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INTRODUCTION
We consider Euler’s equations
(1.1) (8,5 + vkak)vj =—0jp, j=1,..,n in D, where 9; = 0/02"
describing the motion of an perfect incompressible fluid in vacuum:
(1.2) divo=0p* =0 in D

where v = (vq,...,v,) and D C [0,7] x R™ are to be determined. Here v* = §¥v; = v), and we have used
the summation convention that repeated upper and lower indices are summed over. Given a simply
connected bounded domain Dy C R™ and initial data vg, satisfying the constraint divvg = 0, we want
to find a set D C [0,7] x R™ and a vector field v solving (1.1)-(1.2) and satisfying the initial conditions

{ {; (0,2) € D} = Dy

1.3
(1.3) v=uvg, on {0} x Dy

Let D, = {x € R"; (t,x) € D}. We also require the boundary conditions on the free boundary 0Dy;

=0 oD
(14) { b ) on t

vy =k, on OD;

for each ¢, where N is the exterior unit normal to 0D;, var = Nv; and k is the normal velocity of 9D;.
The second condition can also be expressed as (9; +v*9y)|sp € T(9D). We will prove a priori bounds
for the initial value problem (1.1)-(1.4), in Sobolev spaces under the assumption

(1.5) Vwvp<—e<0, on 9JD,, where Vi = N0,:.

(1.5) is a natural physical condition since the pressure p has to be positive in the interior of the
fluid. It is essential for the well posedness in Sobolev spaces. Taking the divergence of (1.1):

(1.6) —Ap = (9;07) 0k, in D;, p=0, on 9D
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In the irrotational case (1.5) always hold, as shown in [CL,W1,W2]. Then (curlv);; =8;v7 — 9;v° =0 so
Ap<0 and hence p>0 and (1.5) hold by the strong maximum principle (see [GT]).

The incompressible perfect fluid is to be thought of as an idealization of a liquid. For small bodies
like water drops surface tension should help holding it together and for larger denser bodies like stars
its own gravity should play a role. Here we neglect the influence of such forces. Instead it is the
incompressibility condition that prevents the body from expanding and it is the fact that the pressure
is positive that prevents the body from breaking up in the interior. Let us also point out that, from
a physical point of view one can alternatively think of the pressure as being a small positive constant
on the boundary instead of vanishing. The aim of this paper is to show that we have a priori bounds
in Sobolev spaces for the free boundary problem (1.1)-(1.5) in any number of space dimensions. What
makes this problem difficult is that the regularity of the boundary enters to highest order. Roughly
speaking, the velocity tells the boundary where to move and the boundary is the zero set of the pressure
that determines the acceleration.

It is generally possible to prove local existence for analytic data for a free interface between two
fluids with the same normal component of the velocity, see [BG] and [Ni] for the irrotational case.
However, this type of problem might be subject to instability in Sobolev norms. The classical examples
are Rayleigh-Taylor instability which occurs in a local linear analysis when a heavier fluid lies above a
lighter fluid in a gravitational field and Kelvin-Helmholtz instability which occurs when the tangential
velocities of the two fluids along the interface are different, see e.g. [BCS]. In our case its the first kind of
instability that we must exclude. No gravitational fields are present in our problem, however a uniform
exterior gravitational field would not make a difference because it can be transformed away by going to
an accelerated frame. It is condition (1.5) which excludes the possibility of this kind of instability. In
fact, without taking into account the sign condition (1.5) the problem is actually ill-posed in Sobolev
spaces, see [Ebl],

Some existence results in Sobolev spaces are known in the irrotational case, for the closely related
water wave problem which describes the motion of the surface of the ocean under the influence of earth’s
gravity. In that problem, the gravitational field can be considered as uniform, and as we remarked above,
this problem reduces to our problem by going to an accelerated frame. The domain D; is unbounded
for the water wave problem coinciding with a half-space in the case of still water. Nalimov[Na] and
Yosihara[Y] proved local existence in Sobolev spaces in two space dimensions for initial conditions
sufficiently close to still water. Beale, Hou and Lowengrab[BHL]| have given an argument to show that
problem is linearly well posed in a weak sense in Sobolev spaces, assuming a condition, which can
be shown to be equivalent to (1.5). The condition (1.5) prevents the Rayleigh-Taylor instability from
occurring when the water wave turns over. Recently Wu[W1,2] proved local existence in general in two
and three dimensions for the water wave problem. Wu showed that (1.5) holds for an unbounded domain
in the irrotational case. More importantly Wu[W2] is the first existence result in three space dimensions
in Sobolev spaces; going from two to three dimensions required introduction of new techniques.

The method of proof in the above papers relies heavily on the assumption that the velocity is curl-
free, hence satisfies Laplace’s equation in the interior. This makes possible the reduction of the problem
to a problem involving the boundary alone. In this reduction the Dirichlet to Neumann map enters and
it is estimated in fractional Sobolev spaces on the boundary. In the general case, with non vanishing
curl, no existence results in Sobolev spaces are known. However, recently Ebin[Eb2] announced a local
existence result for the same equations but with the boundary condition containing surface tension,
which makes the problem more regular.

We prove a priori bounds in the case of non vanishing vorticity in any number of space dimensions.
We also show that the Sobolev norms remain bounded essentially as long as (1.5) hold, the second
fundamental form of the surface is bounded and the first order derivatives of the velocity are bounded.
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The proof works with lower regularity assumptions on initial data. This is partly due to the fact that
our result is in terms of norms in the Eulerian space coordinates and the second fundamental form of
the free surface. The norms are hence independent of a parametrization of the boundary so we do not
have to be concerned with the possibility of a parametrization becoming singular. On the other hand it
is more difficult to put up an iteration in this approach. However existence will follow from analogous
estimates and existence in the presence of surface tension, reducing to the estimates presented here in
the limit of vanishing surface tension. Let us also point out that an existence result even for infinitely
differentiable data together with the a priori bounds here imply existence and continuation for low
regularity data. This is in particular true in the irrotational case where existence is known.

Our approach is quite elementary and geometric in nature. We use a new type of energy that
controls the geometry of the free surface. The energy has a boundary part and an interior part, which
allows us to avoid the use of fractional Sobolev spaces on the boundary. The boundary part controls the
norms of the second fundamental form of the free surface, whereas the interior part controls the norms
of the velocity and hence the pressure. We show that the time derivative of the energy is controlled by
the energy. A crucial point is that the time derivative of the interior part will, after integrating by parts,
contribute with a boundary term that exactly cancels the leading order term in the time derivative of
the boundary integral. The equations look ill-posed at first sight, but if one differentiates them one gets
a well-posed system for higher order derivatives of the velocity and the pressure. Our energy contains
the components of this higher order system. In the interior it contains most components and on the
boundary only the tangential components. Due to the fact that the pressure vanishes on the boundary
the tangential components of this higher order system are more regular. Another crucial point is then
to estimate the projection of a tensor to the tangent space of the boundary, which involves the second
fundamental form.

Let us first introduce Lagrangian coordinates. In these coordinates the boundary is fixed. Let {2 be
a domain in R™ and let fj : 2 — Dy be a diffeomorphism that is volume preserving; det(dfy/0y) = 1.
Assume that v(t,z) and p(t, z), (t,z) € D are given satisfying (1.1)-(1.4). The Lagrangian coordinates
x = x(t,y) = f:(y) are given by solving

dx
(17) E = ’U(t,.’L’(t,y)), .ZL‘(O,y) = fO(y)7 ye
Then f; : Q@ — D, is a volume preserving diffeomorphism, since divev = 0, and the boundary becomes
fixed in the new y coordinates. Let us introduce the notation
0 0 0
(1.8) Dy = = + o —

ot y=constant Ot |lz=constant oxk’
for the material derivative and
0 oy® 0
T 9xi 02t oy’

(1.9) 0;

Sometimes it is convenient to work in the Eulerian coordinates (¢,2) and sometimes it is easier to
work in the Lagrangian coordinates (¢,y). In the Lagrangian picture the partial derivative with respect
to the time coordinate has more direct significance than the partial derivative with respect to the time
coordinate in the Fulerian picture. However this is not true for the partial derivatives with respect to the
space coordinates. The notion of space derivative which plays a more significant role in the Lagrangian
picture is that of covariant differentiation with respect to the metric gu,(t,y) = 6;;0x%/0y® 027 /Oy®, the
pull back by f; of the Eulerian metric d;; on D; C R™. The covariant space derivatives of the Lagrangian
picture are simply and directly related to the partial derivatives with respect to the Cartesian space

3



coordinates of the Eulerian picture. We will work mostly in the Lagrangian coordinates in the paper.
However, our statements are coordinate independent and to simply the exposition we will present the
results in the Eulerian picture in the introduction.

In the notation of (1.8)-(1.9) Euler’s equations (1.1) become
(1.10) Div; = —0;p
Note that the commutator satisfies
(1.11) [Dy,0;] = —(9iv") 0,
By (1.11) we obtain the second order equation for the velocity
(1.12) D?v; — (Op)0;v" = —0; Dyp
Our estimates make use of (1.12) restricted to the boundary together with the boundary condition:

(1.13) p=0, on 0D, = D;p=0, on 0Dy
In the interior we will make use of the equation obtained by taking the curl of (1.10), using (1.11),

(1.14) Dy(curlv);; = —(9;v%) (curlv)y; + (8;0%)(curl v)y;
together with

(1.15) dive =0, in D
Taking the divergence of (1.10) respectively (1.12) using (1.11) and (1.15) gives elliptic equations:

(1.16) Ap = —(0;0°) 9", in Dy, p=0 on OJD;
(1.17) ADyp = (Opp) A0* + G(dv, 9*p), in Dy, Dip=0 on 0D,

where G(dv, 0?p) =46% (0;v%)0;0,p+2(9;v7)(9;v%)Okv’. Equation (1.16) gain regularity; neglecting the
problem with the boundary regularity, one derivative of v in the interior gives two derivatives of p,
which gives a gain of one time derivative of v in (1.10). If curlv =0 then Av=0 so then the equation
for D;p is as good as the equation for p.

To see the importance of the condition Varp < —e <0 let us look at a simplified linear model problem,
[CL]: Since p = Dyp = 0 on 9D, it follows that 9;p = N;Vp and 9;Dyp = N;Vx Dyp there so by (1.12)

(1.18) D?v; — (Vap)N*0up = — (Vv Dyp)N;,  on 9D,

We linearize by taking D; = Q and x(t,y) = y, independent of ¢. In the irrotational case N*0;v, =
NEOv; = Vv and Av; =87 kaj(?kvi =47 k&(‘)jvk =0; divv=0. Let us therefore consider the equations

(1.19) D?v; + v 'Vyv; = F;, on 09, Av; =0, in Q

for a vector field v on €2, depending on ¢, where v and F; are given functions on 2 and D; = 0;. To

simplify further let us assume that »~! = ¢ is constant, F' = 0, and € is the unit disc in R?. Then the

solutions of Av=0 are given in polar coordinates by v(t,r,0) =3 ¢ (t)r!/¥le**?. The boundary condition
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in (1.19) imply that c}/(t)+¢|k|ck(t) =0, with solutions ¢ (t) = ¢ e + ¢ e, A\y=1/—¢[k], so the
high frequencies remain bounded for ¢ >0 if € >0 but they are exponentially increasing if € <0. Note
that if data are analytic, i.e. cf = 0(6_5"“'), 0 > 0, then the solution exists independently of the sign
condition. The model problem is related to Enbin’s counterexample. By linearizing around a rigid
rotation v = (z2, —z1) he gets an equation for the variation similar to (1.19) with v = -Vyp=—1.
(1.19) is also up to terms of lower order the equation Wu[W2]uses. Furthermore, a similar model problem

shows up in [CL] when one studies the equation for the derivatives of the velocity (1.24)-(1.25).

The model problem also suggests a candidate for an energy:
(1.20) E(t) :/ |Ov]? da:—l—/ |Dyw|?vdS, v >0
Q a9
If we differentiate below the integral sign and integrate by parts we get a bound for the energy:

dE
(1.21) —= 2/81} ODwdx + 2 | Dy D?vvdS —I—/!DtvPDtudS
dt 0 o9 o9

= —Q/Av Dyvdr +2 Dtv(D v+ v V) vdS +/]Dtv] DivdS
Q
< 2||F| 126,05 EY? + ||v ' Dyl < 90y E

An easy modification gives (1.21) with an extra term 2||D,wl|| Lz(Q)El/ 2 also for a divergence free vector
field, divv =0, with curlv = w, satisfying D2v; +vN*0;ux = F; on the boundary. This estimate is
however, by itself not good enough to deal with (1.12) since we can not expect a bound for [|0D;pl| 2 90)
from a bound for ||0v]| 12 (o) due to the loss of regularity in (1.17) in the irrotational case. One derivative
of v in the interior only gives one derivative of D;p in the interior and restricting to the boundary we
loose half a derivative.

An additional idea is required which has to do with exploiting our special boundary conditions
Dip = 0. If we modify our energy so it only contains tangential components on and close to the
boundary, then only the projection onto the tangential components of (1.12) on the boundary will
occur in the energy estimate and the tangential components of dD;p vanishes. The components we
loose control over in the energy can then be gotten back by elliptic estimates. Although the pressure
and the regularity of the boundary did not enter in the above simplified model it will enter once we go
to higher-order energies which is needed to close the argument. We will now develop these higher-order
energies.

One can think of (1.10) and (1.12) as a system of equations for v and v = Dyv = —9p:

(1.22) Dyv; = —0;p

(1.23) D;0;p + (akp)aivk = 0;Dyp,

To see better what goes on let us differentiate once more with respect to the spatial coordinates
(1.24) Dydivj = —0;0;p — (0;07) v,

(1.25) D,0;0;p + (0xp)0;0;v" = 0;0;Dyp — (0:0")00;p — (9;0%) 00

where we used (1.11).

We want to project (1.25) to the tangent space of the boundary. The orthogonal projection II to
the tangent space of the boundary, of a (0, r) tensor « is defined to be the projection of each component
along the normal:

(1.26) (), . 4, = Hifl o Hirjrozjl,,,jr, where Hij = 5/ — NN,
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Let 9; = Hij 9 be a tangential derivative. If ¢ = 0 on 9D it follows that 9;q = 0 there and
(1.27) (116%q)sj = 0:;V nq, where 0;; = 9;N;
is the second fundamental form of 0D;. In fact,
0=08,0;q =17 9, 11) 9;0q = I I 9,0 q — (DiN;)N*0q — N;(O,N®)dg = (162q)ij — 0:;Vnva

since ngz./\/’k = gl(Nka)/Q =0.

Our energy for the second order equation (1.25) will be a modification of (1.20) that contains
only the tangential components II0D;v = —I10%p on the boundary and (ﬁ82)v in the interior, where
II is an extension of the projection to the interior. Taking the time derivative of this energy and
integrating by parts as in (1.21) we will get a boundary term that involves the projection of (1.25).
Because 110%D;p = OV D;p, this can be controlled by one less derivative D;p. The energy together
with elliptic estimates controls two derivatives of v in the interior so (1.17) gives us two derivatives
of D;p in the interior and hence one derivative on the boundary. In our discussion so far we have
neglected the problem of boundary regularity, which comes in to highest order. However, our energy
also controls the second fundamental form. By (1.27) and |Vyp| > & > 0 the boundary part of the
energy |110?p|? > [0]?|Vvp|? > |0]?€?, gives an estimate for the second fundamental form 6.

The energies we propose are of the form

(1.28) E.(t)= 0" QO Uy, 0" vy,) d + /

Dy D:

|07 curl v|? do + / Q(9"p, 0" p)vdS
0Dy

where v = (—Vjp)~1. Here Q is a positive definite quadratic form which restricted to the boundary

is the inner product of the tangential components: Q(«, ) = (Ila, II8) and in the interior Q(«, )
increases to the norm |a|?. To be more specific, we define

(1.29) Qo, B) = ¢ - g e, i, By,
(1.30) where ¢ = 6" — n(d)* NN, d(z) = dist(z,0D;), N'=—670;d.
Here 7 is a smooth cut off function satisfying 0 < n(d) < 1, n(d) = 1, when d < dyp/4 and n(d) = 0,

when d > dy/2 and dy is a fixed number which is smaller than the injectivity radius of the normal
exponential map Lo, defined to be the largest number ¢g such that the map

(1.31) OD; X (—tg,t0) = {x € R" : dist(x,0D;) < 1o}, given by (T,t) = x =T + N (T),

is an injection. These energies in fact control all components of 8"v, 9"p and 9" ~26, see (1.41)-(1.42).
We prove an energy estimate implying that the energies are bounded as long as certain a priori
assumptions are true. More specifically; we prove that there are continuous functions C,. such that
dE, (1)
dt

(1.32) ‘ ' <0, (K 1/e, L, M, Vol Dy, E*_, (t))E;“ (t),  where Ei(t)= Ei(t)
s=0

if0<r<4orr>n/2+3/2, provided that

(1.33) 0| <K, 1/i0<K  ondD;
(1.34) —Vnp > >0, on 0D
(1.35) |0%p| + |V Dyp| < L, on OD;.
(1.36) |Ov| + |0p] <M in Dy,
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The bounds (1.33) gives us control of the geometry of the free surface 9D. A bound for the second
fundamental form form 6 gives a bound for the curvature of 9D; and a lower bound for the injectivity
radius of the normal exponential map 1y measures how far off the surface is from self-intersecting.

Now, the lowest order energy and the volume are in fact conserved;

(1.37) Ey(t) = 0" v dr = Ey(0), VolD; = / dx = VolDy.
Dt Dt

Recursively it follows from (1.32) and (1.37):

Theorem 1.1. Let n < 7. Then there are continuous functions F,, r = 0,1, ..., with F,|(—o = 1, such
that any smooth solution of the free boundary problem for Euler’s equations (1.1)-(1.5), for 0 <t < T,
that satisfy the a priori assumptions (1.33)-(1.36) also satisfy the energy bound:

(1.38) E(t) < F(t,K,1/e,L,M,E}_(0), Vol Do) E(0), 0<t<T,

Most of the a priori bounds (1.33)-(1.36) can be obtained from the energy through (1.41) and (1.42)
below using Sobolev’s lemma if » > (n — 1)/2 + 2. However, the lower bounds for £ and ¢y can not be
obtained in this way but instead one has to try to get evolution equations for these.

Let K(0) and €(0) be the minimum respectively maximum values such that (1.33) and (1.34) hold
when ¢ = 0.

Theorem 1.2. Let ro be the smallest integer such that v > n/2 + 3/2. Then there are continuous
functions T. > 0, r =rg,r0 + 1, ..., such that if

(1.39) T < T-(K(0),1/£(0), E; (0), Vol Dy)

then any smooth solution of the free boundary problem for Euler’s equations (1.1)-(1.5), for 0 <t <T
satisfies

(1.40) EX(t) <2E*(0), 0<t<T

= r

Remarks. The restriction n < 7 in Theorem 1. 1, i.e. the restriction for (1.32) to hold is just a matter
of that the proof becomes simpler in this case. The assumption that Vol Dy < oo is just used to get an
L? estimate for p so it could be omitted if we add J p?dx to the energy. We only need a lower bound
for the interior radius of injectivity of the normal exponential map in (1.31) for the energy estimates to
hold. The bound for the exterior one is to prevent the surface from self intersecting.

Let us first point out that since dive = 0 and —Ap = (9;v%)0xv" one can use elliptic estimates to
control all components of 3"v and 9"p from the tangential components I10"p in the energy:

(1.41) 107012 2(py + 107 0l T2 0my + [107PI2(0my + 107 PN 72Dy < C(K, M, Nol Do) E;
A bound for the energy also implies a bound for the second fundamental form of the free boundary:

(1.42) 10" 20117 2(9p, < C(K, L, M,1/e, Ef_;, Vol D,) E:

r—1»
that control the regularity. In fact, we prove higher order versions of the projection formula (1.27):

(1.43) 110" q = (0" 20)Varqg + O(0" tq) + 0(0"30), if ¢g=0, on 0D
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Since |Vp| > ¢ > 0 it follows from (1.43) that [0"~260| < C|II0"p| + O(0"~1p) + O(9"~30) where the
lower order terms can be bounded using (1.41) and (1.42) for smaller r so (1.42) follows inductively.

Once we have the bound (1.42) for the second fundamental form we can get estimates for any
solution of the Dirichlet problem. In particular since D;p satisfies the elliptic equation (1.17) we get

(1.44) 190" Dipl[3omy + 10" Depl3 2oy < C(K. L. M. 1/e, .y, Vol Dy E;

This follows from the elliptic estimates, used to prove (1.41), and (1.43) applied to D;p, where now
97720 is bounded by (1.42) and 9" D;p is lower order. 110" D;p shows up in the energy estimate when
we take the time derivative of the boundary part of the energy 110"p. Although a bound for the energy
implies bounds for all components of 0"p we can not bound the time derivative of the non-tangential
components on the boundary in the case of non vanishing curl since the elliptic estimates only gives
control of the tangential components 110" D;p in (1.44) because of the term with Av in (1.17).

Let us now outline the proof of Theorem 1.1 and Theorem 1.2. First, we explain the proof of the
energy estimate (1.32) which uses integration by parts as in the model problem. Then we give the main
elliptic estimates and the projection formula used in proving (1.41)-(1.44). Finally, we discuss how to
control the geometry of the free surface and the a priori bounds (1.33)-(1.36); the time evolution of ¢,
¢ and other geometric quantities that control the Sobolev constants, that is needed for Theorem 1.2.

Energy estimates. (Sections 7,5) We will now outline the proof of the energy estimate (1.32). In
order to take the time derivative of the energy (1.28) we make use of the fact that if f is an arbitrary
function on Dy, depending on t, then

4 fdr= | Dyfdr  and d/ fds = (Def — (Vaon) f) dS
dt D, Dy dt 0Dy 9Dy

since divwv = 0 (this can be seen, e.g. using the Lagrangian coordinates. ) We have

E. _
(1.45) ddt = / Dy (6™ Q8" vy, 0"vp) + 10" curlv|?) da
Dy

+ /8 D Q@ p, 0 p)v) — QO p, 8" p)rVacun dS
D,

The derivatives of the coefficients of ) and the measures can bounded by the constants in (1.33)-(1.36):
(1.46) IDig| <CM,  |0g7]| <CK,  |Vyun|<CM,

see section 3. The time derivative of the higher order tensors 0"v and 0"p can be obtained from
(1.22)-(1.23) by repeated use of (1.11)

(1.47) D;0"v, = —0"0pp + Zogsgr—1csr(as+1v) - 0" Py,
(1.48) D,0"p + (Okp)0™v" = 0" Dyp + ZOSSST_QCZST(GSHU) 0" %p
where the symmetrized dot-product is defined in Lemma 2.4. Now

(1.49) 10" 10)-0" vl p2my < CURO0] Loy S 1902y, 0 < s <7 — L.
s<r
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This is clear for s = 0,7—1 and follows in general by interpolation. Hence by (1.45)-(1.48) and (1.41)

(1.50) diT = -2 6m"Q(8rvm, 8n8Tp) dx + 2/ Q(arp, Dtﬁrp)l/dS + Lower Order
D, D,

where 'Lower Order’ means something that is controlled by the energy E* and K, L, M,1/e so it can
be bounded by the right hand side of (1.32). If we integrate by parts in the first term we get

E, _
(1.51) d =2 5m”Q(8T8nvm, arp) dx + 2/ Q(@rp, D 0"p — v N, 0" 0™ )VdS + L.O.

dt D, oD,

The first term vanishes since divo =0. Since —v"N,,, = 0,,,p the second is the inner product of II0"p and
(1.52) H(Dﬁ”p + (Z?mp)yvm) =T1(0" Dsp) + Zossgr_zdsrﬂ((asJ“lv) . 8T_5p)

by (1.48). Here I10" D;p is under control by (1.44) and we really need to use the projection since in
the case of non-vanishing curl we can not control all components of 9" D;p on the boundary. The other
terms in (1.52) are bounded by the a priori assumptions times (1.41). This is clear for s = 0,r—2 but
dealing with the intermediate terms is the most involved part of the manuscript. This is because the
interpolation has to be done on the boundary and the expression involves non tangential components.
Note that if 0 < r < 2 then the boundary terms simplify and the lower order terms are easily bounded
by (1.32). The boundary terms vanish if 7 = 0,1 and if r = 2 then Q(8%p, 8?p) = [116%p|? = |0|%|VNp|?,
where |Vyp| > ¢ > 0 and Q(9*Dyp, d*Dyp) = |0]*|Vn Dypl?.

Elliptic estimates using the energy bound. (section 5) The bounds (1.41) follows from:
(1.53) 10702 < C (6™ Q0" v, 0 vr) + 10" dive|® + |07 curlv|?)
(1.54) 107 pllZ20m, + 107Dl 72(p,y < CK, Vol DY ., (HHasPHQH(aDg + Has_lAPH%?(Dt))

In fact, using that the measure in the boundary part of the energy > ||v_/\/’p||2010 dS, respectively (1.16)
and (1.49) we get

(1.55) \\H8TP|’%2(aDt) <||9p|l oy Er and ”aT_1APH%2(Dg < CHaUH%"O(DQET

(1.53) follows as curlv is the antisymmetric part of Jv so only the symmetric part of 0"v needs
to be estimated and, moreover, the first term in the right contains one normal component while, since
NTN"0,, v, = —q™" O Uy +0™" Oy, vy, two normal components can be expressed in terms of tangential
components and the divergence. (1.54) follows inductively from the following inequalities

(1.56) |\3Tp||i2(apt) < CHHanHQLQ(B’Dt) + C([|0" " Apll 2oy + K07 pll L2y 107 Pl 2D,
(1.57) 107 Pl Z2(py < 07Dl 200 10" DllL20my + 10" 2 2P 11721y
(1.58) 1Pl 2y < C(VOLD)Y™|Ap|l 2wy,  if p=0on 0D,

The estimate (1.56) follows from repeated use of the fact that the square of the normal derivative
minus the square of the tangential one behaves better on the boundary: Let Q be any quadratic
form acting on (0,r) tensors, constructed from 6% and ¢ and let N' = n(d)N be an extension of
the normal to the interior, see (1.30). Let Ti; = 2Q(8;, dja) — §;;0™"Q(dmav, D). Then Ty =
2Q(Aa, Bja) + 26" (0;Q) (Omar, D) — 5™ (9;Q) (v, Dpt) 50

/8 (NN —qij)Q(aia,aja)dS) _

D:

NWJ’Tijds‘ =

0Dy

0; (NjTij)dx
Dy

< /2&04”304 + CK|0a|? dz
Dy

by the divergence theorem. (1.57) is integration by parts twice. (1.58) is Faber-Krahns theorem, see [SY].
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The projection formula and estimate for the second fundamental form. (section 4) We prove
an estimate for the projection: If ¢ =0 on 0Dy then for m =0,1and 0 <r <4orr>(n—1)/2+2:

(1.59) |[118"q — (Vnq)d" 0|2 < €l Vinvall = 10720] 12 + Ce[16] = 10" ]| 12
ool (101 + X 18%00) Y 0%l
s<r—2—m s<r—24+m

for any € > 0, where LP = LP(9D;) and € is the second fundamental form. The bound (1.42) for the sec-
ond fundamental form 6 follows from (1.41) and (1.59) using the a priori bound |Varp| > || Varp|| 1= /2.

Let us now briefly discuss the proof of (1.59). In section 4 we derive a formula for the projection:

r—2
(1.60)  T0"qg=09"q+ Vnqd %0 + > _ (})(@"">70)@(0*Virq)
=1
+ > ...t C™ (D70 - - @D THORI V)

ro+ri+...+ry+l=r—k
k—t=m=0mod 2, k>£>0, k>2

where 6 = ON is the second fundamental form, ® stands for some partial symmetrization of the tensor
product and C™ stands for contraction over m pairs of indices, see section 4. Note that in (1.60) the total
number of derivatives decreases by one as the number of factors of 8 increases by one. Therefore, since
we have assume that we have control of ||0|| =, the terms on the second row will be lower order. (1.60)
follows by expressing tangential derivatives of normal derivatives as projections onto tangential and
normal components. The general form of the terms in (1.60) follows from the fact that the projections
are defined in terms of the normal and each time a derivative falls on the normal we get a factor of § and
at the same time the total number of derivatives decreases by one. One way to obtain the leading order
terms is to expand ¢ in the distance to the boundary d(x) = dist(z, dD;). To highest order I107q ~ 9'g.
To calculate the next terms let us assume that ¢ = 0 on 0D;. Then ¢/d = Virq on 0D; and since
d=1Id = 0 and 6 = Vd on 0D; we have

(1.61) Mg =T10"(d ) = Y3 (HILA2~49)M (L) = 3525 (5) (07 210)® (9 Ving) + L.O.
where here “L.0O.” means terms that contain at least one more factor of 6. In section 8 we give
interpolation inequalities to deal with the products on the first row of (1.60)

(1.62) [0 Vnalld™* Ol 2 (omy < ellVnall = omy 10" 20|20y + Cl10l 1= (9m) 10" Vivdll 12(om,)

The lower order terms on the second row of (1.60) are estimated by interpolation and Sobolev’s lemma.

Elliptic estimates using the bound for the second fundamental form. (section 5) If ¢ =0 on
0D, and 0 <r <4 orr > (n—1)/2+ 2 then we obtain the following estimate from (1.59) and (1.54)

(1.63) 10" q|| 2oy < C (K, Vol Dy, |10l 12 9p), -+ 10720 r29,) (HVNQHL”(aDt)JFZ HVSAQHLz(’Dt))

s<r—2
If in addition 7 > (n — 1)/2 + 2 then it follows from (1.59), (1.54) and Sobolev’s lemma:

(1.64) 10" qll L2opy + 109/l =0my < C (K N0l Dy, |0l L2op, -5 10720 L2opy) Z IVAq|| L2y
s<r—2

(1.63) together with (1.42) now gives a bound for [|0°'Dyp|r2(9p,, for s < r since, by (1.17),

10°2ADypl| 2y = 10(9°p)+0(8°v)| L2, is bounded by (1.41) for s < r and since ||V Dpl|=@p,

is bounded by the a priori assumptions. The bound for ||0*'D;p| 12(9p,) for s < r together with (1.59)

and (1.42) gives (1.44). This suffices to prove the energy estimate. However, in order to prove Theorem

1.2 we also need to get back bounds for the a priori assumptions which is where (1.64) will be used.
10



Bounds for the geometry and the a priori assumptions. (sections 3,7) We need to control the
Sobolev constants for the surface and the derivatives of the coefficients of the quadratic form (). These
are easily controlled by an upper bound for the second fundamental form 8 and a lower bound for the
injectivity radius of the normal exponential map ¢g. This proves Theorem 1.1. To prove Theorem 1.2
we also need to control the time evolution of the a priori assumptions (1.33)-(1.36). However, there is
a difficulty with (1.33) because we do not have an evolution equation for ¢y and the evolution equation
for 0 looses regularity, so we have to control these in an indirect way. It turns out that in order to
control the Sobolev constants, for the interior as well as for the boundary (see Lemma 8.4 respectively
Lemma 8.2 ), the constant in the elliptic estimate (1.41) and in the interpolation inequality (1.49) it
suffices to have an upper bound 1/1; < K; instead of (1.33), where t; = t1(¢1) is defined to be the
largest number such that

(1.65) IN(T1) — N(T2)| <e1, whenever [T; —Ta| <1, T1,To € OD;

for some fixed number 0 < g7 < 2. To prove this one makes a partition of unity into neighborhoods
where (1.65) hold. An upper bound for # and a lower bound for ¢; then implies a lower bound for ¢¢:

(1.66) to > min (¢1/2,1/16] )

In fact, suppose that z* = T — (N (Z), T € 9D, is a point in D; such that the interior normal
exponential map of 9D; fails to be injective just beyond z* along the normal line A — T — AN(Z),
while dist(z*, 9D;) = 1o; the injectivity radius. Then either z* is a focal point, i.e. 6 has an eigenvalue
1/vp, or the line A = T — AN(Z), is contained in D; for all A € (0,2:) and intersects 0D, normally at
A = 210, in which case (1.65) can not be true for the two endpoints. Since a similar argument holds for
the exterior normal exponential map (1.66) follows.

The bounds (1.35)-(1.36) are easily controlled by the energy using (1.41), where K can be replaced
by K1>1/t1, and Sobolev’s lemma if 7 >ro>n/2+3/2: By Sobolev’s lemma(Lemma 8.4) and (1.53)

(1.67) HUHZLW(Dt) + HavH%W(Dt) < C(Kq1)YL, ‘850\’%2(00 < C(K1)E;,

The proof of that we can replace K by K in (1.54) however requires some work, see Lemma 5.5. By
(1.54), (1.55) (note that p enters quadratically in the left and linearly in the right), (1.67) and Sobolev’s
lemma(Lemma 8.4 respectively Lemma 8.2 )

(L.68) 109125 (p,) + 19%Pl2= oy < C (K1, Vol Do, E,)

Since the evolution equation for # looses regularity and since the L? estimate for § depends on the L>®
estimate we will control it in an indirect way. By (1.27) and (1.68)

(1.69) 101 < € 1% (opy < € 10°p] (9py < C(K1,Vol Dy, &, Eyyy ),
(1.70) where  £(t) = [(Varp(t, ) "l =(omy

The estimate for ||V Depl| =@p,) follows from (1.64).

It remains to control the evolution of K7 and £. The bound for K; follows since we can control the
time evolution of the boundary in the Lagrangian coordinates: z(t,y) and of the normal N (z(t,y))

(1.71) Dz = v, and DN; = —(9;v5)N*.
11



where the right hand sides are bounded by (1.67). We also have evolution equations for £ and E,

(1.72) (A€ /dt| < |VnDipll = €2 < O (K1, &, By, Vol Dy)
(1.73) |dE, /dt| < C(K1,&, Epay(ro.r1)> YOI Do) E;.

Assuming (1.65), the energy bound (1.40) and the bound £(t) < 2£(0), integration of (1.71)-(1.73) gives
back slightly better bounds if ¢ < T (K1(0),£(0), E;(0),Vol(Dy)) is sufficiently small, so Theorem 1.2
follows. In fact, integrating (1.71) using (1.67) we see that the change in A and x are under control if
t<T is small. Hence we get back the bound (1.65) if it is true with &/2 and 24 initially.

12



2. TRANSFORMATION OF THE FREE BOUNDARY TO A FIXED BOUNDARY. LAGRANGIAN
COORDINATES, THE METRIC AND COVARIANT DIFFERENTIATION IN THE INTERIOR.

Assume that we are given a velocity vector field v(¢, ) defined in a set D C [0, T] x R™, such that the
boundary of D; = {x; (t,xz) € D} moves with the velocity, i.e. (1,v) € T(9D). We will now introduce
Lagrangian or comoving coordinates, i.e. coordinates which are constant along the integral curves of
the velocity vector field so that the boundary becomes fixed in these coordinates. Let x = fi(y) be the
change of variables given by:

dx .
(2‘1) dat = U(t,l’(t,y)), x(07y) = fU(y)7 if (t7y) € [O,T] x
Initially, when ¢ = 0, we can either start with the Euclidean coordinates in {2 = Dy or we can start with
some other coordinates fy : 8 — Dy, where fy is a diffeomorphism, in which the domain €2 becomes
simple. For each ¢t we will then have a change of coordinates f; : Q@ — D; = {z; (t,z) € D}, taking
y — z(t,y). The Euclidean metric §;; in D; then induces a metric

& Gl
(22) gab(tay) = 51’]‘2;‘@(;;;
in Q for each fixed t. We will use covariant differentiation in {2, with respect to the metric g, (¢, y), since
it corresponds to differentiation in D, under the change of coordinates Q 3 y — z(t,y) € D, and we will
work in both coordinate systems. This also avoids possible singularities in the change of coordinates.
We will denote covariant differentiation in the y, coordinates by V,, a = 0, ...,n, and differentiation in
the x; coordinates by 0;, i = 1, ...,n. Covariant differentiation

The covariant differentiation of a (0,7) tensor k(¢,y) is the (0,7 + 1) tensor given by

8]'{/)a a
(2.3) Vikay...a, = W — Fgalk‘d‘_,ar — = Fga,‘kal...d
where the Christoffel symbols I'?, are given by
(2.4) e _ 9% (Ogba | 99aa  Ogar\ _ Oy° 0%’
' ab 2 \Oy*  oyb Oyt Ox? dy*dyb

where ¢g¢ is the inverse of g.;. If w(t,x) is (0,7) tensor expressed in the z coordinates then the the
same tensor k(t,y) expressed in the y coordinates is given by

(25) bagcn () = G i (), = (k)

and by the transformation properties for tensors

B oxt Oz Oxir ow;, . 4,
T Oy gy T oyer Ozt

(26) Vakal...a

Covariant differentiation is constructed so the norms of tensors are invariant under changes of coordi-
nates:

(2.7) g g kg gy Ky b, = 6T ST wg
13



Furthermore, expressed in the y coordinates
0 oy* 0
T oxi T oxi oy
Since the curvature vanishes in the z coordinates it must do so in the y coordinates and hence

(2.9) Va. V] =0

(2.8)

the material derivative;
B 8‘ 0
a 8t y=constant B 8t

In this section, indices a, b, c... will refer to quantities in the y coordinates and indices 1, j, k, .. will refer
to quantities in the = coordinates.

g O
U oTE
x=constant Bx

(2.10) D,

It is now important to be able to compute time derivatives of the change of coordinates and com-
mutators between time derivatives and space derivatives.

Lemma 2.1. Let z = f;(y) be the change of variables given by (2.1) and let gqap be the metric given by
(2.2). Let v; = 6;07 = v and set

(211) ua(t7 3/) = Ui(ta x)axi/ayaa ua = gabubv hab = Dtgab; hab = gacgbdhcd
Then

ozt 0z Ov; oy° dy® Ouy,
2.12 — = D, = Y Tk
(2.12) Yoye — oye Oz’ Y oai oxk oxt’
(2.13) Digab = Vaup + Vo,  Dig® = —=h®,  Dydpg = g*"hap djrg /2
(2.14) D¢, =V, Vyus,

where djig is the Riemannian volume element on € in the metric g.
Proof. We have ‘ '
% _ ODyx* Ov; ozF Ov;
Yoy T aye  y* Oy° Oxk
which proves the first part of (2.12). Furthermore

OyP Oz oyP\ oz Oyb . Oz7
O=Di| —=—|=|Di=— | =—+ —D:—
‘ <(93:’ 8yb> < Yot ) oy + i oyb
Multiplying by dy®/0z7 and using the first part of (2.12) now gives the second part. To prove the first
part of (2.13) we note that that by (2.2) Digap is the sum over i of

0z’ Ox’ ox'\ 0z Ozt Ox’ oz* ov; 0x*  Ox' OxF Ov;

D (520 ) = (Do ) o o (D ) = oo
Ay OyP oye ) oyb  Oye oyt Oy Oxk Oyb Oy dyb Ok

by (2.6). The second part of (2.13) follows from the first since 0 = D;(g*°gpe) = D¢ (9*°)gbe + 9*° Dy (gbe )

so Dyg®* = —g%*g® D, gp.. The last part of (2.13) follows since in local coordinates du, = /det gdy
and D;det g = det g g% Dy gqp. It follows from (2.4) and (2.13) that

= V(Jl,ub + vbuoL

cd
92 (VaDigbd + Vo Digad — VaDigas) = ¢°VaVipug 0O

DiI'g, =
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Lemma 2.2. Let w;,. ;. (t,x) be an arbitrary (0,7) tensor and let

oz ox'r
(2.15) Eay..a, (t,y) = wil...ir(t,-r)% cee %, where x = f(t,y).
Let Dy = at}y:mmmm and v'(t,z) = 0, f*(t,y). Then
v’ ot \ Oxh ozt
Dikq,...a, = (Dt'wil..,ir + we.. 4, Dzt + ...+ wil'"e({):c“ ) oy R Dy
(2.16) Oz ox'r
- <at w:constwilmir + (ﬁvw)il >8yal o ay%

and L, is the Lie derivative.

Proof. Note that if the tensor and the velocity only depends of ¢ through x then this would just be the
definition of the Lie derivative. Now

0 Ox™ ox'r 6#) it S

= Wi, .., (t T ce =0 Wi, .q, (6, @) + (Opw;, . i, ) (t, ) — ce

ot y=const ( )ayal yar < ' x=const ( ) ( ‘ )( ) ot oy Oyar
92zt oxir Oz 02 gir

+w;, i, (t, )

+ .t wiy . ()

Otoyr  Oyer dyar  Otdyr
Since v*(t, ) = dx*/0t we see that

92 zh Ox'r (t )81)"1 Ox'r ovt oz Ox'r
Otoym Oyar Lt Oy Oy Oxir Jym Oyar

wi,y i, (t,x)

and similarly for the other terms. This proves (2.16) since by definition

o’ o
(E’Uw)il...ir (8@’(011 ) + We.. o 8 i1 + + w7’1 8xi7.

We will now calculate commutators between the material derivative D; and space derivatives 9;, in
Lemma 2.3, and covariant derivatives V,, in Lemma 2.4. In order to calculate commutators between D;
and higher order derivatives 0;, ---0;,. or Vg, ---V, we will introduce some notation incorporating that
these commutators are symmetric under permutations of the indices (i1, ..., 4,) respectively (a1, ..., a,).
Let (0")iy..i, = 0f, 5 = O3y » -+ 0; and (V")ay.a, = Vi, 0. = Va, -+ Vg, In particular, it is
convenient to introduce the symmetric dot product in (2.19) and (2.24):

Lemma 2.3. Let 0; be given by (2.8). Then

(2.17) [Dy, 0;] = —(0:v")0n,

Furthermore 1

(2.18) (D, "] =) —(,5)@"F5v)- 0%,
s=0

where, the symmetric dot product is defined to be in components

(219) (@4 0)-0),, =g 3 (0, ") B,

oEY,
15



Proof. The proof of (2.17) follows from (2.8) and (2.12). In the notation of (2.18) we can write (2.17)
as

[Dt, 8] = —(8'1)) . (9
Using this repeatedly we obtain

[D,, 0" Za (D, 8]o" 1 = Zafav N —Zlfj (9MFsp) . o7
- =0 s=0
Since Yy_1 (4) = (,+1) this proves (2.18). O
Lemma 2.4. Let T,, ., is a (0,r) tensor. We have
(2.20) [Di, Va] Tayoar = = (Vay Vo) Taay.car — oo — (Va, Vot ) Ty ay_1a
If A\ = g°V,.V,; and q is a function we have
(2.21) [Dy, ¢°*V,] T}, = —h™*V, T}, — (Au®)T.
(2.22) [D:, Alq = —h*"V, Vg — (Au)Veg
Furthermore
r—1
(2.23) Dy, VT g=> —(,5)(ViHiu) - vV —2g,

s=1

where the symmetric dot product is defined to be in components

(224) ((vs-‘rl ) \Vile s al » T' Z Zi—f d)vr—s o q

Aosi dag, 3.0,
ogEY,

Proof. (2.20) is a consequence of (2.13) since in components the covariant derivative is given by
VaTal...a,« = 8Ta1...a,«/aya - FglaTdag...a;; e T FZTaTal...aT,1d- Now

(D, g*°Va| Ty = (Deg®*)VaTy + g* [Dy, Va] T

and (2.21) follows from (2.12) and (2.20). (2.22) follows from (2.21) applied to T, = Vo, since
DyVog = 0:0q(t,)/0y" = Vi Dyg.

In the notation of (2.24) we have by (2.20)
(2.25) [Dy, V]Viq = —s(V?u) - Viq
using this repeatedly we get

Dt7 q_va Dt7 v?” £— 1 va r—f— v2 ) vr—f—lq:
r—2

1
ZT_€_1 ()(vs-‘rQ ) AVt 1

=0 s=0

~

Since ZQ;?(T —0— 1)(5) = (S+2) this proves (2.23). O

Notice that difference between (2.18) and (2.23) is that in (2.23) the term with s = 0 is absent,
which is the advantage of going to covariant differentiation.
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3. THE GEOMETRY AND REGULARITY OF THE BOUNDARY: THE SECOND
FUNDAMENTAL FORM AND EXTENSION OF THE NORMAL TO THE INTERIOR

In this section we will deal with the geometry and regularity of the boundary. The regularity is
measured by the regularity of the normal, in particular by the first space derivative, i.e. the second
fundamental form. We also need to control how far off the boundary is from self intersecting since
we want to foliate the domain close the boundary into surfaces that do not self intersect. This can be
achieved by the level sets of the distance function to the boundary. This gives an extension of the normal
to the interior, which we need to prove our estimates. The size of the neighborhood in which the level
sets are well defined and smooth determines the size of the derivatives of our extension of the normal
to a vector field defined everywhere in the interior. We also want to control the time evolution of the
boundary, which can be measured by the time derivative of the normal in the Lagrangian coordinates.

We will use both the Eulerian coordinates and the Lagrangian coordinates. When we calculate time
derivatives it is of course most convenient to do so in the Lagrangian coordinates whereas the Eulerian
coordinates are more convenient to use when we measure how the surface lies in space, since we want
to be able to compare the normal at different points. In this section we will also define the projection
of a tensor to the boundary which we will use to define covariant differentiation on the boundary. The
projection will play an important role in our estimates and we will discuss it in detail in section 4.

Definition 8.1. Let N® denote be the unit normal to 0€:
(3.1) g N*NP =1, guN°T® =0, if T cT(99)

and let N, = g, N denote the unit conormal; g®* N,N, = 1. The induced metric v on the tangent
space to the boundary T'(0f2) extended to be 0 on the orthogonal complement in 7'(Q2) is then given by

(3.2) ryab — gab _ NaNb7 ,yab — gab _ NaNb

The orthogonal projection of a (7, s) tensor S to the boundary is given by

ai...a, a as d ds gc1...cp
(3.3) (LS ) = e Y e ST s
where
(3.4) Vo =0, — NoN°¢ and v =6 — N?N..

Covariant differentiation on the boundary Vis given by
(3.5) VS = IIVS
The second fundamental form of the boundary is given by

(36) eab = (HVN)ab = ’yac Vch.

Note first that V is invariantly defined since the projection and the covariant derivative are. Note
also that V indeed corresponds to the intrinsic covariant derivative ¥ of the boundary:
17



Lemma 3.1. Suppose that the coordinates are chosen so that locally the boundary is given by OS2 =
{y;y™ = 0} and parameterized by (y',...,y"~'). Let YV denote covariant differentiation on 0. Then

Tarh — { ver® for a,b=1,...,n—1

(3.7)
0 for a=n or b=n

. if T"=0.

Proof. The conormal is N, = d4,/4/9"" and the normal is N* = ¢g*°N, = ¢*"/,/¢"™". The induced
metric is given by vYap = gap, for a,b = 1,...,n — 1 and its inverse is given by 7% = g% — N°N? | for
a,b=1,...,n — 1. Note also that

Yot =" =" =7"=0, when a<n,
%b = ’Vba = 6aba when a <n
V! =0 =—g" /9", when b<n

Let us at this point use the notation V¢ = g**V,, V¢ = g%V, and YV* = y°Y¥, where the last sum is
only over b = 1,....,n — 1. To prove (3.7) we first note that Vo7T? = 'yaalvbb,VaITb, = vaa/V“/Tb =0
when ¢ =n or b = n since v", = 0. If on the other hand 1 < a,b <n — 1 then

oT?
oy’

+ /yaa,’ybblra’b’cTc

’ 1 8; b
vaTb a gaa
ry a g (ayal/

. gbb,,ra”b%Tc> _ e

and if 1 <a,b,c <n—1 then

1 8gbc 89&0 agab 1 8'}/bc 3%c a'Ya,b
Fa c= = — = — — =1 abe
be ™ 9 (Oy“ + oyb oy° 2 \ Oy + oyb oy° Fav

gives the intrinsic connection so (3.7) follows. O

It follows that any invariant quantity formed from either side of (3.7) have to be equal. If the
coordinates are chosen so y™ = 0 on 02 then the curvature of 052 is related to the second fundamental
form by Gauss equations

—d
(3.8) R, 1y = 0acl,? — 0pe0,?
Recall also that if T' is tangential
(39) [vtuvb} Tal‘..a,, = _RcalabTC...aT. e T Ecaraijal.‘.c

We also need to extend the normal to a neighborhood of the boundary. The exact extension of
the normal to the interior is not so important at this point. Basically we want to have control of the
supremum norm of the time and space derivatives of the normal in the interior. One way to define an
extension of the normal in the interior is to consider a foliation of £ close to 92

(3.10) Sy={yedit,yy=A}, d>0in Q, d=0 on 9N
The unit conormal to S is then given by

0ad

\/ gbcﬁbd o.d
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It is natural to take d(t,y) = dist,(y,0S2) to be the geodesic distance to the boundary which is the
same as the Euclidean distance in the z-variables. If d is the geodesic distance in the metric g then the
conormal is N, = V,d and §# = VN = V?d = IIV?d and he normal derivative of the normal vanishes
VNN = 0. Since § = IIV2d = V2d it follows that VO = IIVIIV2d = IIV3d is symmetric as well. V 20
is however not symmetric, but the antisymmetric part is lower order; by Gauss equations (3.8)-(3.9),

(312) vavbecd - vbﬁa‘gcd = [vavﬁb] acd = _Rceabeed - Edeabgde-
Furthermore, since N - N = 1 we get N - V2N + (VN) - (VN) = 0, in other words
(3.13) VnOap = —0,0ch

so the second fundamental forms for the surfaces S for small A\ are as regular as for 9€2. We will discuss
this and the regularity of the extension of the normal to the interior further in Lemma 3.6.

Let us now go on to discuss two definitions, to control the geometry and regularity of the boundary.
Let us express our surface in the x variables 0D; C R™ using the metric there.

Definition 3.2. Let N(T) is the outward unit normal to 0D; at T € 0D;. Let dist(x1,z2) = |x1 — 22|
the denote the Euclidean distance in R™ and for 71,72 € 0D; let distsp, (T1,7T2) denote the geodesic
distance on the boundary. Let dist(z,dD;) be the Euclidean distance from z to the boundary.

Definition 3.3. Let 1o be the injectivity radius of the normal exponential map of 0Dy, i.e. the largest
number such that the map

(3.14) OD; x (—to,t0) = {x € R™ : dist(z,0D;) < 19} given by (Z,1) = =7 + (N (T),

is an injection. [

Note that g > 1/]0|r~(sp,), for along the normal line from T € 9D, the first focal point is at
a distance 1/]0()|, where |0(T)| = sup|,|=; |0(Z) - v| is the greatest eigenvalue in magnitude. Instead
of using the injectivity radius tg we can use a radius ¢; which, in conjunction with a bound for the
second fundamental form, is comparable. The radius ¢; works equally well for controlling the Sobolev
constants and it is easier to control the time evolution off.

Definition 3.4. Let 0 < &1 < 2 be a fixed number and let ¢; = ¢1(e1) the largest number such that

(315) |N(f1) —N(fzﬂ < &1, whenever |fl — Tz| <, T1,Ty € 0Dy,

Remark. Note that Definition 3.4 also says that the intersection D; N B(t1, @) of the surface with an
open ball of radius ¢; centered at any point Ty € 9D, is connected and it can be written as a graph
over the plane orthogonal to the normal N (Zj) at the center Ty. In fact, we claim that the line segment
in B(t1,To) along the exterior normal N (Zy) from any point Z; in the same component of dD; as
To is completely contained in the complement CD; (and the line segment in the opposite direction is
completely contained in D;. ) In fact, if not, then there would be a point o € 9D; where it would
enter the region D, again and at that point the exterior normal N (Z2) would have to make an angle at
least m/2 with N (Zp) contradicting the condition in Definition 3.4.
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Lemma 3.2. Suppose that |0] < K and let 1y and 11 be as in Definition 3.3 and Definition 3.4. Then

(3.16) tp > min (11/2,1/K) and t1 > min (29,1 /K)

Proof. Let
L3 = min |z —Z|
distop, (7,2) >/ K
We claim that
Lo =13/2>11/2, if min(e,e3/2) <1/K

By Definition 3.3 there are T; # Zo on the boundary such that
T1 +aN(T1) =T2 + bN(ZT2) for some |a| <1, [b] <1
If 1o < 1/K then, by Lemma 3.3, distsp, (T1,T2) > /K and hence

L3 = min |7 —Z| < |71 — T2| <209 < 2/K.
distop, (T,2)>7/K

If 13 < 2/K it follows from Lemma 3.3, that the minima above is attained at some, possibly different,
(T3,74) € 0Dy x OD; with distsp, (T3,74) > /K. Hence 0D, x 0Dy > (T,Z) — |T — Z| has a local
minimum at (T3, T4) so the normals N (Z3) and N (Z4) are parallel to the line between T35 and 4. From
this it follows that to < ¢t3/2 and it also contradicts the condition in Definition 3.4 so we conclude that
t3 = [T3 — T4| > 1. This proves the first part of (3.16) and the second part follows in a similar way; If
distgp, (T1,T2) < /K then by Lemma 3.3

N (@1) — N (@2)| < 2sin (K distap, (T1,72)/2) < K distap, (T1,T2) < Kn|z1 — T2|/2 < &1

if |77 — 72| < e12/Km. If on the other hand distsp, (T1,T2) > 7/ K then |71 — T2| > 13 and if 13 < 2/K
then t3 = 20 so |T1 — T2| > min (2/ K, 2). O

Lemma 3.3. Suppose that |0] < K and 0 < distop, (T1,7T2) < /K. Then
(3.17) T1 + aN (T1) # To + ON (T2)  for |a| <1/K, |b|<1/K
Furthermore, if |0| < K and distop, (T1,T2) < 7/K then

(318) |fl — f2| > 2diSta'Dt (fl,fg)/ﬂ', and N(fl) N(fz) > cos (KdiStaDt (fl,fz))

Proof. Let a(s) be a geodesic in 02 parameterized by arc length, |&(s)| = 1, with a(s;) = 7;. Let
so = (s—1+s2)/2. To simplify notation we assume that sy = 0 and a(0) = 0 and set &(0) = 7. Let N (s)
be the normal to a(s) and k(s) = 6(d(s), &(s)) be the (normal) curvature of a(s), i.e é(s) = +k(s)N(s).
We will show that 7 - (a(s) + aN(s)) > 0 for |a|] < K and that T - a(s) > sin(Ks)/K provided
that 0 < s < 7w/2K. Since the same result is true in the negative direction, this would prove the
lemma. Let ¢(s) be the angle that ¢(s) makes with 7 i.e. (s) -7 = cos¢(s). Then |p(s)| < K so
0 < ¢(s) < Ks. Let z(s) = a(s) - T and r(s) = |a(s) — T (a(s) - T)|. Then @(s) = cos ¢(s) > cos (Ks)
and |r7(s)| < sin¢(s) < sin (Ks). Hence x(s) > sin (Ks)/K and r(s) < (1 — cos (Ks))/K. Furthermore
T -N(s) > cos(¢p(s) +m/2) = —sin ¢(s) > —sin (Ks) which proves the lemma.

Note that it follows from the remark after Definition 3.4 that in a neighborhood of Zy € 9D, we can
write the boundary as a graph. We can now make a partition of unity into coordinate neighborhoods

where this is true, which will be used to control the Sobolev constants:
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Lemma 3.4. Suppose that Dy C R™ with boundary satisfying the condition in Definition 3.4 with
t1 > 1/K;. Then there are x; € C§°(R™), i = 1,2, ... such that

(3.19) Sxi=1, D 10°x| < CuKy®,  diam (supp(vi)) < 1/K,
P P
and for each x € R™ there are at most 32" i such that x;(x) # 0. Furthermore, either supp(x;) N 0Dy
empty or its part of a graph contained in 0Dy, which after a rotation is given by

(3.20) z" = fi(«"), (2,2")eR", |2 —2i|<u, |0fi|<e1, =z €0Dy, N(z;)=(0,..,0,1)

Proof. Let B(r,z) denote the ball of radius r centered at z. Let p; = ¢1/16 and let {B(2p1,z;)} be a
cover of R"™ such that {B(p1,x;)} are disjoint. We define

xilz) = x(|z — =] /401)
> X(|w — 3] /40)
where x € Cg° satisfy 0 < x < 1, x(s) = 1 when s < 0 and x(s) = 0 when s > 2. The number of disjoint
balls of radius p; that can be contained in a ball of radius 16p; is 16™. Since supp (x;) is contained in
a ball of radius 8p; this proves that for each x € R™ there are at most 16™ ¢ such that x;(z) #0. O

We will now estimate first order derivatives of the extension of the normal to he interior. In Lemma
3.5 we estimate the time derivatives on the boundary. It is now natural to work in the Lagrangian
coordinates. In Lemma 3.6 we estimate the geodesic extension of the normal to the interior in a
neighborhood of the boundary.

Lemma 3.5. Let N be the unit normal to OQ and let hapy = Digap/2. On [0,T] x 02 we have

(3.21) DN, = hynN,,  D;N¢= —2h¢ ;N + hynyN°®
(3.22) D™ = =274 heq

The volume element on 0S) satisfy

(3.23) Dydpiy, = (trh — hyy)dpy, = (tr0u - N + vV ) dp,

Proof. Since the right hand sides of (3.21) restricted to [0, 7] x 02 is independent of the extension of
the normal to the interior we may choose the foliation

Oy u

Na = W’ where 0€) = {y, U(y) = O}, u < 0, in Q
. u Oqu
then g gt dd 1
DiNo = =5 Na(Dig*)NeNg = hyy N
and

D;N® = D;g*’Ny = (D;g**)Ny + g**D;Ng = —2h** Ny + hynN®

which proves (3.21). (3.22) follows from
Dyy* = Dy(g** — N°N®) = Dyg™ — (DyN*)N® — N“DyN® = —2n*" + 2h* N°N°®

+ 2hP ;NIN® — 20y N*NINON® = (6%, — N“Ny)(6°; — NP Ny)hed = —24%~° ;1.
Introducing coordinates we have du, = +/detgdy and Di/detg = +/detgtrh. Now
du, = /detg(>. N2)~'/2dS, where dS is the Euclidean surface measure, and D;(>] N2)~1/2 =
—(1/2)(3 N2)73/23"2N,,D;N,,. But D;N,, = hyyN,, which proves that Didju, = (trh — hyn)dp..
Now trh — hyn = Y*Vavp = Y%V, (Nyv - N) 4+ 4V, 0. O

We will now extend the normal to a vector field defined an regular everywhere in the interior, such
that when d(t,y) < 1o/4 its the normal to the sets {y; (t,y) = do} and in the interior it drops off to 0.
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Lemma 3.6. Let 1y be as in Definition 3.3. and let d(y) = dist,(y, 0) be the geodesic distance in the
metric g from y to 0. Then the conormal n = Vd to the sets S, = 0{y € Q; d(y) = a} satisfies

(3.24) (V| <2|0]p< ), and [Din(t,y)| < 6|hpe), when d(y) < io/2.

Proof. Now since n - n = 1 it follows that n - Vn = 0 and hence (Vn) - Vn + n - V?n = 0 and since
0 = Vn we get Vy6 = —0 - 0. It follows that |Vy|0|| < |0|* If d(y) = dist,(y,d) < 1o then there is
a unique y € 02 such that d(y,y) = disty(y, 0S?). Hence we can introduce d and 7 as new variables
so that y = y(d,y) and in these coordinates Vy = 9/9d so with f(d) = |0(d,7)| we get the inequality

|f/(d)| < f(d)? for each fixed 3. Its easy to see that f(d) < 2f(0), if 2df(0) < 1. and hence |6(d,7)| <
210|100y, if 2d|0|1=a0) < 1, which proves the first part of (3.24). We claim that

(3.25) VnDiyd =hyny, Vyn+0-n=60-h-n, if n=Dmnm—~h-n
In fact since g°? N, N, = 1 we have
0 =29 Ny DNy, + (D;g*®) N, Ny = 2V Dyd — 2h%° N, N,
and the first equation in (3.25) follows. Since
Vehnn = Ve(N*NPhop) = N*N°V.hap + hap Vo(NN®) = N N°V,hep + hap(N®0,* + N2O.°)
differentiating the first equation in (3.25) we get
VnDiN, +0.°D;N, = V.N°V,Dyd = Vohnn = Vi (heyN®) +0.hey N® 4 0. °NOh gy,
With 7. = D;N. — hey N°, we get Vnne + 0,1, = 0, N®h,, which proves the second part of (3.25)
(3.26) lill < 16113l + 611kl < Klal + KIBl, if K = 2065 o0)
so using the coordinates y = y(d,y) we get

da(t,y)
n(t,y)| < e K it )| + / MV K R ds < e VR (|0(t, g)| + Kd(t,y)|hl Lo o)
0

where 7 € 0 satisfies d(t,y) = dist,(y,7). Since Kdo < 1/2 we get [n(t,y)| < 2[n(t,7)|+|h|L~ (o), When
d(t,y) < do. Since Dyn(t,7) = hyn(t,7)n(t,y) and n = Dyn — h-n we get |[Dyn(t,y)| < 6|h|pe(q). O

Lemma 3.7. Let 1y be the reduced injectivity radius of the normal exponential map of 02 and let dy
be a fized number such that 10/16 < dy < 19/2. Let n € C>(R) be such that n(s) = 1 when |s| < 1/2,
n(s) =0 when |s| > 3/4, 0 <n(s) <1 and |n'(s)| < 4. Then the pseudo Riemannian metric v given by

(3.27) Yab = Gab — Mgy, Y0 =g® — N°N®, N =g%n,, where n.=n(d/dy)V.d
satisfies
(3.28) ‘V’Y|L<X>(Q) < 256(|9|Loo(39) +1/u0) and |Diy(t,y)| < 64|h’Loo(Q)

Proof. We have V., = —n(d/dy)V Ny —n'(d/do) Ny N./dy which in view of (3.27) proves that |V7| <
2|Vin|+16/dy, so the first inequality in (3.28) follows. Since Yap = gap —NaMp, Where 1, = 1(d/dy) Ny and
so Dyiny = n(d/do) Dy Ny +1'(d/do) Ny Did/dy. Integrating the first equation in (3.25) gives |D.d(t,y)| <
|hNN| Lo (0)d(t,y) and since d/dy < 1 in the support of 7)(d/dp) this proves the second part of (3.28). [

Note that in a neighborhood of 992, 4 is just the induced metric on the surfaces Sy = {y €
R™; d(y,0) = A} and in the interior 7 is just the interior metric g.
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4. ESTIMATES FOR THE PROJECTION OF A TENSOR TO THE TANGENT SPACE OF THE BOUNDARY

Definition 4.1. Let N be the unit normal to 9Q and let Vy = N7V be the normal derivative. Let
d(t,y) = distg(y, 0) be the geodesic distance form y to 02 and let N; = V;d be the geodesic extension
of the normal to the interior. Let 0;; = V;N,; = V;V,d be the second fundamental form of 9Q. Let
v, = 6,7 = N;N7 and if I = (i1, ...,i,) and J = (ji,...,j) are multi indices of length |I| = r set
v = ’yiljl .- -fyirjr and N = N ... Ni*_ If Bis a (0,7) tensor in © define the projection II3 to a
tensor on 9N to be (IIB); = v;7B8;. Let VB = IIV3 denote the tangential covariant derivative. This
is the intrinsic covariant derivative of OS2 if 3 is already tangential to 02, i.e. if B;, ... N k=0,
k =1,...,r, see Lemma 3.1. Furthermore, let V" and V" be the operators which in components are
given by V7 = V,, -+ -V, respectively VI =V,, -V,

Definition 4.2. Let a is a (0, s) tensor and 3 is a (0,r) tensor. We will let a®3 denote some partial
symmetrization of the tensor product a®B. lL.e. a sum over some subset of the permutations of the
indices divided by the number of permutations in that subset. In each situation there is of course a
specific subset, but in our estimates it does not matter which one so to simplify the exposition we do
not write out the exact permutations. Similarly, we let o~ 5 denote a partial symmetrization of the dot
product « - 8, which in turn is defined to be a contraction of the last index of a with the first index of

/8: (a : 5)11---ir+5—2 = gl]ail---is—liﬁjis---ir+5—2 0

The simple observation that will help us is that if ¢ = 0 on 02 then the projection of the tensor
V2q to the boundary will only contain first order derivatives of ¢ and it will contain all components of
the second fundamental form. In fact

(4.1) IV2q = V2q + 0Vngq
where the tangential derivatives V2q = 0 on the boundary. To prove (4.1) we note that

(4.2) Vit = = V(N NY) = =750, N' — v, * N6, = —6,;; N

SO

(4.3) ViVig="77 Vv Virg="77 v VuViug+"v" (Ve )Vjng

=" ’ij VirVjq—0i;Vng

We now want to find a higher order versions of (4.1). One way to understand why there should
be such a formula if ¢ = 0 on 9 is to expand ¢ in a Taylor series in the geodesic distance d from the
boundary. If ¢ = 0 on 0N then ¢q/d ~ Vyq is a well defined function in a neighborhood of 992 and hence
we can write

Vg =1v" (d %) — Z (DI(Vr == d)@IIV* (4)
s=0

Since however d = IIVd = 0 on 99 and V2d = 6 we obtain

(1.0 vy = 3 (v 2-0)EIve (4)

s=0
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Proposition 4.1. On 09} we have

r—2
(45) |[(IV")g— Vg - VgV 20 =3 (1) (ﬁf*?*se)é(ﬁswq)‘

s=1

<C > V710] - [V 0]V 0 Vil
ro+ri+..+rp+Hb=r—k
k—f=0mod 2, k>¢>0, k>2
and
(4.6) Vovigl <C > [V70] - [V 0][V7oq]
To+714...+7p=ro+L—k

(4.7) Vgl <C > V6] - - - [V 0]V Vgl

ro+L+T1+.. .+ Tr=ro—k

where the sums are over all positive integers r; > 0, 7; > 0 and k,£ > 0.

Proposition 4.2. We have
(4.8) (IIV") 5q = > ket (9)(V0) @ - (V™) 1,0V [ (V)
ro+ri+..+rg+Hl=r—k

where the sum is over positive integers k,€,m > 0, k. — ¢ = 2m > 0, r; > 0 and all permutations

(Io, Il, ceny Ik) Of (J,il, veuy ng) Here

(4.9) Ckiglo... 1. (9) = dkemJIO...Ikng ... glem-tizm
denotes contractions over m indices. Furthermore.
r—2
(4.10) (IV)g=V"g+Y (V' 20)&(V*Vng) + F
s=0

where F' is of the form in the right hand side of (4.8) but with k > 2 in the sum.

Remark. Proposition 4.1 and Proposition 4.2 applies to the function ¢ being replaced by (0, s) tensor
« as well if the projections, tangential and normal derivatives are correctly interpreted: only the first r
indices should be projected. This will be explained later in this section, see Proposition 4.8.

The proof of Proposition 4.1 and Proposition 4.2 consists of turning projections onto the tangential
and normal components into tangential derivatives of normal derivatives. The basic idea is that any
derivative V" of order r can be expressed as a sum of combinations of tangential derivatives V and
normal derivatives Vy of total order at most s < r and similarly any combination of normal and
tangential derivatives of total order r can be expressed as a sum of derivatives V* for s < r. Since
the coefficients of both the normal derivative and of the projection involved in the tangential derivative
are made up out of the normal it follows that the coefficients in expressing a derivative V" in terms of
normal Vy and tangential V derivatives will consists of derivatives of the normal, i.e. derivatives of the
second fundamental form #. Whenever a derivative in say (4.5)-(4.8) falls on the normal it produces a
new factor 6 and at the same time the total number of derivatives involved has gone done by one, so
the total number of derivatives in the expressions (4.5)-(4.8) goes down by one for each new factor of
6. This simple observation will prove (4.6)-(4.7) and (4.8). The more detailed information in (4.5) and
(4.10) formally follows from (4.4) and the above argument.

The key to turn tangential and normal components into tangential derivatives of normal components
is Lemma 4.3 below. In Lemma 4.4 it is then expressed in a form which is more directly adapted to the
situation in Proposition 4.1 and Proposition 4.2.
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Lemma 4.3. Suppose that S is a (0,7 + €+ s) tensor which is symmetric with respect to the first r+¢
indices. Let

(4.11) srto = (ts),

1--:lrts

) A JU A Jr Nt Jr+e
1o lr4s 'Yil 7@',. N N Sjl jr+ilr+1 Zr+s

be the projection of the first indices onto r tangential and £ normal components. Then

(4.12) I HLOVITS = I HHVS — r QI 1L g 4 g T+ 1E-1g

where

N 1 .
(4.13) (oI —HHLS) = ;Ze’ioip (TS i i

p=1
_ 91()] (Hr+1,€fls)j i

Q081 it 1 et

+1,4—-1 . .
(4.14) (6-11" ) ioin iviviniven S S A

where I, = (i1, .oy bp—1,Tpt1y oy ip)-

Proof of Lemma 4.3. To simplify notation we assume that s = 0. Now

re  _  JIard I 1 Jr NTJr T
S = NT Sy =0ty NI NI S

J1-Jrte

where I = (i1, ...,4,) and J = (41, .., j-) be multi indices of length r and J" = (j, 41, .., jr4¢) 1S @ multi
index of length £. Now

.l j !
VieSi o =% Vo (v N7 Ss0) =
= ’YiUJO’YIJNJ VieSyr + ’YiOJO’YIL<Vjo ’YLJ)NJ Sy + ’YiOJO’Y[J(VjO N’ VS
By (4.2)

J .
Vi = - Z Oioiy 1, " N7

p=1
where I), = (i1, ..., ip—1, Ipt1s s br) a0d Jp = (J1, v, Jp—1, Jp+1s -, Jr). Furthermore
4
NJ, Z 9 ]pNJ

p=r+1

where Jz/) = (Jra1, s Jp—1, Jp+1, s Jr+e). If we now assume that S is symmetric the notation simplifies
a bit and we obtain the lemma. [

Now we want to apply Lemma 4.3 to S = V" ¢. Since in geodesic coordinates Vy N = 0 it follows
that

(4.15) [Vn,II] =0, V5 =Ni1...N®Vy, ...V,
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Lemma 4.4. Let

(416) Sﬁé — Hr,fvT-Jréq _ v]%nvrq’
Then
(4.17) St — et 4 rexs L _ypp. grilt-l
Furthermore
r—2
(4.18) ST VTS =NV R (k4 )OS F — 19 SEF2T
k=0
and
r—2
(419) Sr,f _ﬁrs(],f — Z (;)(vme)évr—Q—mSO,Z—kl Z E r— 1 vr mSOZ 1
m=0

+ Z Wryrae (V7 6)@5(?”0)®vr—4—r1—r2—k5k:,z+2
+ A1) by (VHO)R(V720) TV 272k ght
0 Crra(V710)7 (V720) @V 2 rak gkt
+4(0—-1) Z dyyra (V710) 7 (V720) TV 712k ghol =2

where the sums are over all integers 1,72,k > 0 such that all exponents of differentiation also are > 0.

Proof. (4.17) follows from (4.12). Now by repeated use of (4.17)

Sr,é — ﬁsrfl,é + (T _ 1) 9®5r72,3+1 _ EST,Zfl
ZV(vSTfZ,E_i_(r_2)9®5r73,€+1 00-S" 1,4— 1) 6®Sr 2,4+1 Ee_srlfl

=.=V"sh4 ﬁ “E((k+1)028FHH — g . grT2E1)
k=0

which proves (4.18). To proceed further we must use (4.18) twice. In the right hand side of (4.18)
we use (4.18) to write S* 1 as VFS*4+1 plus terms involving one factor of # and write S +2¢-1 as

VF+250.£=1 plus terms involving one factor of #. Let us first calculate the term involving one factor of
6. By Leibnitz’ rule we have

2
§T—2—k((k + 1)9@?/650,5-%1 — /6 _ﬁkso,ﬁ—l)

3
|

k=0
r—2r—2—Fk r—2r—2—k
— Z r 2 k k+1)(vm0)®vr—2—m50,£+l _Ez Z r 2 k: (vme) vr 2— mSOZ 1
k=0 m=0 k=0 m=0
r—2 r—2
Z Vr 2— mSO 241 gz (r;l)(ﬁme)jﬁrfmso,éfl
m=0 m=0

since Z;;g_m(kz + 1)(T_31_k) =(]) and > ; 2mm (= 2= k) =(" ) This explains the terms involving
one factor of 6 in the first row of (4.19). Usmg (4. 18) and Leibnitz’ rule its easy to see that the term
involving two factors of 6 has to be of the form in (4.19). O
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Proof of Proposition 4.1 and Proposition 4. 2. The proof is just an application of Lemma 4.4: (4.5)
follows from (4.8). (4.8) follows by induction from (4.17), noticing that the total order of the tensor
goes down by one for each new factor of #. (4.10) follows from (4.19). (4.6) and (4.7) follows from the
same argument. [

Using (4.17)-(4.18) one can show that

(4.20) IV?q = V2q + Vg,
(4.21) V3q =V3q—202(0°Vq) + (V0)Vng + 302V VNg
(4.22) V4 = V¢ — 02(5(V0)"Vq + 80~V q) — 2(VO)®(0~Vq)

+(V20)Vng + 4(VO)@VVNq + 602V 2Vng — 300(070) Vg + 3020V q

Since Vy = N -V, IVN = VN = 0 and IIV2N = [IVA = IIVIIH = VO and Vy8 = IIN - V3q =
—II(VN) - (VN) = —0-0 (see (4.51)) we get

(4.23) Vq=1IVq

(4.24) VVNg=TIIN -V?¢+6-Vg

(4.25) Vaq=N-(N-V?q)

(4.26) V?q=1V?*—- 0N -Vgq

(4.27) V2VUnqg=TIN -V3q+20°TIV?q + (VO) - TIVg — 0 -ON - Vg — O N - (N - V?q)

where in (4.27) we used that V2Vyq = IIV?Vyq — VA q.

Proposition 4.5. Suppose that ¢ =0 on 02 and 0 <r <4 orr > (n—1)/2+ 2. Let LP = LP(00Q)
and suppose that 11 > 1/ Ky, where 11 is as in Definition 3.3. Then for m = 0,1 and any € > 0 we have

r—1
(4.28)  [[IVq = (Vw@)V " 20| o < e[ Vnalle [V 201112 + C(1/2) Y 101197l 2
k=1
+C (K 1o 0l=) (W= + D0 I9%002) Y IVl
0<s<r—2—m 0<s<r—2+m

where the second line drops out if r < 4.

Proof of Proposition 4.5 for r < 4. We want to prove (4.28) for r = 4, since the proof for r < 3 is
simpler and it follows in the same way. By (4.22) we have if ¢ = 0 on 0Q;

Vg = (V20)Vng + 4(VO) DV Vg + 600V *Vynq — 302(0 - 0) Vg + 3020V% ¢

The only problematic term can be controlled by Lemma 8.1 (here LP = LP(09Q) ):

3 =3 1 =3 1/2 ' 1/2 1/2 1< 1/2
1196 [VVnal || 12 < V8]l 21 IV Vnalle < CIOI2 (IV26]5% [ Vvalli2 1V 2Vival|)s

< C27'e||Vngllpe (V202 + C27 e B [V?Vnglle,  for any e > 0.
By (4.27), since IIVg = 0 on 0%;

IV2Vnalle <11V 7qllzz + 3]0l IV *qll 2 + 1017 IV gl 2 O

The basic inequalities that we will use on the boundary for the proof of Theorem 4.5 in general can
be summarized in:
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Lemma 4.6. Let LP = LP(0N) and let t =r —2. Then ift —m > s

(4.29) IVoa oo < Cllal o™ T ™, m>0,  t-m>s
t+m
(4.30) Ve p2t/c—m) < C(KY) Z IViallpz, if t>22  s—m>0, t+m>s

where K1 is a constant such that v1 > 1/K1, and vy s as in Definition 3.3. Furthermore

(4.31) 1197261 [V 6] [ o < CLOIF=M V6] o
(4.32) V560 0scoemy < ClON ™ IV 011, m 0

Furthermore, we have for everye >0 if 1 < s <t

(4.33) | [V'=20| [V* V] || 1> < el Vvl [V 0|2 + Ce™=9710]| 1o [V * Vg 2,
and if 0 <m<s<t—m

(4.34)  ||[[V'=*01Vql || .
t+m

<V 20 et erm V2l p2esiommr < CED[O 200 0 Y™ S [V ] e,

Proof of Lemma 4.6. (4.29), (4.31)-(4.33) are just the interpolation inequality (8.4) in Lemma 8.1. For
the proof of (4.31) one first uses Holder’s inequality. (4.30) on the other hand is a special case of Sobolev’s
lemma, Lemma 8.2, which by the remark after the lemma holds with the covariant differentiation of
the interior restricted to the boundary. By Holder’s inequality and (4.29) with m = 0:
H |Vt‘56’| |$SVN(]| HL2 < ||vt_59||L2t/(t—s) WSVNqHth/g
< Clele IV 6l [ Vnallp="" 7"Vl
< el Vngllze IV 0]z + Ce 2|0 1o [[V'Vngll2,  for any e >0, O

which proves (4.33). (4.34) follows from Hoélder’s inequality and (4.30) applied to o = ¢ and (4.32).

Proof of Proposition 4.5 in case r > 5. The proof is an application of Proposition 4.1 and Lemma 4.6.
Since ¢ = 0 the term V"¢ = 0 in the left of (4.5) and the terms in the right with £ = 0 vanishes as well
so ¢ > 2 in the right sum. Each term in the sum on the left of (4.5) can be estimated using (4.33).
Then we can use (4.6) to estimate ||0]|1 ||V " 2Vnq|lrz by [|0]lL=|V""1q|/z> plus a sum of terms of
the form

(4.35) HGHLMHIVTQHI VTR Vg HL2, ro+ro+ .. try=r—k k>2

Similarly, if we use (4.6) we can estimate the terms in the right of (4.5) (the second line of (4.5)) by
(4.36) H|ﬁ”9| ---|§T’€0|\V7’Oq|HL2, ro+ri+..+rp=r—=Fk k>2

Now, a typical term looks like

01z [ V727201 V24l || .,
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which can be estimate by (4.34) with m = 0,1. The general term is not much harder: Using Hélder’s
inequality and (4.31) we see that we must estimate

(4.37) 1015 IV Olle V7 ql oy mo 7" =7 —k, k>2

for some 1/p + 1/p’ = 1/2 which are to be determined. If ' = 0 then we can take p = co so we may
assume that 7/ > 1. Similarly, we may assume that ro > 2 since if ro = 1 we can take p’ = co. We pick

(4.39 p=2r -2/ +m). P =2r -2/ =2 —m)
and use (4.34) with m =0,1. O

Note that Proposition 4.1 and Proposition 4.2 applies to ¢ being replaced by (0,¢) tensor « as well
if the projections, tangential and normal derivatives are correctly interpreted. Only the first r indices
should be projected, i.e. all indices referring to 6 should be projected as well as the ones referring to
differentiation of a but the ones referring to « itself should not. So we should replace IIV" by II"0V"
and we should replace V" when applied to a by V" = II"OVII"~1.0V ... TI120VII}°V. (One should keep
the old definition of V"# since all these indices are projected over. ) In components this means:

Definition 4.3. Let

(439) (Hr,ovr)h~~-iq~air+1~~-i+t = 7@'1]1 o ’Yi,ﬂjrvjl o vjraihq. vNail...it = Nkvkail...it

et

and

(440) (vr)il...irair+1---ir+t — fyll]l e ’yzjrvjl (,.szk2 e ryjf?‘vkz < .

Or—1

A T N N (N Vo (Vo Vi, i) )

In fact, with this modification the proofs of Lemma 4.3 and Lemma 4.4 goes through. Also the
interpolation inequality in Lemma 8.1 remains true. One just has to modify the proof to work with
mixed tangential and full inner products

— ~bd1 L Afsds glst1dst1 L glsttdstt . ) o )
(441) <a’ﬁ>'yg - ’7 ’7 ° Sg ° ° g ° ° a741~~7fsls+l~~~ls+t 5]1~~~]s]s+1~~-]s+t

Hence we obtain the following version of the interpolation inequality:

Lemma 4.7. Suppose that « is a (0,t) tensor and let v be defined as in (4.40). Then if s <r —2

s/(r—2)

)

(4.42) H?Sa’

< Cllall "2 [

L2(r=2)/s L2

In order to deal with some lower order terms the following is useful:

Proposition 4.8. Suppose that o is a (0, 1) tensor and let 115°V* and V* be defined as in (4.39) and
(4.40). Lett =r — 2. Then

(4.43) (IT%OV*)a — Voa| < C > V716 - - V6] |V q

ro+ri+...+rr=s—k
kzl, 7'021
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Here V' is defined by projecting only over the first v components as in (4.40) whereas V"0 is defined
as before by projecting over all v + 2 components. If s <t

(4.44)

t—1
s s —-s/to s s = s/t
(IO )| e/ < Clledlp WPl + CEL) L+ [8lz)* (18] + IV 61 )" S IV a2
=0

where Ky is a constant such that 11 > 1/K;y and 1 is as in Definition 3.8. Furthermore

t—1
(4.45) IViallL2 < CIV al g + CE) A+ [|0] =) (0] = + IV 0]l 2) > IV e L2
£=0
and

(4.46) |10V )a [IT=OV )] |2 < [(ITOV)a]| pors | (IT75OV =) 6| 20/ 0o

t—1 t—1
< (K1) (llalle + Y IV allzs ) [V Blls + CC) (181 + D IV Blle2 ) [V el +

£=0 ¢=0
o t—1 t—1
+ O (1 + 18l (100 + 1900 2) (el + 2 I9%allze ) (18l + 3 I9°Bllz2)
=0 £=0

Proof. (4.43) follows from Lemma 4.3. And if v’ = 1 + ... + 74, v + 19 = s — k then by Holder’s
inequality, (4.32) with m = 0 respectively (4.30) with m = —k

(447)  |[[V"20] - [V [V || farye < CRONEZIVT O]l p2esor V0| 2/

t—k t—k
k—r' 57 r’ S - S/t
< CED015< IV 014D IV alle < C(E) (1+[60]1 )" (10] 2= + V011 2) " 3 1V @12
827‘0 é:ro

If s = ¢ this proves (4.45). (4.44) follows from (4.43), (4.42) and (4.47). (4.46) follows from (4.44),
(4.45) and our usual convexity inequality a®/tb'=5/* < a+4b. O

Let us now derive some properties of the projection. Since ¢*/ = 4% 4+ N'NJ we have
(4.48) II(S- R) =11I(S) - II(R) + II(S - N)RII(N - R),
Note also that
(4.49) [Vn, ]S =0, [V,I]S =0, [VN, V]S =—-0-V5S, [Vn, V]S =—6-VS,

where we have used that [V, V] = [V, [IVI] = II[Vy, V]IL. Since N - V*0 = 0 we get

r—1 r—1

(4.50) Vv, V7S =Y VW, VIV I8 ==Y (1) (VFo) - Vrks
=0 k=0
where we used that Zz;é (f;) = (kil) and V((IIR) - 11S) = (VIIR) - 1IS + (IIR) - VILS. Furthermore,
0=V23N-N)=2N- V2N +2(VN) VN so Vy0 = —0 -0 so (4.50) applied to S = 0 gives
(4.51) WV ==3 (1) + () (V') - V7o
k=0
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5. ELLIPTIC ESTIMATES AND ENERGY ESTIMATES FOR THE BOUNDARY PROBLEM

Most of the results here will be stated in a coordinate independent way. We can however take
advantage of that we have a transformation f; : Q — Dy C R™ such that the metric is Euclidean in
D;. Also, since we are looking for a short time existence our metric expressed in the y-coordinates in
gij(t,y) is equivalent to the metric at t = 0, g;;(0,y) and similarly the induced metric on 9 v;;(t,7y)
is equivalent to 7;;(0,7). Throughout this section, V will refer to covariant differentiation with respect
to the metric g;; in ©Q and V will refer to covariant differentiation on 9 with respect to the induced
metric v;; on 0f) as defined in the beginning of section 3.

We will assume that the normal N to 912 is extended to a vector field in the interior of €2 satisfying
gijN'NJ < 1 there, such that in a neighborhood of 99 N is the unit normal to the sets 99, =
{y; disty(y, 0?) = p} and N has the regularity described by Lemma 3.6 and Lemma 3.7. Then ~;; =
gij — NiN;, where N; = ¢;;N7, is a positive semidefinite pseudo Riemannian metric in 2. Using the
decomposition into normal and tangential components ¢/ = N*NJ 4+ ~% we can write

The terms (y**47! — N'N* NI NV, Bk V, B and (y7 4 — ~*~430)V; By, V, 8, are going to be lower order.
The first one because it can be controlled by div 8 = ¢**V; 8, which we expect to be lower order and the
second one because the boundary term vanishes if we integrate by parts using Greens theorem. Hence,
(5.1) and (5.2) says that we essentially can control |[V3|? = ¢g¥g*'V; 3, V;3, by the normal-tangential

components v N* N'V; 8, V; 5 and either the normal-normal components NiNINFNIV, B, VB or the
tangential-tangential components 7 ~y*V; 3, V.

Definition 5.1. Let B = B = Vjug, where V; = V;,..V, and u is a (0,1) tensor and [V;,V;] = 0.
Let div 3 = V,;8° = V" divu and let curl B,;; = Vi3; — V;8; = V'eurlu ;.

Lemma 5.1. Let S as in Definition 5.1 and let QQ be a positive semidefinite quadratic form
Q(ViBk,V;iB) = ¢" (ViBrk)V;By. Then

(5.3)  g7g"Q(ViBk, Vi) < (2(N'N7g" + g NP NY) + 2¢"% g7 + (v 4M — 44 IN)Q(Vi Bk, V; 81)
(5.4)  §9g"Q(VkBi, ViB;) < (n(g " + 47 g") + 29" ¢ ) Q(Vi Bk, V1)
(5.5) NININMQ(ViBr, Vi) < 2N*N'NIQ(Vi Bk, Vi) + N* N Q(curl By, curl B;)

Proof. Since g"* = ~%* + N'N* we obtain

(5.6) Y Qi Vi) < (20" 9" + 2N NENINYQ(Vir, V)
(5.7) N'N*NIN'Q(Vifk, V;81) < (29%¢"" + 27"+ Q(ViBk, V5
(5.3)-(5.4) follows from (5.6)-(5.7) and

(5.8) YR Q iy at) < (n — 1)y Iy Q(vin, auji)

To prove (5.8) let try(a) = v oy, and Gy = agp — YikYPape/(n — 1) is the traceless part. Then

tr, (@) tr (0) = (n — 1) (v "o — v ansn) O
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Let us recall Gauss formula for Q and 0€2;

(5.9) /vm(,em)dﬂg:/ Npf™dp, and Vil duy, =0,
Q o0 o

if fis tangential to 02 and N is the unit conormal to d€2. The last part of (5.9) follows since by (3.8)

ﬁ?l = Wl?z is the intrinsic divergence on 952 if the coordinates are chosen so 92 is given by y™ = 0.

Lemma 5.2. Let RV*7 be any quadratic form ¢!’ multiplied with
(NkngU _ glleNj) or (gklv” _ ’y’kgl]). Then

(5.10) / RIFIIG o ViBndu= | N'99¢" ar; V;Bndp, — / (ViR o, Vi Bpdu
Q Q

o2

(5.11) / RIFIIG oy N Bdp = —/ Ny * I var; Brdu, — / (V;RIMIN oy Brdp
Q 20 Q

Moreover if RY*Y s any quadratic form q'” multiplied with (Y¥'y% — ~¥#~17) then

(5.12) / Rijkll‘]vka“ Vjﬁud,u = — / (kaijklIJ>a“_ Vjﬂud,u
Q Q

Proof. Note that we have the following identities
(5.13) RIMINar; VB =V (R ar; ViBn) — (VR )ar; Vb1
(5.14) RN gy Vi By =V (RVM Nwars B) — (ViR \Nars B

Integrating (5.13)-(5.14) over 2 using Gauss formula (5.7) we get a boundary term from the divergence.
The lemma now follows from

Ni(y"'y"7 = ~"%47) =0,

Definition 5.2. If |I| = |J| = rset ¢!/ = gitJr...gJr and 4!/ = y1Jr...o@rdr If o and B are (0, 7) tensors
let (o, 8) = g'7arBy and |a|? = (o, a). If (IIB); = ;7B is the projection then (Ila, I8) = v/ a;B;.
Let

) 1/2 ) 1/2 ) 1/2
I0mce = ([ 188 dig) s IBloomy = ([ 18P die) "y IMBlaony = ([ AR ds)
Q o0 o0

where dpug4 is the Riemannian volume element on {2 and dji, is the induced surface measure on 9f).

Lemma 5.3. Let 8 be as in Definition 5.1 and 1o be as in Definition 3.3. If |0] + 1/19 < K then
(5.16) VB < C(999M9 Vi ViBs + |div B2 + | curl B2)

(5.17) / ]Vﬁ|2du < C’/ (NiNjgkl’yI‘]Vkﬁu ViBs; + |divﬁ|2 + lcurlﬁ\2 + K2|B|2) dpu
Q Q
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Proof. The proof follows by induction from repeated use of Lemma 5.1. |3|> = g/’ 813 can be written
as a sum of terms of the form

(5.18) NNt N NTsnfetrdots qfedeg, B

If s =0, 1 then (5.18) is bounded by the right hand side of (5.16). If we inductively assume that we can
bound the right hand side of (5.18) for s < s then the bound for s = s¢ + 1 follows from (5.4)-(5.5) in
Lemma 5.1. On the other hand, if we control the right hand side of (5.17) then we have a bound for
the integral of (5.18) for s = 1,2. However, by (5.3) in Lemma 5.1 and (5.12) in Lemma 5.2 this gives
us the integral of (5.18) also for s = 0, but then we can use (5.16) to obtain (5.17). O

Lemma 5.4. Let 8 be as in Definition 5.1 and vo be as in Definition 3.3. If |0] + 1/19 < K then
(5.19) HBH2L2(5)Q) < C(IVBIlr2) + KllBlL2@)IBllr2)
(5.20) 18117200y < CITBIZ2(00) + C (I div Bl L2y + || curl B2y + KBl L2@) 18]lz2@)-

and

. 2
(5:21)  [IVBIZ2(q) < ClIVBIlL200) 18]z 00) + C (Il div Bl L2(9) + || curl ]| 12(0))

Furthermore;

(5.22)  [VBIR20) < CIIVAI| L2 o) TNl 2 (00 + C (| div Bl 2oy + || curl B 12y + K18 L2(ey)
(5:23)  IVBI32q) < CIIN V| 1200 [T1BI| 2 002y + C (|| div Bl L2y + 1| curl Bl Loy + K 18]l 12(s))
where N - Br = N'Bir and N -V Byr = N'VBir.

Proof. Let N be the extension of the normal to the interior as in Lemma 3.6-Lemma 3.7. Then

[ 18P dn = [ S(N13P) d
[o}9) Q

and since |[VN| < K, by Lemma 3.6- Lemma 3.7, (5.19) follows. (5.20) follows by induction as in the
proof of Lemma 5.3, from:

< O(||div B 20y + [l curl B]| L2y + KBl 22(0)) 18120

/8 NN =988

if ¢/ is any product of factors ¢**7* of the form ¢**J%, ~*J* or N NJ*. The left hand side is
(N VN <) 50805)
—9 /Q NG (N' N7 — 49) 81 VB dp + /Q(VkN’“)(J”(NiNj — ) BriB; dp
- /Q N*¢" v B1i(ViBj — ViBak) dp + 2 /Q q"T(N'NY +~7)(V; B1:) N* Bk dps
+2 /Q Vi(¢" I N) BriBk dp + /Q(Vka)qU(NiNj — ) BriB; dp

(5.21) is just integration by parts twice. (5.22)-(5.23) follows from Lemma 5.3 and Lemma 5.2. [

One can actually get away with a less regular boundary for some of the estimates:
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Lemma 5.5. Let 3 be as in Definition 5.1. Then there is e1(r) > 0 such that if the condition in
Definition 3.4 holds with e1 < €1(r), we have with K1 > 1/1;:

(5.24) 18117200y < C(IVBIlL2() + KillBllz2 ()18l 20

(5.25) 1811 Z2(00) < CITBIZ2(00) + C (I div Bl 2(q) + | curl 8]l 220y + K1l Bl 2()) 18]lL2(0)-

Proof. We will prove (5.24)-(5.25) in the x coordinates Q > y — z(t,y) € Dy C R"™. Since the metric
there is the induced metric from R™ we can then compare the normal A/ to 9D, at different points. Let
Xp be the partition of unity in Lemma 3.4 and let N, = N'(x,) be the unit normal at some fixed point
xp € supp(xp) N OD; and let N be the unit normal to 0D;. Then

/@ IR WS = [ oL (A7) do

D

where N is the unit normal to dD; and (N, N) = d;;NIN7 > 1/2. Since |0x,| < CKy (5.24) follows.
T prove (5.25), we will use a similar estimate to the one in the proof of (5.20), with A replaced by
N, and 7% = §Y — NN7 replaced by 7, = 6" — NN and ¢'7 replaced by ¢,"”, a product of factors
6", 4" and NIN7. We will use the identity
NEOR (5% 4y xpBriBas) — 267 0: (N ap" xpBirBj)
= —2NY " Xp B0 0iBsj + 207 N ¥ ap' X (0iBric — OnBr1i) Brj
+ Ny (Orxp) (87 ap" BriBs) — 267 (Bixp) (N ap" Brr 1)

Integrating this over D; using Gauss theorem we get

/67J (<Np7~/\/’>5ij_QNjN;)QpIJXPBIiﬁdeS) S/ (2xp (| div B] + | curl B]) + 3[9x,||B])[8] d

Dy

We now assume that |[N'—N,| < &7 in the support of x,, where e = £1(r) is to be determined. Writing
N = aN, + bT,, where a = (N, N), b=+1—a? <y and (T,,T,) =1 and (7,,N,) = 0. We get

Ny, NV — 2NINT = a(yiF — NENT) — 26N T
Let Qu(8i,8;) = ap" " XpBriBs; and let Ry,(B, 8) = (a(vi7 — NENF) — 26NET7)Qp(Bi, B;) 1t follows that
NN Qp(Bi: By) < (v — 2(NGT + Ty ND)) Qp(Bi, ) + 3 Ry (8, B)
< (v = LTI + 15 NIND)) Qp(Bi, By) + LR, (8. B)
< (5757 + NN Qu (B, B5) + 2Ry (B, B)

since T)T7 Qp(Bi, B5) < 77 Qp(Bi, B;) and a®> = 1 —b*. Moving the term with the normal component
over to the other side we obtain

5ZJQP(6176]) S ﬁry;)jQp(B’mﬁj) + l%bRp(B7ﬂ)

Integrating this gives

» 2
69 q," xpBriB; dS < N

/ gy xpBriBy dS+4 / (xp (| div BI-] curl B1)-+10x,||]) 18] da
8Dt _51 8Dt Dt
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Repeated use of this gives
(5.26) /B 576" xpBriBj dS < A/8 W' xpBriBaj dS+B | (xp(| div B+ curl B])+|0x,||8]) 18] d
D Dy Dy

for some constants A and B that only depends on the order r of the tensor 5. We now claim that if

q"’ is any positive definite quadratic form then

(5.27) W a" xpBriBas <" xpBriBaj + 007 " XpBriBr;
In fact if Q(Bi, B5) = ' xpBr1iBs;
QB ) =17 Q(Bw By) = (NN = NoNDQ(B:, B5)
= (VPTIT] — VNN + ab(NITE + TiND))Q(Bi, B))
< (WPTT = BPNING + ab(HENING + 15 TT9)) QB By)
= bNGNG + T TQ(Bi, B;) < 637 Q(8s, By)

since a? = 1 — b?. Using (5.27) now we can replace ok Yp'? by ¥4~/ in (5.26) with a small error that

can be absorbed into the left-hand side is b < ¢; is sufficiently small. Finally, summing over p using
that > xp =1and }_ |0x,| < CK; and Holder’s inequality gives (5.25). [

Lemma 5.4 applied to 8 = Vg, where q is a function, gives estimates for both the Dirichlet problem
and the Neumann problem. In fact if ¢ = 0 on 9 then IIV2q = §Vyq so (5.22) and (5.20) gives

2 2
IV2ql1Z2(q) < CKIIVNalliz00) + C1Adll2 @) + Kl Vall2@)” < C(I1AGlI2 ) + Kl VallL2 @)
Similarly, if Vg =0 on 99 then N'V;V,q = —0;’?,»(1 and by (5.23) and (5.20)
= 2 2
IV2ql172(q) < CKIIVll7200) + C 1Al 2 ) + Kl Vdall2@)” < C(I1All 22 0) + KlIVall L2 @)
Similarly we can get estimates for higher order derivatives. More generally, we have

Proposition 5.6. Let~L0 and vy be as in Definitions 3.3-3.4 and suppose that |0| + 1/ < K and
1/11 < Ky. Then with K = min(K, K1) we have for any r > 2 and § > 0:

(5.28) IV qll200) + V7 all 2 @) < CITIV gl 200) + C(K, Vol (2)) Y V3 Aqll 120
s<r—1
(5.29) IV7q)l 20y + IV gl L2 00y < SITIV" gl 2(00) + C(1/8, K, Vol () D [[V*Aq] L2y
s<r—2

Proof. (5.28) with an extra lower order term C’(.f()HVqHLQ(Q) in the right follows from (5.20) or (5.25)
together with repeated use of (5.21) and (5.19) or (5.24). The lower order term can then be bounded

by (5.17) in Lemma 8.5. (5.29) with the same extra lower order term follows from (5.22) together with
repeated use of (5.19) and (5.21). O

Remark. On should be able to improve the results of Proposition 5.6 and replace the sum in the right
hand side of (5.28) by the sum over s = 0,1/2 at least when |Vyg| > ¢ > 0 on 0f). However, then one
has to make sense of fractional derivatives.
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Proposition 5.7. Assume that 0 <r <4 orr > (n—1)/2+ 2. Suppose that |0] < K and 11 > 1/K3,
where 11 s as in Definition 3.4. If g =0 on 9Q then for m = 0,1

r—1

(5.30) [ITIV"ql 12 (a0) < 21V 2611200 IV all e 00) + C D 1015 00y V" dll L2002
k=1

+ O KD (0o + D [V 0i200) . 19"l o)

k<r—2-m E<r—24m
and if r > (n —1)/2 + 2 then for any 6 >0
o r—2
(5.31)  TIV" " qll 200y < IV all2on) + Cs (K, K1, [10]l L2a0), IV "0l 2000)) D IV all 22 00
k=0

If in addition |Vyq| > € > 0 and |[Vngq| > 2¢[|Vng| L= (a0) then

r—1

(5:32) V"0 200y < C(1/e) (INV"all 200 + 310K omy IV allz2com))
k=1

+C(K7K171/€)(H0HL°°(SQ)+ Z HkaHLZ(BQ)) Z V¥4l 2 (o0

k<r—-3 k<r—1

Furthermore if r < 4 then the second line of (5.30) and (5.32) drop out.

Proof. (5.30) and (5.32) follows from Proposition 4.5. To prove (5.30) we can take ¢ = 1 and to prove
(5.32) we take m = 1 in Proposition 4.5. (5.31) follows from (5.30) and Sobolev’s lemma,; (8.8). [

Proposition 5.8. Assume that 0 <r <4 orr > (n—1)/24+2 and that |0| +1/10 < K. Ifg=0 on
082 then
(5.33) V™ gllzz00) < C(IV 00l L200) I VNIl L (990) + IV 2 AqllL2(0))

+ C (K, Vol (), 101l L2 602)» -+ V"0 20 ) <||VNQHL°°(8Q) + > ||VSAQHL2(Q))

s<r—3

Ifr > (n—1)/2+2 then

(5.34) IV gl z2000) + Vel 2= (00)
< CIIV'?Aq|lr2 () + C(K, Vol (), [10]l L200), - IV " 26]| L2 (00)) Z 1V*Aqll L2

s<r—3

Proof. (5.33) follows from (5.28) and (5.30) with m =1 and r replaced by r—1. The estimate for
V™|l 12(00) in (5.34) follows from (5.28), with r replaced by r—1, and (5.31). The estimate for
V4| Lo (56 in (5.34) follows from the estimate for [V q||12(s0) and Sobolev’s lemma, Lemma 8.2. [

There are two possible energies, given in Proposition 5.9 respectively Proposition 5.10 :
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Proposition 5.9. Let Q(a,a) =7 ajay, hij = Digij/2 and set

E(t) = /8 Y7 Qs ) v dpiy + / g NEN'Q(V;Br, Vi Br) dpg,
Q Q

where 0 < v < co. Let K be a constant such that

(5.35) |h| < K in[0,T] x Q
(5.36) 10| +1/00+ | /v| < K, on[0,T] x 0.
Then

dE
(5.37) — < OVE (II(Dya + vN*VB)| r2(00) + | D:VB — Va| 12 (0y) + CKE

: . 2
+C (| dival 2y + [ curle| L2y + Kllallzz ) + 1 div Bll L2y + [ curl 8]l 22y + K181l L2 @)
Proof. Since by Lemma 3.5 Didji, = (tr h — hyn)dp, and Dydp = tr hdp we obtain

dE 5 -~
(5.38) = 2/@Q YIQ (v, Do) v dpy + Q/QQUNkNlQ(Vin,DthBZ)d,ug
+/ (De(Y94"™) + (trh — Ay + v /v)v Iy e vdp,
o0
+ / (Dy(g NENUAI7) + tr b g NF N T ) VB30V, B dig
Q

Since Dy = —2vim~J"h, . the second line is bounded by the boundary term in the energy F and the
third line is bounded by ||Vﬂ”%2(m. By Lemma 5.2

/ gIN*N'Y N Vi B dpg = / N'Y I o Vi B0 dpssy
Q 20
+/QgikNle’7UVk0m,VjﬁJz dtg —/ka (g9 NEN'AY — g NIN'YT) 0V By dpsg

The first term on the second line is bounded by |/divalr2()||VAB|/L2(0) and the second by
Klla|lz2@) [VB|lL2(q)- Recall now that by Lemma 5.3

2
||Vﬁ||%2(9) <CE+ C(H div B[ z2(q) + || curl Bl L2(q) + K||B||L2(Q)> .
This proves Proposition 5.9 . [

Proposition 5.10. Let Q(a, o) = v/ aray, hij = Dyigi; /2 and set

where 0 < v < 0o. Let K be a constant such that

(5.40) | <K in[0,T] x Q

(5.41) 10| +1/w0+ | /v| < K, on[0,T] x 0.
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Then
dE .
(5.42) o < CVE (II(Dya + vN*VB)| 2(00) + | D:VB — Vo 12(y) + CKE

. . 2
+ C| curlal| g2 VE + Clla||z2o |V div Bl 20y + (K|l 22 + || div Bllz2 o + || curl 8]l 22 (o))

Proof. Since by Lemma 3.5 Didj, = (tr h — hyn)dpy and Dydp = tr hdp we obtain

dE g )
— =2 / YIQ(Drevi, o) v dpiy + 2 / 9" Q(DyNiBr, V1) dug
dt 29 Q
+ / (De(YAM) 4 (trh = hw + v /o)y 9y )ar ey v dp,
oN

+/ (Dt(gkl’yij’yu)+trh9kl7ij71J)ViﬁIk VB dug
Q

Since Dyy% = —2+'™~J"h,,.,, the second line is bounded by the boundary term in the energy E and the
third line is bounded by HVBH%Q(Q). The second term on the first line is bounded by || curl a|p2(0) VE
plus

/gkl’Yij’YUVkozn VB dpg :/ Nyt o, VB dpy
o o0
+/ YF g i VeV B dpg _/ Vi (6"77") ari ViBa dug
o Q

where we have used Lemma 5.2. The first term on the second line is bounded by ||| 2 (o) [|V div B8] 2 (q)
and the second by K||a| z2(q) [[VB||L2(q)- Recall now that by Lemma 5.3

2
IV 81320y < CE + (Il div Bll 2@y + leurl B2y )

This proves Proposition 5.10 0O
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6. EULER’S EQUATIONS AND HIGHER ORDER DERIVED EQUATIONS.

Recall Euler’s equations

(61) Dtvi + @-p = 0, 8¢vi =0
where

d d o oyt 9
6.2 Dy =— = — ko d ;= = —
( ) t dt y=const dt lz=const + VO an ox’ ox’ 8yd

We now want to get higher order versions of (6.1) in terms of higher order tensors 0"v;. By Lemma 2.3

r—1

(63) Dtarvi =+ aTaL-p - — Z (S:—l)(alJrs,U) . arfsvi
s=0

In particular if r = 1

(6-4) Dydyvj + 0;0;p = —(9:0") Oy,

We now want to change coordinates and calculate D;V"u. By Lemma 2.2:

Oxit oz’ Oz’

6.5) DV, -V, Uy = =0, - 0y v;
( ) tVay rU aym ayar aya v
oz dz'r Ox' o't o't o't
— 92 (