣ = ∣∣∣∣∫
∂Dt

N iN jTijdS

∣∣∣∣ = ∣∣∣∣∫
Dt

∂i
(
Ñ jT i

j

)
dx

∣∣∣∣ ≤ ∫
Dt

2|△α||∂α|+ CK|∂α|2 dx

by the divergence theorem.(1.57) is integration by parts twice.(1.58) is Faber-Krahns theorem, see [SY].
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The projection formula and estimate for the second fundamental form. (section 4) We prove
an estimate for the projection: If q = 0 on ∂Dt then for m = 0, 1 and 0 ≤ r ≤ 4 or r ≥ (n− 1)/2 + 2:

(1.59) ∥Π∂rq − (∇N q)∂
r−2θ∥L2 ≤ ε∥∇N q∥L∞ ∥∂ r−2θ∥L2 + Cε∥θ∥L∞∥∂ r−1q∥L2

+ C
(
∥θ∥L∞ )

(
∥θ∥L∞ +

∑
s≤r−2−m

∥∂ sθ∥L2

) ∑
s≤r−2+m

∥∂ sq∥L2

for any ε > 0, where Lp = Lp(∂Dt) and θ is the second fundamental form. The bound (1.42) for the sec-
ond fundamental form θ follows from (1.41) and (1.59) using the a priori bound |∇N p| ≥ ε∥∇N p∥L∞/2.

Let us now briefly discuss the proof of (1.59). In section 4 we derive a formula for the projection:

(1.60) Π∂rq = ∂ rq +∇N q ∂
r−2θ +

r−2∑
ℓ=1

(
r
ℓ

)
(∂ r−2−ℓθ)⊗̃(∂ ℓ∇N q)

+
∑

r0+r1+...+rk+ℓ=r−k
k−ℓ=m=0mod 2, k≥ℓ≥0, k≥2

ar0...rkℓmC
m
(
∂ r1θ⊗̃ · · · ⊗̃∂ rkθ⊗̃∂ r0∇ℓ

N q
)

where θ = ∂N is the second fundamental form, ⊗̃ stands for some partial symmetrization of the tensor
product and Cm stands for contraction overm pairs of indices, see section 4. Note that in (1.60) the total
number of derivatives decreases by one as the number of factors of θ increases by one. Therefore, since
we have assume that we have control of ∥θ∥L∞ , the terms on the second row will be lower order. (1.60)
follows by expressing tangential derivatives of normal derivatives as projections onto tangential and
normal components. The general form of the terms in (1.60) follows from the fact that the projections
are defined in terms of the normal and each time a derivative falls on the normal we get a factor of θ and
at the same time the total number of derivatives decreases by one. One way to obtain the leading order
terms is to expand q in the distance to the boundary d(x) = dist(x, ∂Dt). To highest order Π∂rq ∼ ∂rq.
To calculate the next terms let us assume that q = 0 on ∂Dt. Then q/d = ∇N q on ∂Dt and since
d = Πd = 0 and θ = ∇d on ∂Dt we have

(1.61) Π∂rq = Π∂r(d q
d ) =

∑r−2
ℓ=0

(
r
ℓ

)
Π(∂ r−2−ℓθ)⊗̃Π∂ℓ( qd ) =

∑r−2
ℓ=0

(
r
ℓ

)
(∂ r−2−ℓθ)⊗̃(∂ ℓ∇N q) + L.O.

where here “L.O.” means terms that contain at least one more factor of θ. In section 8 we give
interpolation inequalities to deal with the products on the first row of (1.60)

(1.62) ∥|∂ ℓ∇N q||∂ r−2−ℓθ|∥L2(∂Dt) ≤ ε∥∇N q∥L∞ (∂Dt)∥∂
r−2θ∥L2(∂Dt) + Cε∥θ∥L∞ (∂Dt)∥∂

r−2∇N q∥L2(∂Dt)

The lower order terms on the second row of (1.60) are estimated by interpolation and Sobolev’s lemma.

Elliptic estimates using the bound for the second fundamental form. (section 5) If q = 0 on
∂Dt and 0 ≤ r ≤ 4 or r ≥ (n− 1)/2 + 2 then we obtain the following estimate from (1.59) and (1.54)

(1.63) ∥∂r−1q∥L2(∂Dt)≤C
(
K,VolDt, ∥θ∥L2(∂Dt), ..., ∥∂

r−3θ∥L2(∂Dt)

)(
∥∇N q∥L∞(∂Dt)+

∑
s≤r−2

∥∇s△q∥L2(Dt)

)
If in addition r > (n− 1)/2 + 2 then it follows from (1.59), (1.54) and Sobolev’s lemma:

(1.64) ∥∂r−1q∥L2(∂Dt)+ ∥∂q∥L∞(∂Dt)≤ C
(
K,VolDt, ∥θ∥L2(∂Dt), ..., ∥∂

r−3θ∥L2(∂Dt)

)∑
s≤r−2

∥∇s△q∥L2(Dt)

(1.63) together with (1.42) now gives a bound for ∥∂s−1Dtp∥L2(∂Dt), for s ≤ r since, by (1.17),

∥∂s−2△Dtp∥L2(Dt) = ∥O(∂sp)+O(∂sv)∥L2(Dt) is bounded by (1.41) for s ≤ r and since ∥∇NDtp∥L∞(∂Dt)

is bounded by the a priori assumptions. The bound for ∥∂s−1Dtp∥L2(∂Dt) for s ≤ r together with (1.59)
and (1.42) gives (1.44). This suffices to prove the energy estimate. However, in order to prove Theorem
1.2 we also need to get back bounds for the a priori assumptions which is where (1.64) will be used.
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Bounds for the geometry and the a priori assumptions. (sections 3,7) We need to control the
Sobolev constants for the surface and the derivatives of the coefficients of the quadratic form Q. These
are easily controlled by an upper bound for the second fundamental form θ and a lower bound for the
injectivity radius of the normal exponential map ι0. This proves Theorem 1.1. To prove Theorem 1.2
we also need to control the time evolution of the a priori assumptions (1.33)-(1.36). However, there is
a difficulty with (1.33) because we do not have an evolution equation for ι0 and the evolution equation
for θ looses regularity, so we have to control these in an indirect way. It turns out that in order to
control the Sobolev constants, for the interior as well as for the boundary (see Lemma 8.4 respectively
Lemma 8.2 ), the constant in the elliptic estimate (1.41) and in the interpolation inequality (1.49) it
suffices to have an upper bound 1/ι1 ≤ K1 instead of (1.33), where ι1 = ι1(ε1) is defined to be the
largest number such that

(1.65) |N (x1)−N (x2)| ≤ ε1, whenever |x1 − x2| ≤ ι1, x1, x2 ∈ ∂Dt

for some fixed number 0 < ε1 < 2. To prove this one makes a partition of unity into neighborhoods
where (1.65) hold. An upper bound for θ and a lower bound for ι1 then implies a lower bound for ι0:

(1.66) ι0 ≥ min
(
ι1/2, 1/∥θ∥L∞

)
In fact, suppose that x∗ = x − ι0N(x), x ∈ ∂Dt is a point in Dt such that the interior normal
exponential map of ∂Dt fails to be injective just beyond x∗ along the normal line λ → x − λN(x),
while dist(x∗, ∂Dt) = ι0; the injectivity radius. Then either x∗ is a focal point, i.e. θ has an eigenvalue
1/ι0, or the line λ → x − λN(x), is contained in Dt for all λ ∈ (0, 2ι0) and intersects ∂Dt normally at
λ = 2ι0, in which case (1.65) can not be true for the two endpoints. Since a similar argument holds for
the exterior normal exponential map (1.66) follows.

The bounds (1.35)-(1.36) are easily controlled by the energy using (1.41), where K can be replaced
by K1≥1/ι1, and Sobolev’s lemma if r≥r0>n/2+3/2: By Sobolev’s lemma(Lemma 8.4) and (1.53)

(1.67) ∥v∥2L∞(Dt)
+ ∥∂v∥2L∞(Dt)

≤ C(K1)
∑r0

s=0∥∂sv∥2L2(Dt)
≤ C(K1)E

∗
r0

The proof of that we can replace K by K1 in (1.54) however requires some work, see Lemma 5.5. By
(1.54), (1.55) (note that p enters quadratically in the left and linearly in the right), (1.67) and Sobolev’s
lemma(Lemma 8.4 respectively Lemma 8.2 )

(1.68) ∥∂p∥2L∞(Dt)
+ ∥∂2p∥2L∞(∂Dt)

≤ C
(
K1,VolD0, E

∗
r0

)
Since the evolution equation for θ looses regularity and since the L2 estimate for θ depends on the L∞

estimate we will control it in an indirect way. By (1.27) and (1.68)

∥θ∥L∞ ≤ E ∥Π∂2p∥L∞(∂Dt)≤ E ∥∂2p∥L∞(∂Dt)≤ C
(
K1,VolD0, E , E∗

r0

)
,(1.69)

where E(t) = ∥(∇N p(t, ·))−1∥L∞(∂Dt)(1.70)

The estimate for ∥∇NDtp∥L∞(∂Dt) follows from (1.64).

It remains to control the evolution of K1 and E . The bound for K1 follows since we can control the
time evolution of the boundary in the Lagrangian coordinates: x(t, y) and of the normal N (x(t, y))

(1.71) Dtx = v, and DtNi = −(∂ivk)N k.
11



where the right hand sides are bounded by (1.67). We also have evolution equations for E and Er

|dE/dt| ≤ ∥∇NDtp∥L∞E2 ≤ C
(
K1, E , E∗

r0 ,VolD0

)
(1.72)

|dEr/dt| ≤ C
(
K1, E , E∗

max(r0,r−1),VolD0

)
E∗

r(1.73)

Assuming (1.65), the energy bound (1.40) and the bound E(t) ≤ 2E(0), integration of (1.71)-(1.73) gives
back slightly better bounds if t ≤ T

(
K1(0), E(0), E∗

r0(0),Vol(D0)
)
is sufficiently small, so Theorem 1.2

follows. In fact, integrating (1.71) using (1.67) we see that the change in N and x are under control if
t≤T is small. Hence we get back the bound (1.65) if it is true with ε1/2 and 2ι1 initially.
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2. Transformation of the free boundary to a fixed boundary. Lagrangian
coordinates, the metric and covariant differentiation in the interior.

Assume that we are given a velocity vector field v(t, x) defined in a set D ⊂ [0, T ]×Rn, such that the
boundary of Dt = {x; (t, x) ∈ D} moves with the velocity, i.e. (1, v) ∈ T (∂D). We will now introduce
Lagrangian or comoving coordinates, i.e. coordinates which are constant along the integral curves of
the velocity vector field so that the boundary becomes fixed in these coordinates. Let x = ft(y) be the
change of variables given by:

(2.1)
dx

dt
= v(t, x(t, y)), x(0, y) = f0(y), if (t, y) ∈ [0, T ]× Ω

Initially, when t = 0, we can either start with the Euclidean coordinates in Ω = D0 or we can start with
some other coordinates f0 : Ω → D0, where f0 is a diffeomorphism, in which the domain Ω becomes
simple. For each t we will then have a change of coordinates ft : Ω → Dt = {x; (t, x) ∈ D}, taking
y → x(t, y). The Euclidean metric δij in Dt then induces a metric

(2.2) gab(t, y) = δij
∂xi

∂ya
∂xj

∂yb

in Ω for each fixed t. We will use covariant differentiation in Ω, with respect to the metric gab(t, y), since
it corresponds to differentiation in Dt under the change of coordinates Ω ∋ y → x(t, y) ∈ Dt and we will
work in both coordinate systems. This also avoids possible singularities in the change of coordinates.
We will denote covariant differentiation in the ya coordinates by ∇a, a = 0, ..., n, and differentiation in
the xi coordinates by ∂i, i = 1, ..., n. Covariant differentiation

The covariant differentiation of a (0, r) tensor k(t, y) is the (0, r + 1) tensor given by

(2.3) ∇aka1...ar =
∂ka1...ar

∂ya
− Γd

aa1
kd...ar − ...− Γd

aar
ka1...d

where the Christoffel symbols Γd
ab are given by

(2.4) Γc
ab =

gcd

2

(
∂gbd
∂ya

+
∂gad
∂yb

− ∂gab
∂yd

)
=
∂yc

∂xi
∂2xi

∂ya∂yb

where gcd is the inverse of gab. If w(t, x) is (0, r) tensor expressed in the x coordinates then the the
same tensor k(t, y) expressed in the y coordinates is given by

(2.5) ka1...ar (t, y) =
∂xi1

∂ya1
...
∂xir

∂yar
wi1...ir (t, x), x = x(t, y)

and by the transformation properties for tensors

(2.6) ∇aka1...ar =
∂xi

∂ya
∂xi1

∂ya1
...
∂xir

∂yar

∂ wi1...ir

∂xi
,

Covariant differentiation is constructed so the norms of tensors are invariant under changes of coordi-
nates:

(2.7) ga1b1 · · · garbrka1...arkb1...br = δi1jj · · · δirjrwi1...irwj1...jr
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Furthermore, expressed in the y coordinates

(2.8) ∂i =
∂

∂xi
=
∂ya

∂xi
∂

∂ya

Since the curvature vanishes in the x coordinates it must do so in the y coordinates and hence

(2.9)
[
∇a , ∇b

]
= 0

Let us introduce the notation k b
a... ...c = gbd ka...d...c and recall that covariant differentiation commutes

with lowering and rising indices; gce∇akb...e...d = ∇ag
cekb...e...d. Let us also introduce a notation for

the material derivative;

(2.10) Dt =
∂

∂t

∣∣∣
y=constant

=
∂

∂t

∣∣∣
x=constant

+ vk
∂

∂xk

In this section, indices a, b, c... will refer to quantities in the y coordinates and indices i, j, k, .. will refer
to quantities in the x coordinates.

It is now important to be able to compute time derivatives of the change of coordinates and com-
mutators between time derivatives and space derivatives.

Lemma 2.1. Let x = ft(y) be the change of variables given by (2.1) and let gab be the metric given by
(2.2). Let vi = δijv

j = vi and set

(2.11) ua(t, y) = vi(t, x)∂x
i/∂ya, ua = gabub, hab = Dtgab, hab = gacgbdhcd

Then

Dt
∂xi

∂ya
=
∂xk

∂ya
∂vi
∂xk

, Dt
∂ya

∂xi
= −∂y

a

∂xk
∂vk
∂xi

,(2.12)

Dtgab = ∇aub +∇bua, Dtg
ab = −hab, Dtdµg = gabhab dµg/2(2.13)

DtΓ
c
ab = ∇a∇bu

c,(2.14)

where dµg is the Riemannian volume element on Ω in the metric g.

Proof. We have

Dt
∂xi

∂ya
=
∂Dtx

i

∂ya
=
∂vi
∂ya

=
∂xk

∂ya
∂vi
∂xk

which proves the first part of (2.12). Furthermore

0 = Dt

(
∂yb

∂xi
∂xj

∂yb

)
=

(
Dt
∂yb

∂xi

)
∂xj

∂yb
+
∂yb

∂xi
Dt
∂xj

∂yb

Multiplying by ∂ya/∂xj and using the first part of (2.12) now gives the second part. To prove the first
part of (2.13) we note that that by (2.2) Dtgab is the sum over i of

Dt

(
∂xi

∂ya
∂xi

∂yb

)
=

(
Dt

∂xi

∂ya

)
∂xi

∂yb
+
∂xi

∂ya

(
Dt

∂xi

∂yb

)
=
∂xk

∂ya
∂vi
∂xk

∂xi

∂yb
+
∂xi

∂ya
∂xk

∂yb
∂vi
∂xk

= ∇aub +∇bua

by (2.6). The second part of (2.13) follows from the first since 0 = Dt(g
abgbc) = Dt(g

ab)gbc+g
abDt(gbc)

so Dtg
ak = −gckgabDtgbc. The last part of (2.13) follows since in local coordinates dµg =

√
det g dy

and Dt det g = det g gabDtgab. It follows from (2.4) and (2.13) that

DtΓ
c
ab =

gcd

2
(∇aDtgbd +∇bDtgad −∇dDtgab) = gcd∇a∇bud �
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Lemma 2.2. Let wi1...ir (t, x) be an arbitrary (0, r) tensor and let

(2.15) ka1...ar (t, y) = wi1...ir (t, x)
∂xi1

∂ya1
· · · ∂x

ir

∂yar
, where x = f(t, y).

Let Dt = ∂t
∣∣
y=constant

and vℓ(t, x) = ∂tf
ℓ(t, y). Then

(2.16)

Dtka1...ar =
(
Dtwi1...ir + wℓ...ir

∂vℓ

∂xi1
+ ...+ wi1...ℓ

∂vℓ

∂xir

) ∂xi1
∂ya1

· · · ∂x
ir

∂yar

=
(
∂t

∣∣∣
x=const

wi1...ir +
(
Lvw

)
i1...ir

) ∂xi1
∂ya1

· · · ∂x
ir

∂yar

and Lv is the Lie derivative.

Proof. Note that if the tensor and the velocity only depends of t through x then this would just be the
definition of the Lie derivative. Now

∂

∂t

∣∣∣∣
y=const

wi1...ir (t, x)
∂xi1

∂ya1
· · · ∂x

ir

∂yar
=

(
∂t

∣∣∣∣
x=const

wi1...ir (t, x) + (∂ℓwi1...ir )(t, x)
∂xℓ

∂t

)
∂xi1

∂ya1
· · · ∂x

ir

∂yar

+ wi1...ir (t, x)
∂2xi1

∂t∂ya1
· · · ∂x

ir

∂yar
+ ...+ wi1...ir (t, x)

∂xi1

∂ya1
· · · ∂

2xir

∂t∂yar

Since vℓ(t, x) = ∂xℓ/∂t we see that

wi1...ir (t, x)
∂2xi1

∂t∂ya1
· · · ∂x

ir

∂yar
= wi1...ir (t, x)

∂vi1

∂ya1
· · · ∂x

ir

∂yar
= wℓ...ar

(t, x)
∂vℓ

∂xi1
∂xi1

∂ya1
· · · ∂x

ir

∂yar
,

and similarly for the other terms. This proves (2.16) since by definition

(Lvw)i1...ir = vℓ(∂ℓwi1...ir ) + wℓ...ir

∂vℓ

∂xi1
+ ...+ wi1...ℓ

∂vℓ

∂xir
�

We will now calculate commutators between the material derivative Dt and space derivatives ∂i, in
Lemma 2.3, and covariant derivatives ∇a, in Lemma 2.4. In order to calculate commutators between Dt

and higher order derivatives ∂i1 · · ·∂ir or ∇a1 · · ·∇ar we will introduce some notation incorporating that
these commutators are symmetric under permutations of the indices (i1, ..., ir) respectively (a1, ..., ar).
Let (∂r)i1...ir = ∂ri1...ir = ∂i1 · · · ∂ir and (∇r)a1...ar = ∇r

a1...ar
= ∇a1 · · · ∇ar . In particular, it is

convenient to introduce the symmetric dot product in (2.19) and (2.24):

Lemma 2.3. Let ∂i be given by (2.8). Then[
Dt , ∂i

]
= −(∂iv

k)∂k(2.17)

Furthermore [
Dt , ∂

r
]
=

r−1∑
s=0

−
(

r
s+1

)
(∂1+sv) · ∂r−s,(2.18)

where, the symmetric dot product is defined to be in components

(2.19)
(
(∂1+sv) · ∂s

)
i1...ir

=
1

r!

∑
σ∈Σr

(
∂1+s
iσ1 ...iσ1+s

vk
)
∂skiσs+2

...iσr

15



Proof. The proof of (2.17) follows from (2.8) and (2.12). In the notation of (2.18) we can write (2.17)
as [

Dt , ∂
]
= −(∂v) · ∂

Using this repeatedly we obtain

[
Dt , ∂

r
]
=

r∑
ℓ=0

∂ℓ
[
Dt , ∂

]
∂r−ℓ−1 = −

r−1∑
ℓ=0

∂ℓ(∂v) · ∂r−ℓ = −
r−1∑
ℓ=0

ℓ∑
s=0

(
ℓ
s

)
(∂1+sv) · ∂r−s

Since
∑r−1

ℓ=s

(
ℓ
s

)
=
(

r
s+1

)
this proves (2.18). �

Lemma 2.4. Let Ta1...ar is a (0, r) tensor. We have

(2.20)
[
Dt , ∇a

]
Ta1...ar = −(∇a1∇au

d)Tda2...ar − ...− (∇ar∇au
d)Ta1...ar−1d

If △ = gcd∇c∇d and q is a function we have[
Dt , g

ab∇a

]
Tb = −hab∇aTb − (△ue)Te(2.21) [

Dt , △
]
q = −hab∇a∇bq − (△ue)∇eq(2.22)

Furthermore

(2.23)
[
Dt , ∇ r

]
q =

r−1∑
s=1

−
(

r
s+1

)
(∇s+1u) · ∇r−sq,

where the symmetric dot product is defined to be in components

(2.24)
(
(∇s+1u) · ∇r−sq

)
a1...ar

=
1

r!

∑
σ∈Σr

(∇s+2
aσ1 ...aσs+1

ud)∇ r−s
d aσs+3

...aσr
q

Proof. (2.20) is a consequence of (2.13) since in components the covariant derivative is given by
∇aTa1...ar = ∂Ta1...ar/∂y

a − Γd
a1aTda2...a3 − ...− Γd

araTa1...ar−1d. Now[
Dt , g

ab∇a

]
Tb = (Dtg

ab)∇aTb + gab
[
Dt , ∇a

]
Tb

and (2.21) follows from (2.12) and (2.20). (2.22) follows from (2.21) applied to Tb = ∇bψ, since
Dt∇bq = ∂t∂q(t, y)/∂y

b = ∇bDtq.

In the notation of (2.24) we have by (2.20)

(2.25)
[
Dt , ∇

]
∇sq = −s(∇2u) · ∇sq

using this repeatedly we get

[
Dt , ∇r

]
q =

r−1∑
ℓ=0

∇ℓ[Dt,∇]∇r−ℓ−1q = −
r−1∑
ℓ=0

∇ℓ(r − ℓ− 1)(∇2u) · ∇r−ℓ−1q =

−
r−2∑
ℓ=0

ℓ∑
s=0

(r − ℓ− 1)
(
ℓ
s

)
(∇s+2u) · ∇r−s−1q

Since
∑r−2

ℓ=s (r − ℓ− 1)
(
ℓ
s

)
=
(

r
s+2

)
this proves (2.23). �

Notice that difference between (2.18) and (2.23) is that in (2.23) the term with s = 0 is absent,
which is the advantage of going to covariant differentiation.
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3. The geometry and regularity of the boundary: the second
fundamental form and extension of the normal to the interior

In this section we will deal with the geometry and regularity of the boundary. The regularity is
measured by the regularity of the normal, in particular by the first space derivative, i.e. the second
fundamental form. We also need to control how far off the boundary is from self intersecting since
we want to foliate the domain close the boundary into surfaces that do not self intersect. This can be
achieved by the level sets of the distance function to the boundary. This gives an extension of the normal
to the interior, which we need to prove our estimates. The size of the neighborhood in which the level
sets are well defined and smooth determines the size of the derivatives of our extension of the normal
to a vector field defined everywhere in the interior. We also want to control the time evolution of the
boundary, which can be measured by the time derivative of the normal in the Lagrangian coordinates.

We will use both the Eulerian coordinates and the Lagrangian coordinates. When we calculate time
derivatives it is of course most convenient to do so in the Lagrangian coordinates whereas the Eulerian
coordinates are more convenient to use when we measure how the surface lies in space, since we want
to be able to compare the normal at different points. In this section we will also define the projection
of a tensor to the boundary which we will use to define covariant differentiation on the boundary. The
projection will play an important role in our estimates and we will discuss it in detail in section 4.

Definition 3.1. Let Na denote be the unit normal to ∂Ω:

(3.1) gabN
aN b = 1, gabN

aT b = 0, if T ∈ T (∂Ω)

and let Na = gabN
b denote the unit conormal; gabNaNb = 1. The induced metric γ on the tangent

space to the boundary T (∂Ω) extended to be 0 on the orthogonal complement in T (Ω) is then given by

(3.2) γab = gab −NaNb, γab = gab −NaN b

The orthogonal projection of a (r, s) tensor S to the boundary is given by

(ΠS)a1...ar

b1...bs
= γ a1

c1 · · · γ
as
csγ

d1

b1
· · · γ ds

bs
Sc1...cr

d1...ds
,(3.3)

where

γ c
a = δ c

a −NaN
c and γ a

c = δac −NaNc.(3.4)

Covariant differentiation on the boundary ∇ is given by

(3.5) ∇S = Π∇S

The second fundamental form of the boundary is given by

(3.6) θab = (Π∇N)ab = γ c
a ∇cNb.

Note first that ∇ is invariantly defined since the projection and the covariant derivative are. Note
also that ∇ indeed corresponds to the intrinsic covariant derivative ∇/ of the boundary:

17



Lemma 3.1. Suppose that the coordinates are chosen so that locally the boundary is given by ∂Ω =
{y; yn = 0} and parameterized by (y1, ..., yn−1). Let ∇/ denote covariant differentiation on ∂Ω. Then

(3.7) ∇ aT b =

{ ∇/ aT b for a, b = 1, ..., n− 1

0 for a = n or b = n
, if Tn = 0.

Proof. The conormal is Na = δan/
√
gnn and the normal is Na = gacNc = gan/

√
gnn. The induced

metric is given by γab = gab, for a, b = 1, ..., n − 1 and its inverse is given by γab = gab − NaN b , for
a, b = 1, ..., n− 1. Note also that

γ n
a = γna = γna = γan = 0, when a ≤ n,

γ b
a = γ b

a = δ b
a , when a < n

γ b
n = γ b

n = −gbn/gnn, when b < n

Let us at this point use the notation ∇a = gab∇b, ∇ a = gab∇b and ∇/ a = γab∇/ b where the last sum is

only over b = 1, ..., n − 1. To prove (3.7) we first note that ∇ aT b = γ a
a′γ b

b′∇a′
T b′ = γ a

a′∇a′
T b = 0

when i = n or b = n since γna′ = 0. If on the other hand 1 ≤ a, b ≤ n− 1 then

∇ aT b = γ a
a′ga

′a′′
(
∂T b

∂ya′′ + gbb
′′
Γa′′b′′cT

c

)
= γaa

′ ∂T b

∂ya′ + γaa
′
γbb

′
Γa′b′cT

c

and if 1 ≤ a, b, c ≤ n− 1 then

Γabc =
1

2

(
∂gbc
∂ya

+
∂gac
∂yb

− ∂gab
∂yc

)
=

1

2

(
∂γbc
∂ya

+
∂γac
∂yb

− ∂γab
∂yc

)
= Γ/ abc

gives the intrinsic connection so (3.7) follows. �

It follows that any invariant quantity formed from either side of (3.7) have to be equal. If the
coordinates are chosen so yn = 0 on ∂Ω then the curvature of ∂Ω is related to the second fundamental
form by Gauss equations

(3.8) R
d

c ab = θacθ
d

b − θbcθ
d

a

Recall also that if T is tangential

(3.9)
[
∇a,∇b

]
Ta1...ar = −R a1

c abTc...ar − ...−R
ar

c abTa1...c

We also need to extend the normal to a neighborhood of the boundary. The exact extension of
the normal to the interior is not so important at this point. Basically we want to have control of the
supremum norm of the time and space derivatives of the normal in the interior. One way to define an
extension of the normal in the interior is to consider a foliation of Ω close to ∂Ω

(3.10) Sλ = {y ∈ Ω; d(t, y) = λ}, d > 0 in Ω, d = 0 on ∂Ω

The unit conormal to Sλ is then given by

(3.11) Na =
∂ad√

gbc∂bd ∂cd
18



It is natural to take d(t, y) = distg(y, ∂Ω) to be the geodesic distance to the boundary which is the
same as the Euclidean distance in the x-variables. If d is the geodesic distance in the metric g then the
conormal is Na = ∇ad and θ = ∇N = ∇2d = Π∇2d and he normal derivative of the normal vanishes
∇NN = 0. Since θ = Π∇2d = ∇2d it follows that ∇θ = Π∇Π∇2d = Π∇3d is symmetric as well. ∇ 2θ
is however not symmetric, but the antisymmetric part is lower order; by Gauss equations (3.8)-(3.9),

(3.12) ∇a∇bθcd −∇b∇aθcd = [∇a,∇b] θcd = −R e

c abθed −R
e

d abθde.

Furthermore, since N ·N = 1 we get N · ∇2N + (∇N) · (∇N) = 0, in other words

(3.13) ∇Nθab = −θ c
a θcb

so the second fundamental forms for the surfaces Sλ for small λ are as regular as for ∂Ω. We will discuss
this and the regularity of the extension of the normal to the interior further in Lemma 3.6.

Let us now go on to discuss two definitions, to control the geometry and regularity of the boundary.
Let us express our surface in the x variables ∂Dt ⊂ Rn using the metric there.

Definition 3.2. Let N (x) is the outward unit normal to ∂Dt at x ∈ ∂Dt. Let dist(x1, x2) = |x1 − x2|
the denote the Euclidean distance in Rn and for x1, x2 ∈ ∂Dt let dist∂Dt(x1, x2) denote the geodesic
distance on the boundary. Let dist(x, ∂Dt) be the Euclidean distance from x to the boundary.

Definition 3.3. Let ι0 be the injectivity radius of the normal exponential map of ∂Dt, i.e. the largest
number such that the map

(3.14) ∂Dt × (−ι0, ι0) → {x ∈ Rn : dist(x, ∂Dt) < ι0} given by (x, ι) → x = x+ ιN (x),

is an injection. �

Note that ι0 ≥ 1/|θ|L∞(∂Dt), for along the normal line from x ∈ ∂Dt, the first focal point is at
a distance 1/|θ(x)|, where |θ(x)| = sup|v|=1 |θ(x) · v| is the greatest eigenvalue in magnitude. Instead
of using the injectivity radius ι0 we can use a radius ι1 which, in conjunction with a bound for the
second fundamental form, is comparable. The radius ι1 works equally well for controlling the Sobolev
constants and it is easier to control the time evolution off.

Definition 3.4. Let 0 < ε1 < 2 be a fixed number and let ι1 = ι1(ε1) the largest number such that

(3.15) |N (x1)−N (x2)| ≤ ε1, whenever |x1 − x2| ≤ ι1, x1, x2 ∈ ∂Dt.

Remark. Note that Definition 3.4 also says that the intersection ∂Dt ∩B(ι1, x0) of the surface with an
open ball of radius ι1 centered at any point x0 ∈ ∂Dt is connected and it can be written as a graph
over the plane orthogonal to the normal N (x0) at the center x0. In fact, we claim that the line segment
in B(ι1, x0) along the exterior normal N (x0) from any point x1 in the same component of ∂Dt as
x0 is completely contained in the complement {Dt (and the line segment in the opposite direction is
completely contained in Dt. ) In fact, if not, then there would be a point x2 ∈ ∂Dt where it would
enter the region Dt again and at that point the exterior normal N (x2) would have to make an angle at
least π/2 with N (x0) contradicting the condition in Definition 3.4.
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Lemma 3.2. Suppose that |θ| ≤ K and let ι0 and ι1 be as in Definition 3.3 and Definition 3.4. Then

(3.16) ι0 ≥ min (ι1/2, 1/K) and ι1 ≥ min (2ι0, ε1/K)

Proof. Let
ι3 = min

dist∂Dt (x,z)≥π/K
|x− z|

We claim that
ι0 = ι3/2 ≥ ι1/2, if min (ι0, ι3/2) ≤ 1/K

By Definition 3.3 there are x1 ̸= x2 on the boundary such that

x1 + aN(x1) = x2 + bN(x2) for some |a| ≤ ι0, |b| ≤ ι0

If ι0 < 1/K then, by Lemma 3.3, dist∂Dt(x1, x2) ≥ π/K and hence

ι3 = min
dist∂Dt (x,z)≥π/K

|x− z| ≤ |x1 − x2| ≤ 2ι0 < 2/K.

If ι3 < 2/K it follows from Lemma 3.3, that the minima above is attained at some, possibly different,
(x3, x4) ∈ ∂Dt × ∂Dt with dist∂Dt(x3, x4) > π/K. Hence ∂Dt × ∂Dt ∋ (x, z) → |x − z| has a local
minimum at (x3, x4) so the normals N (x3) and N (x4) are parallel to the line between x3 and x4. From
this it follows that ι0 ≤ ι3/2 and it also contradicts the condition in Definition 3.4 so we conclude that
ι3 = |x3 − x4| > ι1. This proves the first part of (3.16) and the second part follows in a similar way; If
dist∂Dt(x1, x2) ≤ π/K then by Lemma 3.3

|N (x1)−N (x2)| ≤ 2 sin
(
K dist∂Dt(x1, x2)/2

)
≤ K dist∂Dt(x1, x2) ≤ Kπ|x1 − x2|/2 ≤ ε1

if |x1 − x2| ≤ ε12/Kπ. If on the other hand dist∂Dt(x1, x2) > π/K then |x1 − x2| ≥ ι3 and if ι3 < 2/K
then ι3 = 2ι0 so |x1 − x2| ≥ min (2/K, 2ι0). �

Lemma 3.3. Suppose that |θ| ≤ K and 0 < dist∂Dt
(x1, x2) < π/K. Then

(3.17) x1 + aN (x1) ̸= x2 + bN (x2) for |a| ≤ 1/K, |b| ≤ 1/K

Furthermore, if |θ| ≤ K and dist∂Dt(x1, x2) ≤ π/K then

(3.18) |x1 − x2| ≥ 2 dist∂Dt(x1, x2)/π, and N (x1) · N (x2) ≥ cos
(
K dist∂Dt(x1, x2)

)
Proof. Let α(s) be a geodesic in ∂Ω parameterized by arc length, |α̇(s)| = 1, with α(si) = xi. Let
s0 = (s−1+s2)/2. To simplify notation we assume that s0 = 0 and α(0) = 0 and set α̇(0) = T . LetN (s)
be the normal to α(s) and k(s) = θ

(
α̇(s), α̇(s)

)
be the (normal) curvature of α(s), i.e α̈(s) = ±k(s)N (s).

We will show that T · (α(s) + aN (s)) > 0 for |a| < K and that T · α(s) ≥ sin (Ks)/K provided
that 0 < s < π/2K. Since the same result is true in the negative direction, this would prove the

lemma. Let ϕ(s) be the angle that α̇(s) makes with T i.e. α̇(s) · T = cosϕ(s). Then |ϕ̇(s)| ≤ K so
0 ≤ ϕ(s) ≤ Ks. Let x(s) = α(s) · T and r(s) = |α(s)− T (α(s) · T )|. Then ẋ(s) = cosϕ(s) ≥ cos (Ks)
and |ṙ(s)| ≤ sinϕ(s) ≤ sin (Ks). Hence x(s) ≥ sin (Ks)/K and r(s) ≤ (1− cos (Ks))/K. Furthermore
T · N (s) ≥ cos (ϕ(s) + π/2) = − sinϕ(s) ≥ − sin (Ks) which proves the lemma.

Note that it follows from the remark after Definition 3.4 that in a neighborhood of x0 ∈ ∂Dt we can
write the boundary as a graph. We can now make a partition of unity into coordinate neighborhoods
where this is true, which will be used to control the Sobolev constants:
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Lemma 3.4. Suppose that Dt ⊂ Rn with boundary satisfying the condition in Definition 3.4 with
ι1 ≥ 1/K1. Then there are χi ∈ C∞

0 (Rn), i = 1, 2, ... such that

(3.19)
∑
p

χi = 1,
∑
p

|∂αχi| ≤ CαK
|α|
1 , diam

(
supp(χi)

)
≤ 1/K1

and for each x ∈ Rn there are at most 32n i such that χi(x) ̸= 0. Furthermore, either supp(χi) ∩ ∂Dt

empty or its part of a graph contained in ∂Dt, which after a rotation is given by

(3.20) xn = fi(x
′), (x′, xn) ∈ Rn, |x′ − x′i| ≤ ι1, |∂fi| ≤ ε1, xi ∈ ∂Dt, N (xi) = (0, ..., 0, 1)

Proof. Let B(r, x) denote the ball of radius r centered at x. Let ρ1 = ι1/16 and let {B(2ρ1, xi)} be a
cover of Rn such that {B(ρ1, xi)} are disjoint. We define

χi(x) =
χ(|x− xi|/4ι1)∑
i χ(|x− xi|/4ι1)

where χ ∈ C∞
0 satisfy 0 ≤ χ ≤ 1, χ(s) = 1 when s ≤ 0 and χ(s) = 0 when s ≥ 2. The number of disjoint

balls of radius ρ1 that can be contained in a ball of radius 16ρ1 is 16n. Since supp (χi) is contained in
a ball of radius 8ρ1 this proves that for each x ∈ Rn there are at most 16n i such that χi(x) ̸= 0. �

We will now estimate first order derivatives of the extension of the normal to he interior. In Lemma
3.5 we estimate the time derivatives on the boundary. It is now natural to work in the Lagrangian
coordinates. In Lemma 3.6 we estimate the geodesic extension of the normal to the interior in a
neighborhood of the boundary.

Lemma 3.5. Let N be the unit normal to ∂Ω and let hab = Dtgab/2. On [0, T ]× ∂Ω we have

DtNa = hNNNa, DtN
c = −2hcdN

d + hNNN
c(3.21)

Dtγ
ab = −2γacγbdhcd(3.22)

The volume element on ∂Ω satisfy

(3.23) Dtdµγ = (trh− hNN )dµγ = (tr θu ·N + γab∇aub)dµγ

Proof. Since the right hand sides of (3.21) restricted to [0, T ] × ∂Ω is independent of the extension of
the normal to the interior we may choose the foliation

Na =
∂au√

gcd∂cu ∂du
, where ∂Ω = {y;u(y) = 0}, u < 0, in Ω

then
DtNa = −1

2
Na(Dtg

cd)NcNd = hNNNa

and
DtN

a = Dtg
adNd = (Dtg

ad)Nd + gadDtNd = −2hadNd + hNNN
a

which proves (3.21). (3.22) follows from

Dtγ
ab = Dt(g

ab −NaN b) = Dtg
ab − (DtN

a)N b −NaDtN
b = −2hab + 2hacN

cN b

+ 2hbdN
dNa − 2hklN

kN lNaN b = (δad −NaNd)(δ
b
d −N bNd)h

cd = −2γadγ
b
dh

cd.

Introducing coordinates we have dµg =
√
det g dy and Dt

√
det g =

√
det g trh. Now

dµγ =
√
det g(

∑
N2

n)
−1/2 dS, where dS is the Euclidean surface measure, and Dt(

∑
N2

n)
−1/2 =

−(1/2)(
∑
N2

n)
−3/2

∑
2NnDtNn. But DtNn = hNNNn which proves that Dtdµγ = (trh − hNN )dµγ .

Now trh− hNN = γab∇avb = γab∇a(Nbv ·N) + γab∇avb. �

We will now extend the normal to a vector field defined an regular everywhere in the interior, such
that when d(t, y) ≤ ι0/4 its the normal to the sets {y; (.t, y) = d0} and in the interior it drops off to 0.
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Lemma 3.6. Let ι0 be as in Definition 3.3. and let d(y) = distg(y, ∂Ω) be the geodesic distance in the
metric g from y to ∂Ω. Then the conormal n = ∇d to the sets Sa = ∂{y ∈ Ω; d(y) = a} satisfies

(3.24) |∇n| ≤ 2|θ|L∞(∂Ω), and |Dtn(t, y)| ≤ 6|h|L∞(Ω), when d(y) < ι0/2.

Proof. Now since n · n = 1 it follows that n · ∇n = 0 and hence (∇n) · ∇n + n · ∇2n = 0 and since
θ = ∇n we get ∇Nθ = −θ · θ. It follows that |∇N |θ|| ≤ |θ|2 If d(y) = distg(y, ∂Ω) < ι0 then there is
a unique y ∈ ∂Ω such that d(y, y) = distg(y, ∂Ω). Hence we can introduce d and y as new variables
so that y = y(d, y) and in these coordinates ∇N = ∂/∂d so with f(d) = |θ(d, y)| we get the inequality
|f ′(d)| ≤ f(d)2 for each fixed y. Its easy to see that f(d) ≤ 2f(0), if 2df(0) ≤ 1. and hence |θ(d, y)| ≤
2|θ|L∞(∂Ω), if 2d|θ|L∞(∂Ω) ≤ 1, which proves the first part of (3.24). We claim that

(3.25) ∇NDtd = hNN , ∇N ṅ+ θ · ṅ = θ · h · n, if ṅ = Dtn− h · n

In fact since gabNaNb = 1 we have

0 = 2gabNaDtNb + (Dtg
ab)NaNb = 2∇NDtd− 2habNaNb

and the first equation in (3.25) follows. Since

∇chNN = ∇c(N
aN bhab) = NaN b∇chab + hab∇c(N

aN b) = NaN b∇ahcb + hab(N
bθ a

c +Naθ b
c )

differentiating the first equation in (3.25) we get

∇NDtNc + θ e
c DtNe = ∇cN

e∇eDtd = ∇chNN = ∇N (hcbN
b) + θ e

c hebN
b + θ b

c N
ahab

With ṅc = DtNc − hcbN
b, we get ∇N ṅc + θ e

c ṅe = θ b
c N

ahab which proves the second part of (3.25)

(3.26) |∇N |ṅ|| ≤ |θ||ṅ|+ |θ||h| ≤ K|ṅ|+K|h|, if K = 2|θ|L∞(∂Ω)

so using the coordinates y = y(d, y) we get

|ṅ(t, y)| ≤ ed(t,y)K |ṅ(t, y)|+
∫ d(t,y)

0

e(d(t,y)−s)KK|h| ds ≤ ed(t,y)K
(
|ṅ(t, y)|+Kd(t, y)|h|L∞(Ω)

)
where y ∈ ∂Ω satisfies d(t, y) = distg(y, y). SinceKd0 ≤ 1/2 we get |ṅ(t, y)| ≤ 2|ṅ(t, y)|+|h|L∞(Ω), when
d(t, y) ≤ d0. Since Dtn(t, y) = hNN (t, y)n(t, y) and ṅ = Dtn− h · n we get |Dtn(t, y)| ≤ 6|h|L∞(Ω). �

Lemma 3.7. Let ι0 be the reduced injectivity radius of the normal exponential map of ∂Ω and let d0
be a fixed number such that ι0/16 ≤ d0 ≤ ι0/2. Let η ∈ C∞(R) be such that η(s) = 1 when |s| ≤ 1/2,
η(s) = 0 when |s| ≥ 3/4, 0 ≤ η(s) ≤ 1 and |η′(s)| ≤ 4. Then the pseudo Riemannian metric γ given by

γab = gab − ñañb, γab = gab −NaN b, Na = gabña, where ñc = η(d/d0)∇cd(3.27)

satisfies

|∇γ|L∞(Ω) ≤ 256(|θ|L∞(∂Ω) + 1/ι0) and |Dtγ(t, y)| ≤ 64|h|L∞(Ω)(3.28)

Proof. We have ∇cña = −η(d/d0)∇cNa − η′(d/d0)NaNc/d0 which in view of (3.27) proves that |∇γ̃| ≤
2|∇n|+16/d0, so the first inequality in (3.28) follows. Since γab = gab−ñañb, where ñb = η(d/d0)Nb and
so Dtñb = η(d/d0)DtNb+η

′(d/d0)NbDtd/d0. Integrating the first equation in (3.25) gives |Dtd(t, y)| ≤
|hNN |L∞(Ω)d(t, y) and since d/d0 ≤ 1 in the support of η(d/d0) this proves the second part of (3.28). �

Note that in a neighborhood of ∂Ω, γ̃ is just the induced metric on the surfaces Sλ = {y ∈
Rn; d(y, ∂Ω) = λ} and in the interior γ̃ is just the interior metric g.
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4. Estimates for the projection of a tensor to the tangent space of the boundary

Definition 4.1. Let N be the unit normal to ∂Ω and let ∇N = N j∇j be the normal derivative. Let
d(t, y) = distg(y, ∂Ω) be the geodesic distance form y to ∂Ω and let Ni = ∇id be the geodesic extension
of the normal to the interior. Let θij = ∇iNj = ∇i∇jd be the second fundamental form of ∂Ω. Let

γ j
i = δ j

i − NiN
j and if I = (i1, ..., ir) and J = (j1, ..., jr) are multi indices of length |I| = r set

γ J
I = γ j1

i1
· · · γ jr

ir
and N I = N i1 · · · N ir . If β is a (0, r) tensor in Ω define the projection Πβ to a

tensor on ∂Ω to be (Πβ)I = γ J
I βJ . Let ∇β = Π∇β denote the tangential covariant derivative. This

is the intrinsic covariant derivative of ∂Ω if β is already tangential to ∂Ω, i.e. if βi1...ik...irN
k = 0,

k = 1, ..., r, see Lemma 3.1. Furthermore, let ∇r and ∇ r be the operators which in components are
given by ∇r

I = ∇i1 · · · ∇ir respectively ∇ r
I = ∇i1 · · · ∇ir

Definition 4.2. Let α is a (0, s) tensor and β is a (0, r) tensor. We will let α⊗̃β denote some partial
symmetrization of the tensor product α⊗β. I.e. a sum over some subset of the permutations of the
indices divided by the number of permutations in that subset. In each situation there is of course a
specific subset, but in our estimates it does not matter which one so to simplify the exposition we do
not write out the exact permutations. Similarly, we let α ·̃β denote a partial symmetrization of the dot
product α · β, which in turn is defined to be a contraction of the last index of α with the first index of
β: (α · β)i1...ir+s−2 = gijαi1...is−1iβjis...ir+s−2 �

The simple observation that will help us is that if q = 0 on ∂Ω then the projection of the tensor
∇2q to the boundary will only contain first order derivatives of q and it will contain all components of
the second fundamental form. In fact

(4.1) Π∇2q = ∇ 2q + θ∇Nq

where the tangential derivatives ∇ 2q = 0 on the boundary. To prove (4.1) we note that

γ k
j ∇iγ

l
k = −γ k

j ∇i(NkN
l) = −γ k

j θikN
l − γ k

j Nkθ
l

i = −θijN l(4.2)

so

(4.3) ∇i∇jq = γ i′

i γ j′

j ∇i′γ
j′′

j′ ∇j′′q = γ i′

i γ j′

j γ j′′

j′ ∇i′∇j′′q + γ i′

i γ j′

j (∇i′γ
j′′

j′ )∇j′′q

= γ i′

i γ j′

j ∇i′∇j′q − θij∇Nq

We now want to find a higher order versions of (4.1). One way to understand why there should
be such a formula if q = 0 on ∂Ω is to expand q in a Taylor series in the geodesic distance d from the
boundary. If q = 0 on ∂Ω then q/d ∼ ∇Nq is a well defined function in a neighborhood of ∂Ω and hence
we can write

Π∇rq = Π∇r
(
d
q

d

)
=

r∑
s=0

(
r
s

)
Π(∇r−sd)⊗̃Π∇s

(
q
d

)
Since however d = Π∇d = 0 on ∂Ω and ∇2d = θ we obtain

(4.4) Π∇rq =
r−2∑
s=0

(
r
s

)
Π(∇r−2−sθ)⊗̃Π∇s

(
q
d

)
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Proposition 4.1. On ∂Ω we have

(4.5)
∣∣∣(Π∇r)q −∇ rq −∇Nq∇ r−2θ −

r−2∑
s=1

(
r
s

)
(∇ r−2−sθ)⊗̃(∇ s∇Nq)

∣∣∣
≤ C

∑
r0+r1+...+rk+ℓ=r−k

k−ℓ=0mod 2, k≥ℓ≥0, k≥2

|∇ r1θ| · · · |∇ rkθ||∇ r0∇ℓ
Nq|

and

|∇ r0∇ℓ
Nq| ≤ C

∑
r̃0+r̃1+...+r̃k=r0+ℓ−k

|∇ r̃1θ| · · · |∇ r̃kθ||∇r̃0q|(4.6)

|∇ r0q| ≤ C
∑

r̃0+ℓ+r̃1+...+r̃k=r0−k

|∇ r̃1θ| · · · |∇ r̃kθ||∇r̃0∇ℓ
Nq|(4.7)

where the sums are over all positive integers ri ≥ 0, r̃i ≥ 0 and k, ℓ ≥ 0.

Proposition 4.2. We have

(4.8) (Π∇r)Jq =
∑

r0+r1+...+rk+ℓ=r−k

ckℓJI0...Ik(g)(∇ r1θ)I1⊗ · · · ⊗(∇ rkθ)Ik⊗∇ r0
I0

(
∇ ℓ

Nq
)

where the sum is over positive integers k, ℓ,m ≥ 0, k − ℓ = 2m ≥ 0, ri ≥ 0 and all permutations
(I0, I1, ..., Ik) of (J, i1, ..., i2m). Here

(4.9) cklJI0...Ik(g) = dkℓmJI0...Ikg
i1i2 · · · gi2m−1i2m

denotes contractions over m indices. Furthermore.

(4.10) (Π∇r)q = ∇̃rq +
r−2∑
s=0

(
r
s

)
(∇ r−2−sθ)⊗̃(∇ s∇Nq) + F

where F is of the form in the right hand side of (4.8) but with k ≥ 2 in the sum.

Remark. Proposition 4.1 and Proposition 4.2 applies to the function q being replaced by (0, s) tensor
α as well if the projections, tangential and normal derivatives are correctly interpreted: only the first r
indices should be projected. This will be explained later in this section, see Proposition 4.8.

The proof of Proposition 4.1 and Proposition 4.2 consists of turning projections onto the tangential
and normal components into tangential derivatives of normal derivatives. The basic idea is that any
derivative ∇r of order r can be expressed as a sum of combinations of tangential derivatives ∇ and
normal derivatives ∇N of total order at most s ≤ r and similarly any combination of normal and
tangential derivatives of total order r can be expressed as a sum of derivatives ∇s for s ≤ r. Since
the coefficients of both the normal derivative and of the projection involved in the tangential derivative
are made up out of the normal it follows that the coefficients in expressing a derivative ∇r in terms of
normal ∇N and tangential ∇ derivatives will consists of derivatives of the normal, i.e. derivatives of the
second fundamental form θ. Whenever a derivative in say (4.5)-(4.8) falls on the normal it produces a
new factor θ and at the same time the total number of derivatives involved has gone done by one, so
the total number of derivatives in the expressions (4.5)-(4.8) goes down by one for each new factor of
θ. This simple observation will prove (4.6)-(4.7) and (4.8). The more detailed information in (4.5) and
(4.10) formally follows from (4.4) and the above argument.

The key to turn tangential and normal components into tangential derivatives of normal components
is Lemma 4.3 below. In Lemma 4.4 it is then expressed in a form which is more directly adapted to the
situation in Proposition 4.1 and Proposition 4.2.
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Lemma 4.3. Suppose that S is a (0, r+ ℓ+ s) tensor which is symmetric with respect to the first r+ ℓ
indices. Let

(4.11) Sr,ℓ
i1...ir+s

= (Πr,ℓS)i1...ir+s = γ j1
i1

· · · γ jr
ir

N jr+1 · · ·N jr+ℓSj1...jr+ℓir+1...ir+s

be the projection of the first indices onto r tangential and ℓ normal components. Then

Πr+1,0∇Πr,ℓS = Πr+1,ℓ∇S − r θ⊗̃Πr−1,ℓ+1S + ℓ θ ·Πr+1,ℓ−1S(4.12)

where (
θ⊗̃Πr−1,ℓ+1S

)
i0i1...irir+1...ir+s

=
1

r

r∑
p=1

θi0ip (Πr−1,ℓ+1S)Ipir+1...ir+s(4.13)

(
θ ·Πr+1,ℓ−1S

)
i0i1...irir+1...ir+s

= θ j
i0
(Πr+1,ℓ−1S)j i1...irir+1...ir+s(4.14)

where Ip = (i1, ..., ip−1, ip+1, ..., ir).

Proof of Lemma 4.3. To simplify notation we assume that s = 0. Now

S r,ℓ
i1...ir

= γ J
I NJ ′

SJJ ′ = γ j1
i1

· · · γ jr
ir

N jr+1 · · ·N jr+ℓSj1...jr+ℓ

where I = (i1, ..., ir) and J = (j1, ..., jr) be multi indices of length r and J ′ = (jr+1, ..., jr+ℓ) is a multi
index of length ℓ. Now

∇i0S
r,ℓ
i1...ir

= γ j0
i0

γ L
I ∇j0

(
γ J
L NJ ′

SJJ ′
)
=

= γ j0
i0

γ J
I NJ′

∇j0SJJ ′ + γ j0
i0

γ L
I (∇j0 γ

J
L )NJ′

SJJ ′ + γ j0
i0

γ J
I (∇j0 N

J ′
)SJJ ′

By (4.2)

γ L
I ∇i0γ

J
L = −

r∑
p=1

θi0ipγ
Jp

Ip
N jp

where Ip = (i1, ..., ip−1, ip+1, ..., ir) and Jp = (j1, ..., jp−1, jp+1, ..., jr). Furthermore

∇i0N
J ′

=
r+ℓ∑

p=r+1

θ
j′p

i0
NJ ′

p

where J ′
p = (jr+1, ..., jp−1, jp+1, ..., jr+ℓ). If we now assume that S is symmetric the notation simplifies

a bit and we obtain the lemma. �

Now we want to apply Lemma 4.3 to S = ∇r+ℓq. Since in geodesic coordinates ∇NN = 0 it follows
that

(4.15) [∇N ,Π] = 0, ∇ℓ
N = N i1 · · ·N iℓ∇i1 · · · ∇iℓ
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Lemma 4.4. Let

S r,ℓ = Πr,ℓ∇r+ℓq = ∇ℓ
NΠ∇rq,(4.16)

Then

S r+1,ℓ = ∇S r,ℓ + r θ⊗̃S r−1,ℓ+1 − ℓ θ · S r+1,ℓ−1(4.17)

Furthermore

S r,ℓ −∇ rS 0,ℓ =
r−2∑
k=0

∇ r−2−k
(
(k + 1)θ⊗̃S k,ℓ+1 − ℓ θ · S k+2,ℓ−1

)
(4.18)

and

(4.19) S r,ℓ −∇ rS 0,ℓ =

r−2∑
m=0

(
r
m

)
(∇mθ)⊗̃∇ r−2−mS 0,ℓ+1 −

r−2∑
m=0

ℓ
(
r−1
m

)
(∇mθ) ·̃ ∇ r−mS 0,ℓ−1

+
∑

ar1r2k(∇r1θ)⊗̃(∇r2θ)⊗̃∇r−4−r1−r2−kSk,ℓ+2

+ (ℓ+ 1)
∑

br1r2k(∇r1θ)⊗̃(∇r2θ) ·̃ ∇r−2−r1−r2−kSk,ℓ

+ ℓ
∑

cr1r2k(∇r1θ) ·̃ (∇r2θ)⊗̃∇r−2−r1−r2−kSk,ℓ

+ ℓ(ℓ− 1)
∑

dr1r2k(∇r1θ) ·̃ (∇r2θ) ·̃ ∇r−r1−r2−kSk,ℓ−2

where the sums are over all integers r1, r2, k ≥ 0 such that all exponents of differentiation also are ≥ 0.

Proof. (4.17) follows from (4.12). Now by repeated use of (4.17)

S r,ℓ = ∇S r−1,ℓ + (r − 1) θ⊗̃S r−2,ℓ+1 − ℓ S r,ℓ−1

= ∇
(
∇S r−2,ℓ + (r − 2) θ⊗̃S r−3,ℓ+1 − ℓ θ · S r−1,ℓ−1

)
+ (r − 1) θ⊗̃S r−2,ℓ+1 − ℓ θ · S r,ℓ−1

= ... = ∇ rS 0,ℓ +
r−2∑
k=0

∇ r−2−k
(
(k + 1)θ⊗̃S k,ℓ+1 − ℓ θ · S k+2,ℓ−1

)
which proves (4.18). To proceed further we must use (4.18) twice. In the right hand side of (4.18)
we use (4.18) to write S k,ℓ+1 as ∇kS k,ℓ+1 plus terms involving one factor of θ and write S k+2,ℓ−1 as
∇k+2S 0,ℓ−1 plus terms involving one factor of θ. Let us first calculate the term involving one factor of
θ. By Leibnitz’ rule we have

r−2∑
k=0

∇ r−2−k
(
(k + 1)θ⊗̃∇kS 0,ℓ+1 − ℓ θ · ∇kS 0,ℓ−1

)
=

r−2∑
k=0

r−2−k∑
m=0

(
r−2−k

m

)
(k + 1)(∇mθ)⊗̃∇ r−2−mS 0,ℓ+1 − ℓ

r−2∑
k=0

r−2−k∑
m=0

(
r−2−k

m

)
(∇mθ) ·̃ ∇ r−2−mS 0,ℓ−1

=
r−2∑
m=0

(
r
m

)
(∇mθ)⊗̃∇ r−2−mS 0,ℓ+1 − ℓ

r−2∑
m=0

(
r−1
m

)
(∇mθ) ·̃ ∇ r−mS 0,ℓ−1

since
∑r−2−m

k=0 (k + 1)
(
r−2−k

m

)
=
(
r
m

)
and

∑r−2−m
k=0

(
r−2−k

m

)
=
(
r−1
m

)
. This explains the terms involving

one factor of θ in the first row of (4.19). Using (4.18) and Leibnitz’ rule its easy to see that the term
involving two factors of θ has to be of the form in (4.19). �
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Proof of Proposition 4.1 and Proposition 4. 2. The proof is just an application of Lemma 4.4: (4.5)
follows from (4.8). (4.8) follows by induction from (4.17), noticing that the total order of the tensor
goes down by one for each new factor of θ. (4.10) follows from (4.19). (4.6) and (4.7) follows from the
same argument. �

Using (4.17)-(4.18) one can show that

Π∇2q = ∇ 2q + θ∇Nq,(4.20)

Π∇3q = ∇ 3q − 2θ⊗̃(θ ·̃ ∇q) + (∇θ)∇Nq + 3θ⊗̃∇∇Nq(4.21)

Π∇4q = ∇ 4q − θ⊗̃
(
5(∇θ) ·̃ ∇q + 8θ ·̃ ∇ 2q

)
− 2(∇θ)⊗̃(θ ·̃ ∇q)(4.22)

+ (∇ 2θ)∇Nq + 4(∇θ)⊗̃∇∇Nq + 6θ⊗̃∇ 2∇Nq − 3θ⊗̃(θ ·̃ θ)∇Nq + 3θ⊗̃θ∇2
Nq

Since ∇N = N · ∇, Π∇N = ∇N = θ and Π∇2N = Π∇θ = Π∇Πθ = ∇θ and ∇Nθ = ΠN · ∇2q =
−Π(∇N) · (∇N) = −θ · θ (see (4.51)) we get

∇q = Π∇q(4.23)

∇∇Nq = ΠN · ∇2q + θ · ∇q(4.24)

∇2
Nq = N · (N · ∇2q)(4.25)

∇2q = Π∇2q − θ N · ∇q(4.26)

∇2∇Nq = ΠN · ∇3q + 2θ ·̃Π∇2q + (∇θ) ·Π∇q − θ · θ N · ∇q − θ N · (N · ∇2q)(4.27)

where in (4.27) we used that ∇2∇Nq = Π∇2∇Nq − θ∇2
Nq.

Proposition 4.5. Suppose that q = 0 on ∂Ω and 0 ≤ r ≤ 4 or r ≥ (n − 1)/2 + 2. Let Lp = Lp(∂Ω)
and suppose that ι1 ≥ 1/K1, where ι1 is as in Definition 3.3. Then for m = 0, 1 and any ε > 0 we have

(4.28)
∥∥Π∇rq − (∇Nq)∇ r−2θ

∥∥
L2 ≤ ε∥∇Nq∥L∞∥∇ r−2θ∥L2 + C(1/ε)

r−1∑
k=1

∥θ∥kL∞∥∇ r−kq∥L2

+ C (K1, 1/ε, ∥θ∥L∞)
(
∥θ∥L∞ +

∑
0≤s≤r−2−m

∥∇ sθ∥L2

) ∑
0≤s≤r−2+m

∥∇ sq∥L2

where the second line drops out if r ≤ 4.

Proof of Proposition 4.5 for r ≤ 4. We want to prove (4.28) for r = 4, since the proof for r ≤ 3 is
simpler and it follows in the same way. By (4.22) we have if q = 0 on ∂Ω;

Π∇4q = (∇ 2θ)∇Nq + 4(∇θ)⊗̃∇∇Nq + 6θ⊗̃∇ 2∇Nq − 3θ⊗̃(θ · θ)∇Nq + 3θ⊗̃θ∇2
Nq

The only problematic term can be controlled by Lemma 8.1 (here Lp = Lp(∂Ω) ):∥∥ |∇θ| |∇∇Nq|
∥∥
L2 ≤ ∥∇θ∥L4 ∥∇∇Nq∥L4 ≤ C∥θ∥1/2L∞ ∥∇ 2θ∥1/2L2 ∥∇Nq∥1/2L∞ ∥∇ 2∇Nq∥1/2L2

≤ C2−1ε∥∇Nq∥L∞ ∥∇ 2θ∥L2 + C2−1ε−1∥θ∥L∞ ∥∇ 2∇Nq∥L2 , for any ε > 0.

By (4.27), since Π∇q = 0 on ∂Ω;

∥∇ 2∇Nq∥L2 ≤ ∥∇ 3q∥L2 + 3∥θ∥L∞∥∇ 2q∥L2 + ∥θ∥2L∞∥∇ q∥L2 �

The basic inequalities that we will use on the boundary for the proof of Theorem 4.5 in general can
be summarized in:
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Lemma 4.6. Let Lp = Lp(∂Ω) and let t = r − 2. Then if t−m ≥ s

∥∇sα∥L2t/(s+m) ≤ C∥α∥1−s/(t−m)

L2t/m ∥∇t−mα∥s/(t−m)
L2 , m ≥ 0, t−m ≥ s(4.29)

∥∇sα∥L2t/(s−m) ≤ C(K1)
t+m∑
ℓ=s

∥∇ℓα∥L2 , if t ≥ n−1
2 s−m ≥ 0, t+m ≥ s(4.30)

where K1 is a constant such that ι1 ≥ 1/K1, and ι1 is as in Definition 3.3. Furthermore

∥ |∇ r1θ| · · · |∇ rkθ| ∥Lp ≤ C∥θ∥k−1
L∞ ∥∇ r1+...+rkθ∥Lp(4.31)

∥∇ sθ∥L2t/(s+m) ≤ C∥θ∥1−(s+m)/t

L2t/m ∥∇ t−mθ∥(s+m)/t
L2 , m ≥ 0(4.32)

Furthermore, we have for every ε > 0 if 1 ≤ s ≤ t

(4.33)
∥∥ |∇t−sθ| |∇s∇Nq|

∥∥
L2 ≤ ε∥∇Nq∥L∞∥∇ tθ∥L2 + Cε−(t−s)/s∥θ∥L∞∥∇ t∇Nq∥L2 ,

and if 0 ≤ m ≤ s ≤ t−m

(4.34)
∥∥ |∇t−sθ| |∇sq|

∥∥
L2

≤ ∥∇t−sθ∥L2t/(t−s+m)∥∇sq∥L2t/(s−m) ≤ C(K1)∥θ∥1−(t−s+m)/t

L2t/m ∥∇t−mθ∥(t−s+m)/t
L2

t+m∑
ℓ=s

∥∇ℓq∥L2 ,

Proof of Lemma 4.6. (4.29), (4.31)-(4.33) are just the interpolation inequality (8.4) in Lemma 8.1. For
the proof of (4.31) one first uses Hölder’s inequality. (4.30) on the other hand is a special case of Sobolev’s
lemma, Lemma 8.2, which by the remark after the lemma holds with the covariant differentiation of
the interior restricted to the boundary. By Hölder’s inequality and (4.29) with m = 0:∥∥ |∇t−sθ| |∇s∇Nq|

∥∥
L2 ≤ ∥∇t−sθ∥L2t/(t−s)∥∇s∇Nq∥L2t/s

≤ C∥θ∥s/tL∞ ∥∇ tθ∥1−s/t
L2 ∥∇Nq∥1−s/t

L∞ ∥∇ t∇Nq∥s/tL2

≤ ε∥∇Nq∥L∞ ∥∇ tθ∥L2 + Cε−(t−s)/s∥θ∥L∞ ∥∇ t∇Nq∥L2 , for any ε > 0, �

which proves (4.33). (4.34) follows from Hölder’s inequality and (4.30) applied to α = q and (4.32).

Proof of Proposition 4.5 in case r ≥ 5. The proof is an application of Proposition 4.1 and Lemma 4.6.
Since q = 0 the term ∇rq = 0 in the left of (4.5) and the terms in the right with ℓ = 0 vanishes as well
so ℓ ≥ 2 in the right sum. Each term in the sum on the left of (4.5) can be estimated using (4.33).
Then we can use (4.6) to estimate ∥θ∥L∞∥∇ r−2∇Nq∥L2 by ∥θ∥L∞∥∇ r−1q∥L2 plus a sum of terms of
the form

(4.35) ∥θ∥L∞
∥∥|∇r2θ| · · · |∇rkθ| |∇r0q|

∥∥
L2 , r0 + r2 + ...+ rk = r − k, k ≥ 2

Similarly, if we use (4.6) we can estimate the terms in the right of (4.5) (the second line of (4.5)) by

(4.36)
∥∥|∇r1θ| · · · |∇rkθ| |∇r0q|

∥∥
L2 , r0 + r1 + ...+ rk = r − k, k ≥ 2

Now, a typical term looks like
∥θ∥L∞

∥∥ |∇r−2−sθ| |∇sq|
∥∥
L2
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which can be estimate by (4.34) with m = 0, 1. The general term is not much harder: Using Hölder’s
inequality and (4.31) we see that we must estimate

(4.37) ∥θ∥k−1
L∞ ∥∇r′θ∥Lp∥∇r0q∥Lp′ , r0 + r′ = r − k, k ≥ 2

for some 1/p + 1/p′ = 1/2 which are to be determined. If r′ = 0 then we can take p = ∞ so we may
assume that r′ ≥ 1. Similarly, we may assume that r0 ≥ 2 since if r0 = 1 we can take p′ = ∞. We pick

(4.38) p = 2(r − 2)/(r′ +m), p′ = 2(r − 2)/(r − 2− r′ −m)

and use (4.34) with m = 0, 1. �

Note that Proposition 4.1 and Proposition 4.2 applies to q being replaced by (0, t) tensor α as well
if the projections, tangential and normal derivatives are correctly interpreted. Only the first r indices
should be projected, i.e. all indices referring to θ should be projected as well as the ones referring to
differentiation of α but the ones referring to α itself should not. So we should replace Π∇r by Πr,0∇r

and we should replace ∇ r when applied to α by ∇r = Πr,0∇Πr−1,0∇· · ·Π2,0∇Π1,0∇. (One should keep
the old definition of ∇rθ since all these indices are projected over. ) In components this means:

Definition 4.3. Let

(Πr,0∇r)i1...irαir+1...i+t = γ j1
i1

· · · γ jr
ir

∇j1 · · · ∇jrαir+1...ir+t , ∇Nαi1...it = Nk∇kαi1...it(4.39)

and

(4.40) (∇r)i1...irαir+1...ir+t = γ j1
i1

· · · γ jr
ir

∇j1

(
γ k2
j2

· · · γ kr
jr

∇k2

(
· ··

· · · γ Nr−2
mr−2

γ Nr−1
mr−1

γ Nr
mr

∇Nr−2

(
γ

or−1

Nr−1
γ or
Nr

∇or−1(γ
pr

or ∇prαir+1...ir+t)
)
· · ·
))

In fact, with this modification the proofs of Lemma 4.3 and Lemma 4.4 goes through. Also the
interpolation inequality in Lemma 8.1 remains true. One just has to modify the proof to work with
mixed tangential and full inner products

(4.41) ⟨α, β⟩γg = γi1j1 · · · γisjsgis+1js+1 · · · gis+tjs+tαi1...isis+1...is+t βj1...jsjs+1...js+t

Hence we obtain the following version of the interpolation inequality:

Lemma 4.7. Suppose that α is a (0, t) tensor and let ∇s be defined as in (4.40). Then if s ≤ r − 2

(4.42)
∥∥∥∇sα

∥∥∥
L2(r−2)/s

≤ C∥α∥1−s/(r−2)
L∞

∥∥∥∇r−2α
∥∥∥s/(r−2)

L2
,

In order to deal with some lower order terms the following is useful:

Proposition 4.8. Suppose that α is a (0, µ) tensor and let Πs,0∇s and ∇s be defined as in (4.39) and
(4.40). Let t = r − 2. Then

(4.43) |(Πs,0∇s)α−∇sα| ≤ C
∑

r0+r1+...+rk=s−k
k≥1, r0≥1

|∇r1θ| · · · |∇rkθ||∇r0α|
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Here ∇rα is defined by projecting only over the first r components as in (4.40) whereas ∇rθ is defined
as before by projecting over all r + 2 components. If s ≤ t
(4.44)

∥(Πs,0∇s)α∥L2t/s ≤ C∥α∥1−s/t
L∞ ∥∇tα∥s/tL2 + C(K1)(1 + ∥θ∥L∞)s

(
∥θ∥L∞ + ∥∇ tθ∥L2

)s/t t−1∑
ℓ=0

∥∇ℓα∥L2

where K1 is a constant such that ι1 ≥ 1/K1 and ι1 is as in Definition 3.3. Furthermore

∥∇ tα∥L2 ≤ C∥∇ tα∥L2 + C(K1)(1 + ∥θ∥L∞)t
(
∥θ∥L∞ + ∥∇ tθ∥L2

) t−1∑
ℓ=0

∥∇ℓα∥L2(4.45)

and

(4.46) ∥ |(Πs,0∇s)α| |(Πt−s,0∇t−s)β| ∥L2 ≤ ∥(Πs,0∇s)α∥L2t/s∥(Πt−s,0∇t−s)β∥L2t/(t−s)

≤ C(K1)
(
∥α∥L∞ +

t−1∑
ℓ=0

∥∇ℓα∥L2

)
∥∇tβ∥L2 + C(K1)

(
∥β∥L∞ +

t−1∑
ℓ=0

∥∇ℓβ∥L2

)
∥∇tα∥L2+

+ C(K1)(1 + ∥θ∥L∞)t
(
∥θ∥L∞ + ∥∇ tθ∥L2

)(
∥α∥L∞ +

t−1∑
ℓ=0

∥∇ℓα∥L2

)(
∥β∥L∞ +

t−1∑
ℓ=0

∥∇ℓβ∥L2

)

Proof. (4.43) follows from Lemma 4.3. And if r′ = r1 + ... + rk, r
′ + r0 = s − k then by Hölder’s

inequality, (4.32) with m = 0 respectively (4.30) with m = −k

(4.47)
∥∥ |∇r1θ| · · · |∇rkθ| |∇r0α|

∥∥
L2t/s ≤ C∥θ∥k−1

L∞ ∥∇r′θ∥L2t/r′∥∇r0α∥L2t/(r0+k)

≤ C(K1)∥θ∥k−r′/t
L∞ ∥∇tθ∥r

′/t
L2

t−k∑
ℓ=r0

∥∇ℓα∥L2 ≤ C(K1)
(
1+∥θ∥L∞

)s(∥θ∥L∞ +∥∇tθ∥L2

)s/t t−k∑
ℓ=r0

∥∇ℓα∥L2 .

If s = t this proves (4.45). (4.44) follows from (4.43), (4.42) and (4.47). (4.46) follows from (4.44),
(4.45) and our usual convexity inequality as/tb1−s/t ≤ a+ b. �

Let us now derive some properties of the projection. Since gij = γij +N iN j we have

(4.48) Π
(
S ·R

)
= Π(S) ·Π(R) + Π(S ·N)⊗̃Π(N ·R),

Note also that

(4.49) [∇N ,Π]S = 0, [∇,Π]S = 0, [∇N ,∇]S = −θ · ∇S, [∇N ,∇]S = −θ · ∇S,

where we have used that [∇N ,∇] = [∇N ,Π∇Π] = Π[∇N ,∇]Π. Since N · ∇ kθ = 0 we get

(4.50)
[
∇N ,∇ r

]
S =

r−1∑
ℓ=0

∇ ℓ[∇N ,∇]∇ r−1−ℓS = −
r−1∑
k=0

(
r

k+1

)
(∇ kθ) · ∇ r−kS

where we used that
∑r−1

ℓ=0

(
ℓ
k

)
=
(

r
k+1

)
and ∇

(
(ΠR) · ΠS

)
= (∇ΠR) · ΠS + (ΠR) · ∇ΠS. Furthermore,

0 = ∇2(N ·N) = 2N · ∇2N + 2(∇N) · ∇N so ∇Nθ = −θ · θ so (4.50) applied to S = θ gives

(4.51) ∇N∇ rθ = −
r∑

k=0

((
r

k+1

)
+
(
r
k

))
(∇ kθ) · ∇ r−kθ
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5. Elliptic estimates and Energy estimates for the boundary problem

Most of the results here will be stated in a coordinate independent way. We can however take
advantage of that we have a transformation ft : Ω → Dt ⊂ Rn such that the metric is Euclidean in
Dt. Also, since we are looking for a short time existence our metric expressed in the y-coordinates in Ω
gij(t, y) is equivalent to the metric at t = 0, gij(0, y) and similarly the induced metric on ∂Ω γij(t, y)
is equivalent to γij(0, y). Throughout this section, ∇ will refer to covariant differentiation with respect

to the metric gij in Ω and ∇ will refer to covariant differentiation on ∂Ω with respect to the induced
metric γij on ∂Ω as defined in the beginning of section 3.

We will assume that the normal N to ∂Ω is extended to a vector field in the interior of Ω satisfying
gijN

iN j ≤ 1 there, such that in a neighborhood of ∂Ω N is the unit normal to the sets ∂Ωρ =
{y; distg(y, ∂Ω) = ρ} and N has the regularity described by Lemma 3.6 and Lemma 3.7. Then γij =
gij − NiNj , where Ni = gijN

j , is a positive semidefinite pseudo Riemannian metric in Ω. Using the
decomposition into normal and tangential components gij = N iN j + γij we can write

gijgkl∇iβk ∇jβl =
(
N iN jgkl + gijNkN l + γikγjl −N iNkN jN l + γijγkl − γikγjl

)
∇iβk ∇jβl(5.1)

gijgkl∇kβi ∇lβj =
(
gijγkl + γijgkl − (γikγjl −N iNkN jN l)− (γijγkl − γikγjl)

)
∇iβk ∇jβl(5.2)

The terms (γikγjl −N iNkN jN l)∇iβk ∇jβk and (γijγkl − γikγjl)∇iβk ∇jβl are going to be lower order.
The first one because it can be controlled by div β = gik∇iβk which we expect to be lower order and the
second one because the boundary term vanishes if we integrate by parts using Greens theorem. Hence,
(5.1) and (5.2) says that we essentially can control |∇β|2 = gijgkl∇iβk ∇jβl by the normal-tangential
components γijNkN l∇iβk ∇jβl and either the normal-normal components N iN jNkN l∇iβk ∇jβl or the
tangential-tangential components γijγkl∇iβk ∇jβl.

Definition 5.1. Let βk = βIk = ∇r
Iuk, where ∇r

I = ∇i1 ...∇ir and u is a (0, 1) tensor and [∇i,∇j ] = 0.
Let div β = ∇iβ

i = ∇r div u and let curlβ ij = ∇iβj −∇jβi = ∇rcurlu ij .

Lemma 5.1. Let β as in Definition 5.1 and let Q be a positive semidefinite quadratic form
Q(∇iβk,∇jβl) = qIJ (∇iβIk)∇jβJl. Then

gijgklQ(∇iβk,∇jβl) ≤
(
2(N iN jgkl + gijNkN l) + 2gikgjl + (γijγkl − γikγjl)

)
Q(∇iβk,∇jβl)(5.3)

gijgklQ(∇kβi,∇lβj) ≤
(
n(gijγkl + γijgkl) + 2gikgjl

)
Q(∇iβk,∇jβl)(5.4)

and

N iN jγklQ(∇iβk,∇jβl) ≤ 2NkN lγijQ(∇iβk,∇jβl) +NkN lγijQ(curlβik, curlβjl)(5.5)

Proof. Since gik = γik +N iNk we obtain

γikγjlQ(∇iβk,∇jβl) ≤
(
2gikgjl + 2N iNkN jN l)Q(∇iβk,∇jβl)(5.6)

N iNkN jN lQ(∇iβk,∇jβl) ≤
(
2gikgjl + 2γikγjl)Q(∇iβk,∇jβl)(5.7)

(5.3)-(5.4) follows from (5.6)-(5.7) and

(5.8) γikγjlQ
(
αik, αjl) ≤ (n− 1)γijγklQ(αik, αjl)

To prove (5.8) let trγ(α) = γikαik and α̂ik = αik − γikγ
pqαpq/(n− 1) is the traceless part. Then

trγ(α) trγ(σ) = (n− 1)
(
γijγklαikσjl − γijγklα̂ikσ̂jl

)
�
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Let us recall Gauss formula for Ω and ∂Ω;

(5.9)

∫
Ω

∇m(βm)dµg =

∫
∂Ω

Nmβ
mdµγ , and

∫
∂Ω

∇if
i
dµγ = 0,

if f is tangential to ∂Ω and N is the unit conormal to ∂Ω. The last part of (5.9) follows since by (3.8)

∇if
i
= ∇/ if

i
is the intrinsic divergence on ∂Ω if the coordinates are chosen so ∂Ω is given by yn = 0.

Lemma 5.2. Let RijklIJ be any quadratic form qIJ multiplied with
(NkN lgij − gkiN lN j) or (gklγij − γikglj). Then∫

Ω

RijklIJ∇kαIi ∇jβJldµ =

∫
∂Ω

N lγijqIJαIi ∇jβJldµγ −
∫
Ω

(∇kR
ijklIJ)αIi ∇jβJldµ(5.10) ∫

Ω

RijklIJ∇kαIi ∇jβJldµ = −
∫
∂Ω

N lγikqIJ∇kαIi βJldµγ −
∫
Ω

(∇jR
ijklIJ)∇kαIi βJldµ(5.11)

Moreover if RijklIJ is any quadratic form qIJ multiplied with (γklγij − γikγlj) then

(5.12)

∫
Ω

RijklIJ∇kαiI ∇jβlJdµ = −
∫
Ω

(∇kR
ijklIJ)αiI ∇jβlJdµ

Proof. Note that we have the following identities

RijklIJ∇kαIi ∇jβJl =∇k(R
ijklIJαIi ∇jβJl)− (∇kR

ijklIJ)αIi ∇jβlJ(5.13)

RijklIJ∇kαIi ∇jβJl =∇j(R
ijklIJ∇kαIi βJl)− (∇jR

ijklIJ)∇kαIi βJl(5.14)

Integrating (5.13)-(5.14) over Ω using Gauss formula (5.7) we get a boundary term from the divergence.
The lemma now follows from

(5.15)

Nk(N
kN lgij − gkiN lN j) = Nk(g

klγij − γikglj) = N lγij

Nj(N
kN lgij − gkiN lN j) = Nj(g

klγij − γikglj) = −N lγik,

Nk(γ
klγij − γikγlj) = 0,

�

Definition 5.2. If |I| = |J | = r set gIJ = gi1j1 ···girjr and γIJ = γi1j1 ···γirjr . If α and β are (0, r) tensors
let ⟨α, β⟩ = gIJαIβJ and |α|2 = ⟨α, α⟩. If (Πβ)I = γ J

I βJ is the projection then ⟨Πα,Πβ⟩ = γIJαIβJ .
Let

∥β∥L2(Ω) =
( ∫

Ω

|β|2 dµg

)1/2
, ∥β∥L2(∂Ω) =

( ∫
∂Ω

|β|2 dµγ

)1/2
, ∥Πβ∥L2(∂Ω) =

( ∫
∂Ω

|Πβ|2 dµγ

)1/2
,

where dµg is the Riemannian volume element on Ω and dµγ is the induced surface measure on ∂Ω.

Lemma 5.3. Let β be as in Definition 5.1 and ι0 be as in Definition 3.3. If |θ|+ 1/ι0 ≤ K then

|∇β|2 ≤ C
(
gijγklγIJ∇kβIi ∇lβJj + | div β|2 + | curlβ|2

)
(5.16) ∫

Ω

|∇β|2 dµ ≤ C

∫
Ω

(
N iN jgklγIJ∇kβIi ∇lβJj + | div β|2 + | curlβ|2 +K2|β|2

)
dµ(5.17)
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Proof. The proof follows by induction from repeated use of Lemma 5.1. |β|2 = gIJβIβJ can be written
as a sum of terms of the form

(5.18) N i1N j1 · ·N isN jsγis+1js+1 · · · γirjrβi1...irβj1...jr

If s = 0, 1 then (5.18) is bounded by the right hand side of (5.16). If we inductively assume that we can
bound the right hand side of (5.18) for s ≤ s0 then the bound for s = s0 + 1 follows from (5.4)-(5.5) in
Lemma 5.1. On the other hand, if we control the right hand side of (5.17) then we have a bound for
the integral of (5.18) for s = 1, 2. However, by (5.3) in Lemma 5.1 and (5.12) in Lemma 5.2 this gives
us the integral of (5.18) also for s = 0, but then we can use (5.16) to obtain (5.17). �

Lemma 5.4. Let β be as in Definition 5.1 and ι0 be as in Definition 3.3. If |θ|+ 1/ι0 ≤ K then

∥β∥2L2(∂Ω) ≤ C
(
∥∇β∥L2(Ω) + K∥β∥L2(Ω)

)
∥β∥L2(Ω)(5.19)

∥β∥2L2(∂Ω) ≤ C∥Πβ∥2L2(∂Ω) + C
(
∥div β∥L2(Ω) + ∥ curlβ∥L2(Ω) +K∥β∥L2(Ω)

)
∥β∥L2(Ω).(5.20)

and

∥∇β∥2L2(Ω) ≤ C∥∇β∥L2(∂Ω) ∥β∥L2(∂Ω) + C
(
∥div β∥L2(Ω) + ∥ curlβ∥L2(Ω)

)2
(5.21)

Furthermore;

∥∇β∥2L2(Ω) ≤ C∥Π∇β∥L2(∂Ω)∥ΠN ·β∥L2(∂Ω) + C
(
∥div β∥L2(Ω)+∥ curlβ∥L2(Ω)+K∥β∥L2(Ω)

)2
(5.22)

∥∇β∥2L2(Ω) ≤ C∥ΠN ·∇β∥L2(∂Ω)∥Πβ∥L2(∂Ω) + C
(
∥div β∥L2(Ω)+∥ curlβ∥L2(Ω)+K∥β∥L2(Ω)

)2
(5.23)

where N · βI = N iβiI and N · ∇βkI = N i∇kβiI .

Proof. Let N be the extension of the normal to the interior as in Lemma 3.6-Lemma 3.7. Then∫
∂Ω

|β|2 dµγ =

∫
Ω

∇k

(
Nk|β|2

)
dµ

and since |∇N | ≤ K, by Lemma 3.6- Lemma 3.7, (5.19) follows. (5.20) follows by induction as in the
proof of Lemma 5.3, from:∣∣∣∣∫

∂Ω

qIJ(N iN j − γij)βIiβJj dµγ

∣∣∣∣ ≤ C
(
∥div β∥L2(Ω) + ∥ curlβ∥L2(Ω) +K∥β∥L2(Ω)

)
∥β∥L2(Ω),

if qIJ is any product of factors qikjk of the form gikjk , γikjk or N ikN jk . The left hand side is∫
Ω

∇k

(
NkqIJ(N iN j − γij)βIiβJj

)
dµ

= 2

∫
Ω

NkqIJ(N iN j − γij)βIi∇kβJj dµ+

∫
Ω

(∇kN
k)qIJ(N iN j − γij)βIiβJj dµ

= −2

∫
Ω

NkqIJγijβIi(∇kβJj −∇jβJk) dµ+ 2

∫
Ω

qIJ (N iN j + γij)(∇jβIi)N
kβJk dµ

+ 2

∫
Ω

∇j

(
qIJγijNk

)
βIiβJk dµ+

∫
Ω

(∇kN
k)qIJ (N iN j − γij)βIiβJj dµ

(5.21) is just integration by parts twice. (5.22)-(5.23) follows from Lemma 5.3 and Lemma 5.2. �

One can actually get away with a less regular boundary for some of the estimates:
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Lemma 5.5. Let β be as in Definition 5.1. Then there is ε1(r) > 0 such that if the condition in
Definition 3.4 holds with ε1 ≤ ε1(r), we have with K1 ≥ 1/ι1:

∥β∥2L2(∂Ω) ≤ C
(
∥∇β∥L2(Ω) + K1∥β∥L2(Ω)

)
∥β∥L2(Ω)(5.24)

∥β∥2L2(∂Ω) ≤ C∥Πβ∥2L2(∂Ω) + C
(
∥div β∥L2(Ω) + ∥ curlβ∥L2(Ω) +K1∥β∥L2(Ω)

)
∥β∥L2(Ω).(5.25)

Proof. We will prove (5.24)-(5.25) in the x coordinates Ω ∋ y → x(t, y) ∈ Dt ⊂ Rn. Since the metric
there is the induced metric from Rn we can then compare the normal N to ∂Dt at different points. Let
χp be the partition of unity in Lemma 3.4 and let Np = N (xp) be the unit normal at some fixed point
xp ∈ supp(χp) ∩ ∂Dt and let N be the unit normal to ∂Dt. Then∫

∂Dt

χp|β|2 ⟨Np, N⟩dS =

∫
Dt

N k
p ∂k

(
χp|β|2

)
dx

where N is the unit normal to ∂Dt and ⟨Np, N⟩ = δijN i
pN j ≥ 1/2. Since |∂χp| ≤ CK1 (5.24) follows.

T prove (5.25), we will use a similar estimate to the one in the proof of (5.20), with N replaced by
Np and γij = δij −N iN j replaced by γp

ij = δij −N i
pN j

p and qIJ replaced by qp
IJ , a product of factors

δij , γp
ij and N i

pN j
p . We will use the identity

N k
p ∂k

(
δijqp

IJχpβIiβJj
)
− 2δij∂i

(
N k

p qp
IJχpβIkβJj

)
= −2N k

p qp
IJχpβIkδ

ij∂iβJj + 2δijN k
p qp

IJχp(∂iβIk − ∂kβIi)βJj

+N k
p (∂kχp)

(
δijqp

IJβIiβJj
)
− 2δij(∂iχp)

(
N k

p qp
IJβIkβJj

)
Integrating this over Dt using Gauss theorem we get∣∣∣∣∫

∂Dt

(
⟨Np,N⟩δij − 2N jN i

p

)
qp

IJχpβIiβJj dS

∣∣∣∣ ≤ ∫
Dt

(
2χp(| div β|+ | curlβ|) + 3|∂χp||β|

)
|β| dx

We now assume that |N −Np| ≤ ε1 in the support of χp, where ε1 = ε1(r) is to be determined. Writing

N = aNp + bTp, where a = ⟨Np,N⟩, b =
√
1− a2 ≤ ε1 and ⟨Tp, Tp⟩ = 1 and ⟨Tp,Np⟩ = 0. We get

⟨Np,N⟩δij − 2N jN i
p = a(γijp −N i

pN j
p )− 2bN i

pT j
p

Let Qp(βi, βj) = qp
IJχpβIiβJj and let Rp(β, β) =

(
a(γijp −N i

pN j
p )− 2bN i

pT j
p

)
Qp(βi, βj) It follows that

N i
pN j

pQp(βi, βj) ≤
(
γijp − b

a (N
i
pT j

p + T i
pN j

p )
)
Qp(βi, βj) +

1
aRp(β, β)

≤
(
γijp − b

a (
1+b
a T i

p T j
p + a

1+bN
i
pN j

p )
)
Qp(βi, βj) +

1
aRp(β, β)

≤
(

1
1−bγ

ij
p + b

1+bN
i
pN j

p

)
Qp(βi, βj) +

1
aRp(β, β)

since T i
p T j

p Qp(βi, βj) ≤ γijp Qp(βi, βj) and a2 = 1 − b2. Moving the term with the normal component
over to the other side we obtain

δijQp(βi, βj) ≤ 2
1−bγ

ij
p Qp(βi, βj) +

1+b
a Rp(β, β)

Integrating this gives∫
∂Dt

δijqp
IJχpβIiβJj dS ≤ 2

1− ε1

∫
∂Dt

γijp qp
IJχpβIiβJj dS+4

∫
Dt

(
χp(| div β|+| curlβ|)+|∂χp||β|

)
|β| dx
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Repeated use of this gives

(5.26)

∫
∂Dt

δijδIJχpβIiβJj dS ≤ A

∫
∂Dt

γijp γp
IJχpβIiβJj dS+B

∫
Dt

(
χp(| div β|+| curlβ|)+|∂χp||β|

)
|β| dx

for some constants A and B that only depends on the order r of the tensor β. We now claim that if
qIJ is any positive definite quadratic form then

(5.27) γijp q
IJχpβIiβJj ≤ γijqIJχpβIiβJj + bδijqIJχpβIiβJj

In fact if Q(βi, βj) = qIJχpβIiβJj

γijp Q(βi, βj)− γijQ(βi, βj) = (N iN j −N i
pN j

p )Q(βi, βj)

=
(
b2T i

p T j
p − b2N i

pN j
p + ab(N i

pT j
p + T i

pN j
p )
)
Q(βi, βj)

≤
(
b2T i

p T j
p − b2N i

pN j
p + ab( 1+b

a N i
pN j

p + a
1+bT

i
p T j

p )
)
Q(βi, βj)

= b(N i
pN j

p + T i
p T j

p )Q(βi, βj) ≤ bδijQ(βi, βj)

since a2 = 1− b2. Using (5.27) now we can replace γijp γp
IJ by γijγIJ in (5.26) with a small error that

can be absorbed into the left-hand side is b ≤ ε1 is sufficiently small. Finally, summing over p using
that

∑
p χp = 1 and

∑
p |∂χp| ≤ CK1 and Hölder’s inequality gives (5.25). �

Lemma 5.4 applied to β = ∇q, where q is a function, gives estimates for both the Dirichlet problem
and the Neumann problem. In fact if q = 0 on ∂Ω then Π∇2q = θ∇Nq so (5.22) and (5.20) gives

∥∇2q∥2L2(Ω) ≤ CK∥∇Nq∥2L2(∂Ω) + C
(
∥△q∥L2(Ω) +K∥∇q∥L2(Ω)

)2 ≤ C
(
∥△q∥L2(Ω) +K∥∇q∥L2(Ω)

)2
Similarly, if ∇Nq = 0 on ∂Ω then N i∇j∇iq = −θ i

j ∇iq and by (5.23) and (5.20)

∥∇2q∥2L2(Ω) ≤ CK∥∇q∥2L2(∂Ω) + C
(
∥△q∥L2(Ω) +K∥∇q∥L2(Ω)

)2 ≤ C
(
∥△q∥L2(Ω) +K∥∇q∥L2(Ω)

)2
Similarly we can get estimates for higher order derivatives. More generally, we have

Proposition 5.6. Let ι0 and ι1 be as in Definitions 3.3-3.4 and suppose that |θ| + 1/ι0 ≤ K and

1/ι1 ≤ K1. Then with K̃ = min(K,K1) we have for any r ≥ 2 and δ > 0:

∥∇rq∥L2(∂Ω) + ∥∇rq∥L2(Ω) ≤ C∥Π∇rq∥L2(∂Ω) + C(K̃,Vol (Ω))
∑

s≤r−1

∥∇s△q∥L2(Ω)(5.28)

∥∇rq∥L2(Ω) + ∥∇r−1q∥L2(∂Ω) ≤ δ∥Π∇rq∥L2(∂Ω) + C(1/δ,K,Vol (Ω))
∑

s≤r−2

∥∇s△q∥L2(Ω)(5.29)

Proof. (5.28) with an extra lower order term C(K̃)∥∇q∥L2(Ω) in the right follows from (5.20) or (5.25)
together with repeated use of (5.21) and (5.19) or (5.24). The lower order term can then be bounded
by (5.17) in Lemma 8.5. (5.29) with the same extra lower order term follows from (5.22) together with
repeated use of (5.19) and (5.21). �

Remark. On should be able to improve the results of Proposition 5.6 and replace the sum in the right
hand side of (5.28) by the sum over s = 0, 1/2 at least when |∇Nq| > ε > 0 on ∂Ω. However, then one
has to make sense of fractional derivatives.
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Proposition 5.7. Assume that 0 ≤ r ≤ 4 or r ≥ (n− 1)/2 + 2. Suppose that |θ| ≤ K and ι1 ≥ 1/K1,
where ι1 is as in Definition 3.4. If q = 0 on ∂Ω then for m = 0, 1

(5.30) ∥Π∇rq∥L2(∂Ω) ≤ 2∥∇ r−2θ∥L2(∂Ω)∥∇Nq∥L∞(∂Ω) + C

r−1∑
k=1

∥θ∥kL∞(∂Ω)∥∇
r−kq∥L2(∂Ω)

+ C(K,K1)
(
∥θ∥L∞(∂Ω) +

∑
k≤r−2−m

∥∇ kθ∥L2(∂Ω)

) ∑
k≤r−2+m

∥∇kq∥L2(∂Ω)

and if r > (n− 1)/2 + 2 then for any δ > 0

(5.31) ∥Π∇r−1q∥L2(∂Ω) ≤ δ∥∇r−1q∥L2(∂Ω) + Cδ

(
K,K1, ∥θ∥L2(∂Ω), ∥∇ r−3θ∥L2(∂Ω)

) r−2∑
k=0

∥∇kq∥L2(∂Ω)

If in addition |∇Nq| ≥ ε > 0 and |∇Nq| ≥ 2ε∥∇Nq∥L∞(∂Ω) then

(5.32) ∥∇ r−2θ∥L2(∂Ω) ≤ C(1/ε)
(
∥Π∇rq∥L2(∂Ω) +

r−1∑
k=1

∥θ∥kL∞(∂Ω) ∥∇
r−kq∥L2(∂Ω)

)
+ C(K,K1, 1/ε)

(
∥θ∥L∞(∂Ω) +

∑
k≤r−3

∥∇ kθ∥L2(∂Ω)

) ∑
k≤r−1

∥∇kq∥L2(∂Ω)

Furthermore if r ≤ 4 then the second line of (5.30) and (5.32) drop out.

Proof. (5.30) and (5.32) follows from Proposition 4.5. To prove (5.30) we can take ε = 1 and to prove
(5.32) we take m = 1 in Proposition 4.5. (5.31) follows from (5.30) and Sobolev’s lemma; (8.8). �

Proposition 5.8. Assume that 0 ≤ r ≤ 4 or r ≥ (n − 1)/2 + 2 and that |θ| + 1/ι0 ≤ K. If q = 0 on
∂Ω then

(5.33) ∥∇r−1q∥L2(∂Ω) ≤ C
(
∥∇ r−3θ∥L2(∂Ω)∥∇Nq∥L∞(∂Ω) + ∥∇r−2△q∥L2(Ω)

)
+ C

(
K,Vol (Ω), ∥θ∥L2(∂Ω), ..., ∥∇ r−4θ∥L2(∂Ω)

)(
∥∇Nq∥L∞(∂Ω) +

∑
s≤r−3

∥∇s△q∥L2(Ω)

)

If r > (n− 1)/2 + 2 then

(5.34) ∥∇r−1q∥L2(∂Ω) + ∥∇q∥L∞(∂Ω)

≤ C∥∇r−2△q∥L2(Ω) + C
(
K,Vol (Ω), ∥θ∥L2(∂Ω), ..., ∥∇ r−3θ∥L2(∂Ω)

) ∑
s≤r−3

∥∇s△q∥L2(Ω)

Proof. (5.33) follows from (5.28) and (5.30) with m = 1 and r replaced by r−1. The estimate for
∥∇r−1q∥L2(∂Ω) in (5.34) follows from (5.28), with r replaced by r−1, and (5.31). The estimate for

∥∇q∥L∞(∂Ω) in (5.34) follows from the estimate for ∥∇r−1q∥L2(∂Ω) and Sobolev’s lemma, Lemma 8.2. �

There are two possible energies, given in Proposition 5.9 respectively Proposition 5.10 :
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Proposition 5.9. Let Q(α, α) = γIJαIαJ , hij = Dtgij/2 and set

E(t) =

∫
∂Ω

γijQ(αi, αj) ν dµγ +

∫
Ω

gijNkN lQ(∇iβk,∇jβl) dµg,

where 0 < ν <∞. Let K be a constant such that

|h| ≤ K in [0, T ]× Ω(5.35)

|θ|+ 1/ι0 + |νt/ν| ≤ K, on [0, T ]× ∂Ω.(5.36)

Then

(5.37)
dE

dt
≤ C

√
E
(
∥Π(Dtα+ νNk∇βk)∥L2(∂Ω) + ∥Dt∇β −∇α∥L2(Ω)

)
+ CKE

+ C
(
∥ divα∥L2(Ω) + ∥ curlα∥L2(Ω) +K∥α∥L2(Ω) + ∥ div β∥L2(Ω) + ∥ curlβ∥L2(Ω) +K∥β∥L2(Ω)

)2
Proof. Since by Lemma 3.5 Dtdµγ = (trh− hNN )dµγ and Dtdµ = trhdµ we obtain

(5.38)
dE

dt
= 2

∫
∂Ω

γijQ(αi, Dtαj) ν dµγ + 2

∫
Ω

gijNkN lQ(∇iβk, Dt∇jβl) dµg

+

∫
∂Ω

(
Dt(γ

ijγIJ) + (trh− hNN + νt/ν)γ
ijγIJ

)
αIiαJj ν dµγ

+

∫
Ω

(
Dt(g

ijNkN lγIJ ) + trh gijNkN lγIJ
)
∇iβIk∇jβJl dµg

Since Dtγ
ij = −2γimγjnhmn the second line is bounded by the boundary term in the energy E and the

third line is bounded by ∥∇β∥2L2(Ω). By Lemma 5.2∫
Ω

gijNkN lγIJ∇kαIi∇jβJl dµg =

∫
∂Ω

N lγijγIJαIi∇jβJl dµγ

+

∫
Ω

gikN jN lγIJ∇kαIi,∇jβJl dµg −
∫
Ω

∇k

(
gijNkN lγIJ − gikN jN lγIJ

)
αIi∇jβJl dµg

The first term on the second line is bounded by ∥divα∥L2(Ω) ∥∇β∥L2(Ω) and the second by
K∥α∥L2(Ω) ∥∇β∥L2(Ω). Recall now that by Lemma 5.3

∥∇β∥2L2(Ω) ≤ CE + C
(
∥div β∥L2(Ω) + ∥ curlβ∥L2(Ω) +K∥β∥L2(Ω)

)2
.

This proves Proposition 5.9 . �

Proposition 5.10. Let Q(α, α) = γIJαIαJ , hij = Dtgij/2 and set

(5.39) E(t) =

∫
∂Ω

γijQ(αi, αj) ν dµγ +

∫
Ω

gklγijQ(∇iβk,∇jβl) dµg,

where 0 < ν <∞. Let K be a constant such that

|h| ≤ K in [0, T ]× Ω(5.40)

|θ|+ 1/ι0 + |νt/ν| ≤ K, on [0, T ]× ∂Ω.(5.41)
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Then

(5.42)
dE

dt
≤ C

√
E
(
∥Π(Dtα+ νNk∇βk)∥L2(∂Ω) + ∥Dt∇β −∇α∥L2(Ω)

)
+ CKE

+ C∥ curlα∥L2(Ω)

√
E + C∥α∥L2(Ω)∥∇ div β∥L2(Ω) +

(
K∥α∥L2(Ω) + ∥ div β∥L2(Ω) + ∥ curlβ∥L2(Ω)

)2
Proof. Since by Lemma 3.5 Dtdµγ = (trh− hNN )dµγ and Dtdµ = trhdµ we obtain

dE

dt
= 2

∫
∂Ω

γijQ(Dtαi, αj) ν dµγ + 2

∫
Ω

gklγijQ(Dt∇iβk,∇jβl) dµg

+

∫
∂Ω

(
Dt(γ

ijγIJ) + (trh− hNN + νt/ν)γ
ijγIJ

)
αIi αJj ν dµγ

+

∫
Ω

(
Dt(g

klγijγIJ) + trh gklγijγIJ
)
∇iβIk ∇jβJl dµg

Since Dtγ
ij = −2γimγjnhmn the second line is bounded by the boundary term in the energy E and the

third line is bounded by ∥∇β∥2L2(Ω). The second term on the first line is bounded by ∥ curlα∥L2(Ω)

√
E

plus∫
Ω

gklγijγIJ∇kαIi ∇jβJl dµg =

∫
∂Ω

N lγijγIJαIi ∇jβJl dµγ

+

∫
Ω

γikgjlγIJαIi ∇k∇jβJl dµg −
∫
Ω

∇k

(
gklγijγIJ

)
αIi ∇jβJl dµg

where we have used Lemma 5.2. The first term on the second line is bounded by ∥α∥L2(Ω) ∥∇div β∥L2(Ω)

and the second by K∥α∥L2(Ω) ∥∇β∥L2(Ω). Recall now that by Lemma 5.3

∥∇β∥2L2(Ω) ≤ CE + C
(
∥div β∥L2(Ω) + ∥ curlβ∥L2(Ω)

)2
.

This proves Proposition 5.10 �
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6. Euler’s equations and higher order derived equations.

Recall Euler’s equations

Dtvi + ∂ip = 0, ∂iv
i = 0(6.1)

where

Dt =
d

dt

∣∣∣
y=const

=
d

dt

∣∣∣
x=const

+ vk∂k and ∂i =
∂

∂xi
=
∂yd

∂xi
∂

∂yd
(6.2)

We now want to get higher order versions of (6.1) in terms of higher order tensors ∂rvi. By Lemma 2.3

Dt∂
rvi + ∂r∂ip = −

r−1∑
s=0

(
r

s+1

)
(∂1+sv) · ∂r−svi(6.3)

In particular if r = 1

Dt∂ivj + ∂i∂jp = −(∂iv
k)∂kvj(6.4)

We now want to change coordinates and calculate Dt∇ru. By Lemma 2.2:

(6.5) Dt∇a1 · · · ∇arua =
∂xi1

∂ya1
· · · ∂x

ir

∂yar

∂xi

∂ya
∂i1 · · · ∂irvi

=
∂xi1

∂ya1
· · · ∂x

ir

∂yar

∂xi

∂ya

(
∂t∂i1 · · · ∂irvi +

∂vl

∂xi1
∂l · · · ∂irvi + · · ·+ ∂vl

∂xir
∂i1 · · · ∂lvi +

∂vl

∂xi
∂i1 · · · ∂irvl

)
It follows from (6.4)-(6.5) that

(6.6)

Dt∇rua +∇r∇ap = −
r−1∑
s=1

(
r

s+1

)
(∇1+su) · ∇r−sua + (∇au

c)∇ruc

= (∇auc −∇cua)∇ruc −
r−2∑
s=1

(
r

s+1

)
(∇1+su) · ∇r−sua

In particular if r = 1 we get

Dt∇aub +∇a∇bp = (∇au
c)∇buc(6.7)

so

Dt(∇aub −∇bua) = 0(6.8)

The higher order Euler’s equations (6.3) or (6.6) will be used in the interior together with that

(6.9) div v = 0, Dt curl v = O(∇v)

On the boundary we will instead use an equation which has to do with the geometry of the boundary
which only depends on Euler’s equations indirectly through the change of coordinates. By Lemma 2.3:

(6.10)
Dt∂ip = ∂iDtp− (∂iv

k)∂kp

Dt∂i∂jp = ∂i∂jDtp− (∂iv
k)∂k∂jp− (∂iv

k)∂k∂jp+ (∂i∂jv
k)∂kp
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It is however, more convenient to formulate the higher order version for Dt∇rp. By Lemma 2.4

(6.11)

Dt∇rp = ∇rDtp−
r−1∑
s=1

(
r

s+1

)
(∇1+su) · ∇r−sp

= ∇rDtp− (∇ru) · ∇p−
r−2∑
s=1

(
r

s+1

)
(∇1+su) · ∇r−sp

We also want to calculate equations for p. By (6.1)

0 = Dt(δ
ij∂ivj) = δij∂iDtvj − δij(∂iv

k)∂kvjso

△p = −(∂iv
k)∂kv

i(6.12)

Since △ is invariant we also have

(6.13) △p = −(∇au
b)∇bu

a = −gabgcd(∇aud)∇cub = − tr
(
(∇u)2

)
where we used the notation (∇u)2ab =

(
(∇u) ·∇u

)
ab

= (∇au
c)∇cub and tr of a tensor is defined to be the

trace over the first and last index. It follows that

∇r△p = −∇r
(
tr(∇u)2

)
= −

r∑
s=0

(
r
s

)
(∇r−s∇au) · ∇s+1ua(6.14)

By Lemma 2.4

△Dtp = −Dt

(
gabgcd(∇aud)∇cub

)
+ hab∇a∇bp+ (△ue)∇ep

= 2gabhcd(∇aud)∇cub + 2gabgcd(∇aud)
(
∇c∇bp− (∇cu

e)∇bue)
)
+ hab∇a∇bp− (△ue)∇ep

= 4gabgcd(∇auc)∇b∇dp+ 2(∇au
d)(∇du

c)∇cu
a − (△ue)∇ep

since Dtg
ab = −hab, hab = ∇aub +∇bua. In order to write things in a more appealing way we will use

the notation (∇u)3ab =
(
(∇u) · (∇u) · ∇u

)
ab

= (∇au
d)(∇du

c)∇cub and
(
(∇u) · ∇2p

)
ab

= (∇au
d)∇d∇bp

△Dtp = 4 tr
(
(∇u) · ∇2p

)
+ 2 tr

(
(∇u)3

)
− (△u) · ∇p(6.15)

and hence

∇r−2△Dtp = ∇r−2
(
4 tr

(
(∇u) · ∇2p

)
+ 2 tr

(
(∇u)3

)
− (△u) · ∇p

)
(6.16)

The exact interpretation of what the dot product and traces means is not so important since the right
hand side will be lower order and since ∇r−2 will be subject to Leibnitz’ rule. Summing up, we have:

Lemma 6.1.∣∣Dt∇ru+∇r+1p
∣∣+ ∣∣Dt∇r−1 curlu

∣∣+ ∣∣∇r−1△p
∣∣ ≤ C

r−1∑
s=0

∣∣∇1+su
∣∣ ∣∣∇r−su

∣∣(6.17)

∣∣∣Π(Dt∇rp+ (∇ru) · ∇p−∇rDtp
)∣∣∣ ≤ C

r−2∑
s=1

∣∣∣Π((∇1+su) · ∇r−sp
)∣∣∣(6.18)

and

(6.19)
∣∣∇r−2△Dtp− (∇r−2△u) · ∇p

∣∣ ≤ C
r−2∑
s=0

∣∣∇1+su
∣∣ ∣∣∇r−sp

∣∣
+ C

∑
r1+r2+r3=r−2

∣∣∇1+r1u
∣∣ ∣∣∇1+r2u

∣∣ ∣∣∇1+r3u
∣∣
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7. Energy Estimates for Euler’s equations

Let

(7.1) Er(t) =

∫
Ω

gmnγijQ
(
∇r−1∇ium,∇r−1∇jun

)
dµ+

∫
Ω

|∇r−1 curlu|2 dµ

+

∫
∂Ω

γijQ
(
∇r−1∇ip,∇r−1∇jp

)
νdµγ

where ν = 1/(−∇Np). We will prove that there are continuous functions Cr such that

(7.2)

∣∣∣∣dEr(t)

dt

∣∣∣∣ ≤ Cr

(
K, 1/ε, L,M,VolΩ,

r−1∑
s=0

Es(t)
) r∑

s=0

Es(t)

if 0 ≤ r ≤ 4 or r ≥ n/2 + 3/2, provided that some a priory assumption are true;

|θ|+ 1/ι0 ≤ K, on [0, T ]× ∂Ω(7.3)

−∇Np ≥ ε > 0, on [0, T ]× ∂Ω(7.4)

|∇2p|+ |∇Npt| ≤ L, on [0, T ]× ∂Ω.(7.5)

Since hab = ∇aub +∇bua, the bound for |h| of course follows from the bound for |∇u|. We also assume

(7.6) |∇p| ≤M, |∇u| ≤M, in [0, T ]× Ω

It is not clear to what extent we need the bound for ∇2p, but it is natural to assume it, since △p =
− tr(∇u)2 and Π∇2p = θ∇Np. The bound for ∇2p together with (7.4) of course implies the bound for θ

Remark. Instead of the energy (7.1) coming from Proposition 5.10 we could alternatively have used the
energy coming from Proposition 5.9 . The one we use gives a better control of ∥∇ru∥L2(Ω) which is
need for proving Theorem 7.2 below with minimal r0, but it only works when div u = 0.

Since E0(t) =
∫
Ω
|v|2 dµ = E0(0) and VolΩ(t) = VolΩ(0) it follows recursively from (7.2):

Theorem 7.1. If r ≥ 0 and n ≤ 7, then there are continuous functions Fr, with Fr|t=0 = 1, such that
for any smooth solution of Euler’s equations (1.1)-(1.5) for 0 ≤ t ≤ T satisfying (7.3)-(7.6) we have

(7.7)
r∑

s=0

Es(t) ≤ Fr

(
t,K, 1/ε, L,M,E0(0), ..., Er−1(0),VolΩ

) r∑
s=0

Es(0), 0 ≤ t ≤ T,

Let K(t) and ε(t) be the maximum respectively minimum values such that (7.3)-(7.4) hold at time t

(7.8) K(t) = max
(
∥θ(t, ·)∥L∞(∂Ω), 1/ι0(t)

)
, and E(t) = ∥(∇Np(t, ·))−1∥L∞(∂Ω) = 1/ε(t)

Theorem 7.2. Let r ≥ r0 > n/2 + 3/2. Then there is a continuous functions Tr > 0 such that if

(7.9) T ≤ Tr
(
K(0), E(0), E0(0), ..., Er0(0),VolΩ

)
any smooth solution of the free boundary problem for Euler’s equations (1.1)-(1.5), for 0 ≤ t ≤ T
satisfies

r∑
s=0

Es(t) ≤ 2
r∑

s=0

Es(0) 0 ≤ t ≤ T(7.10)
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Proof of Theorem 7.1. In the proof it is convenient to replace the a priori bound (7.3) by

(7.11) |θ| ≤ K ′, 1/ι1 ≤ K1

see Definition 3.3 for ι0 and Definition 3.4 for ι1. However, by Lemma 3.2

(7.12) 1/ι0 ≤ max (K1/2, ∥θ∥L∞) and 1/ι1 ≤ max (∥θ∥L∞/ε1, 1/2ι0)

Now, to get the iteration started we need bounds for some low norms. For u, E0 = ∥u∥2L2(Ω) is conserved

but we can not control the low norms of p and pt in terms of the energies only so to control these we
must use the fact that the VolΩ is conserved.

Before starting with the proof of (7.2) let us first see what a bound for the energy (7.1) implies:

Lemma 7.3. We have

∥∇ru∥2L2(Ω) ≤ CEr, ∥Π∇rp∥2L2(∂Ω) ≤ ∥∇p∥L∞(∂Ω)Er(7.13)

∥∇rp∥2L2(∂Ω) + ∥∇rp∥2L2(Ω) ≤ C (K1,VolΩ)
(
∥∇p∥L∞(∂Ω) + ∥∇u∥2L∞(Ω)

) r∑
k=0

Ek(7.14)

Proof of Lemma 7.3. That ∥Π∇rp∥L2(∂Ω) ≤ ∥∂p∥L∞(∂Ω)Er follows from the definition of the projection;

γijQ(αi, αj) = |Πα|2 on ∂Ω, and the fact that the measure in the energy is (−∇Np)
−1dS. Since

div u = 0, the bound ∥∇ru∥2L2(Ω) ≤ CEr follows from from Lemma 5.3. By Lemma 6.1 and Lemma 8.3

∥∇r−1△p∥L2(Ω) ≤ C∥∇u∥L∞(Ω)

r∑
k=0

Kr−ℓ
1 ∥∇ku∥L2(Ω)

(7.14) follows from (5.28) in Proposition 5.6 and the second part of (8.17) in Lemma 8.5. �

The most interesting observation is now that that the bounds in particular of the boundary term
in Lemma 7.3 actually imply a bound on the second fundamental form of the boundary:

Lemma 7.4. With L∞ = L∞(∂Ω) we have

(7.15) ∥∇ r−2θ∥2L2 ≤ C
(
K1, ∥θ∥L∞ , ∥(∇Np)

−1∥L∞ , ∥∇p∥L∞ , ∥∇u∥L∞(Ω),VolΩ,

r−1∑
s=0

Es(t)
) r∑

s=0

Es(t)

Proof. Lemma 7.4 is of course just (5.32) in Proposition 5.7 and (7.14) in Lemma 7.3, the crucial point
being a lower bound −∇Np > ε > 0. �

Lemma 7.3 suffices to control the interior terms, as we shall see. To control the boundary terms it
turns out that the crucial point is to estimate

∥Π∇rDtp∥L2(∂Ω)

which uses the bound in Lemma 7.4. to estimate ∥∇r−2△Dtp∥L2(Ω). We have
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Lemma 7.5. Let pt = Dtp and L∞ = L∞(∂Ω). We have

(7.16) ∥Π∇rpt∥2L2(∂Ω) + ∥∇r−1pt∥2L2(∂Ω) + ∥∇rpt∥2L2(Ω)

≤ C
(
K1, ∥θ∥L∞ , ∥(∇Np)

−1∥L∞ , ∥∇p∥L∞ , ∥∇u∥L∞(Ω), ∥∇Npt∥L∞ ,VolΩ,
r−1∑
s=0

Es(t)
) r∑

s=0

Es(t)

Proof. By Lemma 6.1 and Lemma 8.3

(7.17) ∥∇r−2△Dtp∥L2(Ω) ≤ C(K1)
(
∥∇p∥L∞(Ω) + ∥∇u∥L∞(Ω)

)( r∑
k=0

(
∥∇ku∥L2(Ω) + ∥∇kp∥L2(Ω)

))

+ C(K1)∥∇u∥2L∞(Ω)

r−1∑
k=0

∥∇ku∥L2(Ω).

The bound in (7.16) for ∥∇r−1pt∥L2(∂Ω) is just (5.33) in Proposition 5.8 together with (7.17), Lemma
7.3 and Lemma 7.4. The bound for ∥Π∇rpt∥L2(∂Ω) follows (5.30) in Proposition 5.7 and bound just
obtained for ∥∇spt∥L2(∂Ω), for s ≤ r − 1. Finally, the bound for ∥∇rpt∥L2(Ω) follows from (5.29) in

Proposition 5.6 and the bounds for ∥∇r−1pt∥L2(∂Ω) and ∥Π∇rpt∥L2(∂Ω) just obtained. �

After having seen what a bound for the energy implies we now want to prove (7.2). The main
ingredient is Proposition 5.10 applied to α = −∇rp, β = ∇r−1u and ν = 1/(−∇Np). Then div β = 0
and curlα = 0 so we get from Proposition 5.10 and Lemma 7.3:

(7.18)
dEr

dt
≤ C

(
K1, ∥θ∥L∞ , ∥(∇Np)

−1∥L∞ , ∥∇p∥L∞ , ∥∇u∥L∞(Ω)

)
Er+

C
√
Er

(
∥Π
(
−Dt∇rp+ νNk∇ruk

)
∥L2(∂Ω) + ∥Dt∇ru+∇r+1p∥L2(Ω) + ∥Dt∇r−1 curlu∥L2(Ω)

)
Using, Lemma 6.1 and Lemma 8.3 we can directly control the interior terms in (7.18):

(7.19) ∥Dt∇ru+∇r+1p∥L2(Ω) + ∥Dt∇r−1 curlu∥L2(Ω) ≤ C∥∇u∥L∞(Ω)

r∑
k=0

Kr−k
1 ∥∇ku∥L2(Ω)

Hence it only remains to control the boundary term in (7.18). By Lemma 6.1

(7.20) ∥Π
(
Dt∇rp+ (∇ru) · ∇p

)
∥L2(∂Ω) ≤ ∥Π∇rDtp∥L2(∂Ω) + C

r−2∑
s=1

∥Π
(
(∇1+su) · ∇r−sp

)
∥L2(∂Ω)

Since the first term in the right hand side of (7.20) is controlled by Lemma 7.5 it only remains to
estimate

(7.21) ∥Π
(
(∇1+su) · ∇r−sp

)
∥L2(∂Ω), for 1 ≤ s ≤ r − 2

Clearly these terms are lower order so there is no problem estimating them say using Sobolev’s Lemma
to bound them with interior norms. However, in order to get a bound that is linear in the highest
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order derivative provided the a priori assumptions (7.3)-(7.6) hold, we must work a bit harder. Let us
therefore look at the endpoints. If s = r − 2 this can be estimated by

(7.22) ∥∇2p∥L∞(∂Ω)∥∇r−1u∥L2(∂Ω) ≤ CL

(
r∑

k=0

Ek

)1/2

where we used the a priori assumption (7.5) and Sobolev’s Lemma (Lemma 8.2):

(7.23) ∥∇r−1u∥L2(∂Ω) ≤ C∥∇r−1u∥L2(n−1)/(n−2)(∂Ω) ≤ C(K1)
r∑

k=0

∥∇ku∥L2(Ω)

and if s = 0 (which actually is excluded) we could estimate it with

(7.24) ∥∇u∥L∞(∂Ω)∥∇rp∥L2(∂Ω) ≤ C(K1)M

(
r∑

k=0

Ek

)1/2

by Lemma 7.3. Hence, we must now somehow control the intermediate terms. If the derivatives were
tangential we could do this with the interpolation inequality Lemma 8.1. But because of the projection
to the tangential components in (7.21) the highest order derivatives will be mostly tangential. By (4.48)

(7.25) ∥Π
(
(∇1+su) · ∇r−sp

)
∥L2(∂Ω)

≤ ∥ |Π(∇1+su)| |Π∇r−sp| ∥L2(∂Ω) + ∥ |Π
(
Nk∇1+suk

)
| |ΠNk∇r−1−s∇kp| ∥L2(∂Ω)

≤ ∥Π(∇1+su)∥L2(r−2)/s(∂Ω)∥Π∇r−sp∥L2(r−2)/(r−2−s)(∂Ω)

+ ∥Π
(
Nk∇1+suk

)
∥L2(r−2)/s(∂Ω)∥ΠNk∇r−1−s∇kp∥L2(r−2)/(r−2−s)(∂Ω)

These terms can now be estimated by (4.46) in Proposition 4.8 with α = ∇u and β = ∇2p. This
concludes the proof of Theorem 7.1.

Proof of Theorem 7.2. Let us now show how Theorem 7.2 follows. We will be using Sobolev’s lemma,
(Lemma 8.2-8.4). But then we must first make sure that we can control the Sobolev constants. By the
results in section 8 these depend on the constant K1 = 1/ι1 in Definition 3.4. Alternatively the change
of the Sobolev constants in time are controlled by a bound for the time derivative of the metric in the
y coordinates, see section 8. We also need to have control of the constant 1/ε. We have

Lemma 7.6. Let K1 be as in Definition 3.4, E(t) as in (7.8) and r0 > n/2 + 3/2. Then there are
continuous functions Gr0 , Hr0 , Ir0 and Jr0 such that

∥∇u∥L∞(Ω) ≤ Gr0 (K1, E0, ..., Er0)(7.26)

∥∇p∥L∞(Ω) + ∥∇2p∥L∞(∂Ω) ≤ Hr0 (K1, E0, ..., Er0 ,VolΩ)(7.27)

∥θ∥L∞(∂Ω) ≤ Ir0 (K1, E , E0, ..., Er0 ,VolΩ)(7.28)

∥∇pt∥L∞(∂Ω) ≤ Jr0 (K1, E , E0, ..., Er0 ,VolΩ)(7.29)

Proof. By Sobolev’s lemma

∥∇u∥L∞(Ω) ≤ C(K1)
∑

s≤r∥∇su∥L2(Ω), r − 1 > n/2(7.30)

∥∇p∥L∞(Ω) ≤ C(K1)
∑

s≤r∥∇sp∥L2(Ω), r − 1 > n/2(7.31)

∥∇2p∥L∞(∂Ω) ≤ C(K1)
∑

s≤r∥∇sp∥L2(∂Ω), r − 2 > (n− 1)/2(7.32)
44



(7.26) follows from (7.30) and (7.13) in Lemma 7.3, (7.27) follows from (7.31), (7.14) and (7.26) (Note
that p enters quadratic in the left hand side of (7.14) but only linear in the right hand side. ). (7.32)
follows in the same way. The bounds for ∥θ∥L∞ and ∥∇pt∥L∞ can not be obtained directly by Sobolev’s
lemma since the right hand hand side of (7.15) depends on ∥θ∥L∞ and the right hand side of (7.16)
depends on ∥∇pt∥L∞ . However,

(7.33) |∇2p| ≥ |Π∇2p| = |∇Np||θ| ≥ E−1|θ|

so (7.28) follows from (7.27). (7.29) follows from (5.34) in Proposition 5.8. �

Lemma 7.7. Let K1 ≥ 1/ι1 and ε1 = ε1(r) be as in Definition 3.4 and Lemma 5.5. Then if r0 >
n/2 + 3/2

∣∣∣ d
dt
Er

∣∣∣ ≤ Cr(K1, E , E0, ..., Er0 ,VolΩ)
r∑

s=0

Es(7.34)

and ∣∣∣ d
dt

E
∣∣∣ ≤ Cr(K1, E , E0, ..., Er0 ,VolΩ).(7.35)

Proof. (7.34) is a consequence of Lemma 7.6 and the estimates in the proof of Theorem 7.1. (7.35)
follows from ∣∣∣∣ ddt∥(−∇Np(t, ·))−1∥L∞(∂Ω)

∣∣∣∣ ≤ C∥(−∇Np(t, ·))−1∥2L∞(∂Ω)∥∇Npt(t, ·)∥L∞(∂Ω)

and (7.29). �

It follows from Lemma 7.7:

Lemma 7.8. If r ≥ r0, there is continuous function Tr
(
K1, E(0), E0(0), ..., Er(0),VolΩ

)
> 0 such that

for

(7.36) 0 ≤ t ≤ Tr
(
K1, E(0), E0(0), ..., Er(0),VolΩ

)
the following statements hold: We have

(7.37) Es(t) ≤ 2Es(0), 0 ≤ s ≤ r, E(t) ≤ 2E(0),

Furthermore

(7.38) gij(0, y)X
iXj/2 ≤ gij(t, y)X

iXj ≤ 2gij(0, y)X
iXj

and with ε1(r) > 0 as in Lemma 5.5

|N (x(t, y))−N (x(0, y)| ≤ ε1(r)/16, y ∈ ∂Ω(7.39)

|x(t, y)− x(0, y)| ≤ ι1/16, y ∈ Ω(7.40)

|∂x/∂y(t, y)− ∂x/∂y(0, y)| ≤ ε1(r)/16, y ∈ ∂Ω(7.41)
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Proof. We get (7.37) from Lemma 7.7 if Tr(K1, E(0), E0(0), ..., Er(0),VolΩ) > 0 is sufficiently small.
We have

∥∇u∥L∞(Ω) + ∥∇p∥L∞(Ω) ≤ C
(
K1, E(0), E0(0), ..., Er0(0)

)
(7.42)

∥∇2p∥L∞(∂Ω) + ∥θ∥L∞(∂Ω) ≤ C
(
K1, E(0), E0(0), ..., Er0(0),VolΩ

)
(7.43)

∥∇pt∥L∞(Ω) ≤ D
(
K1, E(0), E0(0), ..., Er0(0),VolΩ

)
(7.44)

In fact, (7.42)-(7.44) follows from (7.37) and Lemma 7.6. It follows from this that

∥∇u(t, ·)∥L∞(∂Ω) ≤ 2∥∇u(0, ·)∥L∞(∂Ω)(7.45)

∥∇p(t, ·)∥L∞(Ω) ≤ 2∥∇p(0, ·)∥L∞(Ω)(7.46)

∥v(t, ·)∥L∞(Ω) ≤ 2∥v(0, ·)∥L∞(Ω)(7.47)

In fact, by (6.7) we have

(7.48) |Dt∇u| ≤ |∇2p|+ |∇u|2, |Dt∂v| ≤ |∂2p|+ |∂v|2

Using (7.42)-(7.44) we get that

(7.49)

∫ T

0

∥∇2p(t, ·)∥L∞ + ∥∇u(t, ·)∥2L∞ dt ≤ ∥∇u(0, ·)∥L∞ ,

if T is sufficiently small, so (7.45) follows after possibly making T > 0 smaller. (7.46) and (7.47) follows
in a similar manner from |Dt∇p| = |∇pt| respectively |Dtv| = |∂p|.

Also (7.38) follows from the same argument since

(7.50) Dtgab = hab = ∇aub +∇bua

and by (7.44)

(7.51) 2

∫ T

0

∥∇aub∥L∞(Ω) dtX
aXb ≤ gabX

aXb/2

if T is sufficiently small. Now the estimate for N follows from

(7.52) Dtna = hNNna

and the estimates for x and ∂x/∂y from

(7.53) Dtx(t, y) = v(t, x(t, y)), and Dt
∂x

∂y
=
∂v(t, x(t, y))

∂y
=
∂v(t, x)

∂x

∂x

∂y

and (7.47) respectively (7.45). �

The idea is now to use (7.38)-(7.41) to pick a K1, i.e. ι1 (see Definition 3.4), which only depend on
their values at t = 0;

(7.54) ι1(t) ≥ ι1(0)/2,
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Lemma 7.9. Suppose that ε1(r)/2 ≤ ε1 ≤ ε1(r) and let T be as in Lemma 7.7. Pick ι1 > 0 such that

(7.55) |N (x(0, y1))−N (x(0, y2))| ≤ ε1/2, whenever |x1(0, y1)− x(0, y2)| ≤ 2ι1

Then if t ≤ T we have

(7.56) |N (x(t, y1))−N (x(t, y2))| ≤ ε1, whenever |x1(t, y1)− x(t, y2)| ≤ ι1

Proof. (7.56) follows from (7.55) and (7.39)-(7.40). �

Theorem 7.2 now follows directly from Lemma 7.9 and Lemma 7.8 since Lemma 7.9 allows us to
pick a K1 depending only on initial conditions and then Lemma 7.8 gives us T > 0 which depends only
on the initial conditions and K1 such that, by Lemma 7.9, 1/ι1 ≤ K1 for t ≤ T .

Note that there is an evolution equation also for θ but using it would require control of one more
derivative of u:

(7.57) Dt θij = −γ ℓ
i γ

a
j Nd∇ℓ∇aud +NaN b∇aub θij + 2(θiaNj + θjaNi)g

abN c∇buc

We can control the size of θ through (7.43) but we can not control it in terms of initial data without
going to energies with one more derivatives. This is why we need to estimate all the Sobolev constants
in terms of K1 instead of K, since (7.38)-(7.41) will allow us to control the time evolution of K1.
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8. Appendix: Sobolev Lemmas and Interpolation inequalities

Let us now state some Sobolev’s lemmas and interpolation inequalities. Most of the results here
are standard in Rn, but we must control how it depends on the metric. There are two convenient ways
to do this. The first is to use the fact that our set expressed in the x coordinates Dt ⊂ Rn inherits the
metric in Rn and the surface ∂Dt can be expressed locally as a graph over Rn−1.

Let N (x) be the unit normal at x ∈ ∂Dt and suppose that

(8.1) |N (x1)−N (x2)| ≤ ε1, whenever |x1 − x2| ≤ ι1, x1, x2 ∈ ∂Dt.

By (8.1) we can write the surface as a graph within a ball of radius ι1 = 1/K1 and for functions
supported in such a ball we can thus use Sobolev’s lemma in Rn−1 or Rn. In general we make a
partition of unity into functions supported in such balls and the Sobolev constant will thus depend only
on K1.

When controlling how the metric changes with time we can use that our metrics γ on ∂Ω and g in
Ω are equivalent to the same metrics at t = 0 in the y coordinates:

C−1
0 γ0ij(y)Z

iZj ≤γij(t, y)ZiZj ≤ C0γ
0
ij(y)Z

iZj , if Z ∈ T (Ω),(8.2)

C−1
0 g0ij(y)Z

iZj ≤gij(t, y)ZiZj ≤ C0g
0
ij(y)Z

iZj , if Z ∈ T (Ω),(8.3)

and use Sobolev’s lemma for the metrics γ0ij respectively g
0
ij . In this case, the Sobolev constants depend

only on γ0ij(y) = γij(0, y) respectively g
0
ij(y) = gij(0, y) and on C0.

Lemma 8.1. If α is a (0, r) tensor then with a = k/m and a constant C that only depends on m and
n:

(8.4) ∥∇ kα∥Ls(∂Ω) ≤ C∥α∥1−a
Lq(∂Ω) ∥∇

mα∥aLp(∂Ω), if
m

s
=
k

p
+
m− k

q
, 2 ≤ p ≤ s ≤ q ≤ ∞

Proof. Let us first prove (8.4) in case m = 2 and k = 1. We claim that

(8.5) ∥∇α∥2Ls ≤ Cs∥ |α| |∇ 2α| ∥Ls/2 , if s ≥ 2 and Cs = s− 2 +
√
n− 1,

from which (8.4) follows in case m = 2 and k = 1. Then, the norm in the left of (8.4) to the power r is
the limit as ε→ 0 of∫

∂Ω

(⟨∇α,∇α⟩+ ε)s/2−1⟨∇α,∇α⟩ dµγ = −
∫
∂Ω

(⟨∇α,∇α⟩+ ε)s/2−1⟨α,△α⟩ dµγ

−
∫
∂Ω

2(s/2− 1))(⟨∇α,∇α⟩+ ε)s/2−2⟨∇α,∇ 2α⟩ · ⟨α,∇α⟩ dµγ

where we have integrated by parts. As ε→ 0 we see that

(8.6) ∥∇α∥sLs ≤ Cs

∫
⟨∇α,∇α⟩s/2−1|α||∇ 2α| dµγ ≤ Cs∥∇α∥s−2

Ls ∥ |α| |∇ 2α| ∥Ls/2

Dividing both sides by ∥∇α∥s−2
Ls gives the desired inequality (8.4).

For fixed m, p and q let s = s(k) be defined by (8.4) and set Mk = ∥∇kα∥Ls(k) . Then we have just

proven that M2
k ≤ CmMk−1Mk+1 for 1 ≤ k ≤ m − 1. Hence Nk = Ck2

mMk satisfies N2
k ≤ Nk−1Nk+1

and this logarithmic convexity implies that Nk ≤ N
(m−k)/m
0 N

k/m
m which proves (8.4) in general. �
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Lemma 8.2. Suppose that (8.1) and (8.2) hold with ι1 ≥ 1/K1. Then if α is a (0, r) tensor:

∥α∥L(n−1)p/(n−1−kp)(∂Ω) ≤ C(K1)
k∑

ℓ=0

∥∇ℓα∥Lp(∂Ω), 1 ≤ p < (n− 1)/k(8.7)

∥α∥L∞(∂Ω) ≤ δ∥∇kα∥Lp(∂Ω) + Cδ(K1)
∑

0≤ℓ≤k−1

∥∇ℓα∥Lp(∂Ω) k > (n− 1)/p(8.8)

for any δ > 0.

Remark. For the boundary there are two possible interpretations of (8.7) and (8.8). One is to let the
norm be given by the inner product ⟨α, α⟩ = γIJαIαJ and the covariant differentiation given by ∇
which corresponds to covariant differentiation on the boundary. The other interpretation is to let the
inner product on the boundary be that of the interior ⟨α, α⟩ = gIJαIαJ and the covariant differentiation
be that of the interior ∇. In fact, in both cases the proof reduces to k = 1 as before. If ϕ is a function
then the lemma for ϕ follows from using covariant differentiation on the boundary. And applying this
result to a norm gives

(8.9) |γ j
i ∇j⟨α, α⟩| = 2|⟨α, γ j

i ∇jα⟩| ≤ |α| |γ j
i ∇jα|

which is bounded by |α| |∇α| respectively |α| |∇α|

Proof of Lemma 8.2. We may assume that p > n and hence k ≤ 1 in (8.8) and k = 1 in (8.7). In fact,
the general case follows from first using (8.8) respectively (8.7) in this case and then repeatedly using
(8.7). Secondly, the case r > 0 can be reduced to the case of functions r = 0 by applying it to the
norms ϕ = |α|. Hence we may assume that α is a function and k = 1.

Using the partition of unity {χi} in Lemma 3.4 we write ϕ =
∑

i ϕi, where ϕi = χiϕ. The support
of each ϕi is then contained in a set Si where the surface can be written as a graph xn = fi(x

′),
with |∂fi| ≤ ε1 ≤ 1, as in (3.20). Then dx′ ≤ dS ≤ Cdx′ and |∂x′ϕ|/C ≤ |∇ϕ| ≤ |∂x′ϕ|, where
C = (1+ε1)

1/2 ≤ 2 so apart from a constant factor Sobolev’s Lemma on Si reduces to Sobolev’s lemma
in Rn−1. Using Minkowski’s inequality, Sobolev’s lemma in Rn−1 and Minkowski’s inequality again:

(8.10)

∫
∂Ω

(∑
|ϕi|
)q
dS ≤ 2

∑∫
B(4r0,xi)

|ϕi|qdx′ ≤ 2C
∑(∫

B(4r0,xi)

|∇ϕi|pdx′
)q/p

≤ 8C

(∫
∂Ω

(∑
|∇ϕi|q

)p/q
dS

)q/p

since q > p. Here

(8.11)
(∑

|∇ϕi|q
)p/q

=
(∑

(|∇χi||ϕ|+ |χi||∇ϕ|)q
)p/q

≤ CKp
1 (32)

(n−1)p/q(|ϕ|r−1
0 + |∇ϕ|)p

which proves (8.7). (8.8) with δ replaced by a constant follows in the same way. Finally, we get (8.8)
by considering (8.8) with δ replaced by a constant and k = 1 applied to α replaced by |α|2. In fact then
we get ∥α∥2L∞ ≤ C∥|α||∇α|∥Lq + C∥|α|2∥Lq for some (n− 1)/k < q < p. Using Hölder’s inequality we
can estimate the first term by C∥α∥Lpq/(p−q)∥∇α∥Lp ≤ δ∥∇α∥2Lp + C2δ−1∥α∥2

Lpq/(p−q) , where the last

term is bounded by Cδ∥α∥1−(p−q)/q
L∞ ∥α∥(p−q)/q

Lp . �
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Lemma 8.3. With notation as in Lemma 8.1 and Lemma 8.2 we have

(8.12)
k∑

j=0

∥∇jα∥Ls(Ω) ≤ C∥α∥1−a
Lq(Ω)

(
m∑
i=0

∥∇iα∥Lp(Ω)K
m−i
1

)a

,

Proof. As in the proof of (8.5), the general case of (8.12) will follow from the special case m = 2 and
k = 1. If we integrate by parts as in the proof of (8.4) we also get a boundary term∫

Ω

|∇α|s dµ ≤ C

∫
Ω

|∇α|s−2|α||∇2α| dµ+ C

∫
∂Ω

|∇α|s−1|α| dµγ .

If α has compact support in Ω then the boundary term cancels so by the proof of (8.4)

(8.13) ∥∇α∥2Ls(Ω) ≤ C∥α∥Lq(Ω)∥∇2α∥Lp(Ω)

We will prove that (8.13) is also true if α has compact support in a neighborhood of the boundary
ι1 < dist (y, ∂Ω) ≤ 0. We have

∫
∂Ω

|∇α|s−1|α| dµγ ≤
(∫

∂Ω

|∇α|(s−1)t dµγ

)1/t(∫
∂Ω

|α|t/(t−1) dµγ

)(t−1)/t

≤ C
(∫

Ω

∣∣∇N |∇α|(s−1)t
∣∣ dµ)1/t(∫

Ω

∣∣∇N |α|t/(t−1)
∣∣ dµ)(t−1)/t

≤ C
(∫

Ω

|∇α|(s−1)t−1|∇2α| dµ
)1/t(∫

Ω

|α|1/(t−1)|∇α| dµ
)(t−1)/t

Now we want to use Hölder’s inequality again on each factor with ∥∇2α∥Lp and ∥α∥Lq and ∥∇α∥Ls

where 1/q + 1/p = 2/s. Let 1/q′ = 1 − /q, 1/p′ = 1 − 1/p and 1/s′ = 1 − 1/s. We will show that we
can pick t so that s = p′((s − 1)t − 1) and s′ = (t − 1)q We need to show that the two expressions
for t are the same,i.e. that (s − s/p + 1)/(s − 1) = t = (s − 1 + s/q)/(s − 1) which is equivalent to

1/p + 1/q = 2/s. The boundary term can hence be bounded by ∥∇α∥s−2/t
Ls(Ω) ∥∇

2α∥1/tLp(Ω) ∥α∥
1/t
Lq(Ω). On

the other hand the interior term can be estimated as in the proof of (8.5) so we get

∥∇α∥sLs(Ω) ≤ C∥∇α∥s−2
Ls(Ω) ∥α∥Lq(Ω) ∥∇

2α∥Lp(Ω) + C∥∇α∥s−2/t
Ls(Ω) ∥∇

2α∥1/tLp(Ω) ∥α∥
1/t
Lq(Ω)

from which (8.13) follows also in case α is supported in the neighborhood ι1 < dist (y, ∂Ω) ≤ 0. Let
{χi} be the partition of unity in Lemma 3.4. Now, since |∇ℓχi| ≤ Cι1

−ℓ it follows that ∥∇2(χiα)∥Lp

are bounded by the sum in the right hand side of (8.12) if m = 2 and k = 1. Since also ∥α∥2Ls ≤
∥ |α|2 ∥2

Ls/2 ≤ ∥α∥Lq∥α∥Lp by Hölder’s inequality, (8.12) follows in case m = 2 and k = 1.

The general case of (8.12) follows from the special case as in the proof of (8.5) with the only exception

that now Mk =
∑k

i=0 ∥∇iα∥Ls(k) . So far we have only proven that M1 ≤ CM0M2, but the general case

of M2
k ≤ CMk−1Mk+1 follows by induction from the previous case applied toM ′

k =
∑k

i=0 ∥∇i∇α∥Ls(k) ;

(M ′
k−1)

2 ≤ CM ′
k−2M

′
k and Hölder’s inequality ∥α∥Ls ≤ ∥ |α|1−a|α|a ∥Ls ≤ ∥α∥1−a

Lq ∥α∥aLp again. �
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Lemma 8.4. Suppose that ι1 ≥ 1/K1 and α is a (0, r) tensor. Then

∥α∥Lnp/(n−kp)(Ω) ≤ C
k∑

ℓ=0

Kk−ℓ
1 ∥∇ℓα∥Lp(Ω), 1 ≤ p < n/k(8.14)

∥α∥L∞(Ω) ≤ C
∑

0≤ℓ≤k

K
n/p−ℓ
1 ∥∇kα∥Lp(Ω), k > n/p(8.15)

Proof. As in the proof of Lemma 8.2 we may assume that α is a function and k = 1. We now want to
extend the functions to outside Ω and then use Sobolev’s lemma in Rn. We can extend the function
by writing the surface as a graph xn = f(x′), (x′, xn) ∈ Rn, as in the proof of Lemma 8.2. Let {χi}
be the partition of unity in Lemma 3.4 and set ϕi = χiϕ. In a neighborhood of supp(χi) we can then
write ∂Dt as a graph after a rotation:

xn = f(x′), (x′, xn) ∈ Rn, |∂f | ≤ 1

We now define

(8.16) ϕ̂i(x) =

{
ϕi(x), when x ∈ Ω

ϕ(x̂), when x /∈ Ω
, where x̂ = (x̂′, x̂n) = (x′, xn − 2(xn − f(x′))

In proving the estimates (8.14)-(8.15) we may assume that ϕ ∈ C∞(Ω) since this is dense in W 1,p(Ω),
see [Ev]. Then by Sobolev’s Lemma in Rn:

∥ϕ̂i∥Lq(Rn) ≤ C∥∇ϕ̂i∥Lp(Rn) ≤ C∥∇ϕi∥Lp(Ω) + C∥∇ϕ̂i∥Lp({Ω) ≤ C ′∥∇ϕi∥Lp(Ω)

since |∂x̂i/∂xj | ≤ C. Since |∇χi| ≤ CK1 this proves (8.14) and (8.15) follows in a similar manner. �

Lemma 8.5. Suppose that q = 0 on ∂Ω then

(8.17) ∥q∥L2(Ω) ≤ C(VolΩ)1/n∥∇q∥L2(Ω), ∥∇q∥L2(Ω) ≤ C(VolΩ)1/2n∥△q∥L2(Ω),

Proof. The first inequality is Faber-Krahns theorem. Its proof uses a symmetrization argument, see
[SY]. The second follows from the first and integration by parts. �

We state two more lemmas:

Lemma 8.6. Furthermore if the metric satisfies

(8.18) C−1
0 g0ij(y)Z

iZj ≤ gij(t, y)Z
iZj ≤ C0g

0
ij(y)Z

iZj , if Z ∈ T (Ω),

where g0 is a positive definite metric, then with a constant depending only on on g0 and c0;

(8.19) ∥∂kt α∥Ls(Ω×[0,T ]) ≤ C∥α∥1−a
Lq(Ω×[0,T ]) ∥∂

m
t α∥aLp(Ω×[0,T ]),

provided that ∂jtα(0, ·) = 0, for j = 0, ...,m− 1.

Proof. It remains to prove (8.19) which is similar to the proof of (8.12). Suppose now that α(0, ·) =
∂tα(0, ·) = 0. By (8.18) can bound the norm and the measure from above and below by a measure
which is independent of t so as before it follows that∫ T

0

∫
Ω

|∂tα|s dµ dt ≤ C

∫ T

0

∫
Ω

|∂tα|s−2|α||∂2t α| dµ dt+ C

∫
Ω

|∂tα|s−1|α| dµ(T )∫
Ω

|∂tα|s−1|α| dµ(T ) ≤
(∫ T

0

∫
Ω

|∂tα|s dµ dt
)1−2/ts(∫ T

0

∫
Ω

|∂2t α|p dµ dt
)1/tp(∫ T

0

∫
Ω

|α|q dµ dt
)1/tq

from which (8.19) follows as before. �

Using Lemma 8.2 and the proof of Lemma 5.4 we can get a slightly improved version of Lemma 5.4:
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Lemma 8.7. Let α be (0, r) tensor and assume that |θ|L∞(∂Ω) + 1/ι0 ≤ K and Vol (Ω) ≤ V . Then
there is C = C(K,V, r, n) such that

∥α∥L(n−1)p/(n−p)(∂Ω) ≤ C∥∇α∥Lp(Ω) + C∥α∥Lp(Ω), 1 ≤ p < n(8.20)

∥∇2α∥L2(Ω) ≤ C
(
∥Π∇2α∥L2(n−1)/n(∂Ω) + ∥△α∥L2(Ω) + ∥∇α∥L2(Ω)

)
(8.21)
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