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Motion of a liquid body in vacuum

(the ocean or a star)

Incompressible or compressible perfect fluid

Without surface tension and gravitation

v-velocity, p-pressure, ρ-density, t-time
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Free boundary problem:

The velocity tells the boundary where to move.

The boundary is the zero set of the pressure

and the pressure determines the acceleration.

(Regularity of the boundary is intimately con-

nected to the regularity of the velocity. )



Euler’s Incompressible equations

(∂t + V k∂k)vi = −∂ip in D i=1,...,n (1)

div V = 0, in D (2)

∂k=
∂

∂xk
, V k=vk, V k∂k=

∑n
k=1V

k∂k, divV=∂kV
k

Boundary conditions

(∂t + V k∂k)|∂D ∈ T(∂D) (3)

p = 0, on ∂D (4)

T(∂D) is the tangent space of the boundary.

Initial conditions

{x; (0, x) ∈ D} = D0 (5)

V (0, x) = V0(x), , in D0 (6)



Local Existence?:
Given a domain D0 ⊂ Rn, a vector field V0
and a function ρ0 in D0 satisfying the com-
patibility conditions (??). Find a domain D =
∪0≤t≤T{t} × Dt, Dt ⊂ Rn, a vector field V and
a function ρ in D, such that (1)-(6) hold.

Local existence for analytic data
Baouendi-Goulaouic, Nishida
(incompressible irrotational case)

Instability in Sobolev norms?
Rayleigh-Taylor Instability
(heavier fluid above lighter)
Ebin’s counterexample (when p<0, ∇Np>0).

Physical condition

∇Np ≤−c0 < 0, on ∂D0, (7)

where ∇N =Nk∂k and N is the exterior normal
Since the pressure of a fluid has to be positive
Needed for local existence in Sobolev Spaces.

Vorticity: curl vij = ∂ivj − ∂jvi
Incompressible fluid: divV = 0
Irrotational fluid: curl v = 0.



Local existence in Sobolev spaces:

I) Incompressible Irrotational case:

Local existence for Water wave problem:

Yosihara, Nalimov: close to still water in R2

Wu: in general in R2 and R3

(no instability when water wave turns over,

physical cond. hold in the irrotational case)

II) General Incompressible case:

Ebin: local exist with surface tension(announced)

Christodoulou-L: i) Sobolev norms remain bounded

as long as the physical cond. hold, first order

derivatives of the velocity and the second fun-

damental form of the free surface are bounded.

ii) local a priori bounds for Sobolev norms.

L: iii) Local existence assuming physical cond.

III) General Compressible case:

L: Local existence assuming physical cond.

IV) Generalizations:

L: Newtonian self gravity, special relativity.

General Relativity: Existence in special cases

by Rendall, Christodoulou, Friedrich.



Irrotational Incompressible case

(∂t + V k∂k)vi = −∂ip (8)

div V = 0, curl v = 0 (9)

Taking the divergence of (12) using (13):

�p = −(∂iV
j)(∂jV

i) < 0, p
∣∣∣
∂D = 0 (10)

By strong maximum principle ∇Np
∣∣∣
∂D < 0. Wa-

ter wave problem, uniform gravitational field g

g g

Incompressibility cond, p > 0 holds it together

If (13) holds then �vi=0 so V is determined

by its boundary values and hence one can re-

duce to equations on the boundary only.

If the boundary was smooth, then inverting

(14) would give that ∂p = O(V ) and so (12)

would be an O.D.E. (∂t + V k∂k)V = O(V ).

In general improved eq. for div V and curl v.



Lagrangian coordinates: ft : y → x(t, y):

dx/dt=V (t, x), x(0, y)=f0(y), y ∈ Ω

Boundary becomes fixed in the (t, y) coord.
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Lagrangian (t, y) Eulerian (t, x)

[0, T ]×Ω D = ∪0≤t≤T{t} × Dt

Dt = ∂t Dt = ∂t + V k∂k

∂k=
∂ya

∂xk
∂

∂ya ∂k=
∂

∂xk

Euler’s eq:

Dtvi = −∂ip,divV = 0

Coordinates: Dtx
i = V i

Dtκ = 0, κ = det(∂x/∂y)



(Dt det(M) = det(M)tr(M−1DtM).) so:

D2
t x

i = −∂ip, det(∂x/∂y) = κ0,

κ0 is a function of y only, e.g. κ0 = 1.



Energy Conservation E0(t) = E0(0) where

E0(t) =
∫
Dt

|V |2dx,

Proof of Energy conservation: We have∫
Dt

hdx=
∫
Ω
hκdy, κ=det(∂x/∂y), Dtκ = 0

so by the above and the divergence theorem

d

dt
E0 =

∫
Dt

Dt|V |2dx

=
∫
Dt

−2V i∂ip dx

= −
∫
∂Dt

2NiV
ip dS +

∫
Dt

2(∂iV
i)pdx = 0

by the boundary cond. and Euler’s eq.

Higher order Energies

Er(t) = ‖v‖Hr(Dt) + ‖x‖Hr(∂Dt)

where θij = ∂̄iNj is the second fundamental
form of ∂Dt.
Energy bound: If ∇Np ≤ −c0 < 0 then

Er(t) ≤ Cr(t, c
−1
0 )Er(0).



Euler’s eq.

D2
t x

i + ∂ip = 0, κ = det(∂x/∂y) = κ0, p
∣∣∣
∂Ω

= 0

where κ0(y), x(t, y), ∂i=(∂ya/∂xi)∂/∂ya. Here

p(t, y) is determined implicitly by taking the

divergence of the first equation and the time

derivative of the second:

�p = −(∂iV
k)∂kV

i, Vi = Dtxi.

Linearized equations Consider a family of so-

lutions x = x̄(t, y, r) depending on an extra pa-

rameter r and let δx = ∂x̄(t, y, r)/∂r
∣∣∣
r=0

.

D2
t δx

i + ∂iδp− (∂kp)∂iδx
k = 0,

divδx = 0, δp
∣∣∣
∂Ω

= 0.

since [δ, ∂i] = −(∂iδx
k)∂k and δκ = κdivδx.

Linearized stability: Let

Ẽr(t) = ‖δv‖Hr(Dt) + ‖δxN‖Hr(∂Dt)



and suppose that ∇Nh ≤ −c0 < 0. Then

Ẽr(t)≤Cr(x, t, c
−1
0 )Ẽr(0)

Existence for linearized eq.: Non standard

because the higher order operator −(∂kp)∂iδx
k

is not elliptic. It is positive because ∇Nh < 0.

Existence for Euler’s eq.: Follows from in-

vertibility and tame estimates for the linearized

operator using the Nash-Moser technique.



Rewriting the linearized equations for X=δx:

Ẍ + CX = B(X, Ẋ) +∇δp, divX
∣∣∣
∂Ω

= 0

where B is a bounded operator,

Ẋ = LDt
X is a modified time (Lie) deriva-

tive:

LDt
Xi = LDt

Xi =
∂xi

∂ya
DtX

a, Xa =
∂ya

∂xk
Xk

that preserves the divergence free condition:

divLDt
X = DtdivX, where D̂t = Dt +divV .

C is a positive symmetric operator on vector

fields satisfying the boundary condition if the

physical condition ∇Nh < 0 hold.

CX = −∇
(
(∂p) ·X

)
.

Let 〈X,Z〉=
∫
Dt
X·Zdx, where X ·Z = δijX

iZj =

gabX
aZb, and gab = δij

∂xi

∂ya
∂xj

∂yb
. ∇p·X = ∂kpX

k =

∂aXa, ∂a = ∂/∂ya



If divX
∣∣∣
∂Ω

=divZ
∣∣∣
∂Ω

=0:

〈X, CZ〉

=
∫
∂Dt

XNZN(−∇Np) dS, XN = X ·N

(Here ∂kp
∣∣∣
∂Dt

= Nk∇Np, since p
∣∣∣
∂Dt

= 0.)



Energy

Ẽ0 = 〈Ẋ, Ẋ〉+ 〈X,CX〉 =
∫
Ω
gabẊ

aẊb +Xa∂a(∂bpX
b) d

Energy bound:

DtẼ0 = 2〈Ẋ, Ẍ〉+ 〈Ẋ, CX〉+ 〈X,CẊ〉
+ 〈X, [LDt

, C]X〉+L.O.

= 2〈Ẋ, Ẍ + CX〉+ 〈X, [Dt,C]X〉+L.O.

Commutator estimate:

|〈X, [LDt
, C]X〉| ≤ c1〈X,CX〉

where c1 = ‖∇NDtp/∇Np(t, ·)‖L∞ In fact

LDt
CXi =

∂ya

∂xi
Dt

∂xn

∂ya
∂n(∂kpX

k) = ∂iDt(∂kpX
k)

= ∂iDt(∂apX
a) = ∂i(∂apẊ

a) + ∂i(∂aDtpX
a)

It follows that DtẼ0 ≤ CẼ0 so Ẽ0(t) ≤ CẼ0(0).



Higher order energies

Ẽr = ‖Ẋ‖Hr(Ω) + ‖XN‖Hr(∂Ω)

Prove that Ẽr(t) ≤ CẼr(0).



Orthogonal projection onto divergence free

vector fields Write

PX = X −∇q, �q = divX, q
∣∣∣
∂Ω

= 0

Project the linearized equations:

Ẍ + CX = B(X, Ẋ) +∇δp, divX
∣∣∣
∂Ω

= 0

where CX = −∇((∂kp)X
k), into an evolution

eq. for the divergence free part:

Ẍ +AX = PB(X, Ẋ)

for the operator

AX = PCX = P(−∇(Xk∂kp))

since the projection of the gradient of a func-

tion that vanishes on the boundary vanishes.

Here A is symmetric and positive when ∇Np<0:

〈X,AZ〉=
∫
∂Dt

XNZN(−∇Np)dS, divX=divZ=0

but not elliptic!



Energies

E = 〈Ẋ, Ẋ〉+ 〈X,AX〉

Estimates for the divergence free eq.:

Ẍ +AX = F, divX = divF = 0

(incompressible; det(∂x/∂y) = 1 = ρ, h = p)

AX = −P∇(Xk∂kp)

Er = ‖Ẋ‖Hr(Ω) + ‖XN‖Hr(∂Ω)

Er(t) ≤ Cr(Er(0) +
∫ t

0
‖F‖Hr(Ω)dτ)

Lowest order energy estimate

E = 〈Ẋ, Ẋ〉+ 〈X,AX〉

Ė = 2〈Ẋ, Ẍ +AX〉+ 〈X, [Dt,A]X〉+ L.O. ≤ CE,

using the commutator estimate:

|〈X, [Dt,A]X〉| ≤ C〈X,AX〉.



Lie Derivatives T
∣∣∣
∂Ω

∈ T(∂Ω) and div T = 0.

LTX
i = Tk∂kX

i −Xk∂kT
i

divLTX = 0 if div X = 0.

Commutators

[LT , A]Xi = (LT δ
ij)δjkAXk +ATpX

i

where for f
∣∣∣
∂Ω

= 0,

AfX = −P
(
δij∂j(X

k∂kf)
)

|〈X,AfX〉| ≤ C〈X,AX〉,

where C = ‖∇Nf/∇Np‖L∞(∂Ω).

Energies T family of vector fields that span

T(∂Ω).

ET
r (t) =

∑
|I|≤r, I∈T

√
〈LI

T Ẋ,LI
T Ẋ〉+ 〈LI

TX,ALI
TX〉

ET
r (t) ≤ CET

r (0).



Estimates of derivatives by the curl, the

divergence and tangential derivatives:

|∂Z| ≤ C
(
|divZ|+ |curlZ|+

∑
S∈S

|SZ|
)

S span T(∂Ω)

Estimates for the curl

LDt
curl v = 0

LDt
curl δz = 0, δzi = δijẊ

j − curl vij X
j

since curlAX = 0.

LDt
curlLI

T δz = 0,



Existence for the divergence free eq.: Re-
place A by a a sequence of bounded operators
Aε for which existence is known and such that
we uniformly have the same commutator esti-
mates and hence energy estimates as ε → 0.

Let χε(s)=χ(s/ε), where χ(s)=1, when s ≥ 1,
χ(s) = 0, when s ≤ 0, and χ′(s) ≥ 0 and set

AεX = −P(χε(h)∇(Xk∂kh))

= P(χ′
ε(h)(∇h)Xk∂kh)

The equality follows since P∇
(
χε(h)Xk∂kh

)
=0

since we project along gradients of functions
that vanish on the boundary.

The equation

Ẍε +AεXε = F

is an O.D.E. since Aε is bounded so existence
follows and one prove that with

Eε
r = ‖Ẋε‖Hr(Ω) + ‖Xε

N‖Hr(∂Ω)

we have

Eε
r(t) ≤ Cr(E

ε
r(0) +

∫ t

0
‖F‖Hr(Ω)dτ)

where Cr is independent of ε.



Inverse Function Theorems

Th. 1 Suppose that Φ is a smooth map be-
tween Banach spaces (e.g. Ck or Hk).
Suppose also that Φ(0) = 0 and Φ′(0) is in-
vertible. Then for f close to 0 the equation
Φ(x) = f has a solution x.

Th. 2 Suppose that Φ is a smooth tame map
between tame Frechet spaces (e.g. C∞).
Suppose also that Φ(0) = 0, Φ′(x) is invertible
for x close to 0 and the inverse Φ′(x)−1 is a
smooth tame map. Then for f close to 0 the
equation Φ(x) = f has a solution x.

Def tame Frechet space: exist grading of semin-
norms ‖g‖a ≤ ‖g‖b, if a ≤ b, and exist smooth-
ing operators; Sθ, 1 < θ < ∞, satisfying

‖Sθu‖b ≤ θb−a‖u‖a, ‖(I − Sθ)u‖a ≤ θa−b‖u‖b,
for a ≤ b. P is a tame map if there is an r0
such that for all r: ‖P(g)‖r ≤ Cr(‖g‖r+r0 + 1).

Nash-Moser technique to solve Φ(x) = f .
Given x solve for δx so Φ(x) + Φ′(x)δx = f .
Gives x̂ = x+ δx so Φ(x̂) = f +O(δx)2. Going
from x to x̂ looses regularity so smooth x̂.



The Nash-Moser technique (incompressible)

The nonlinear map: x(t, y) ∈ C∞([0, T ]×Ω)

Φi(x) = D2
t xi + ∂ip, ∂i = (∂ya/∂xi)∂a,

where p = Ψ(x) is given by solving

�p = −(∂iV
k)∂kV

i, p
∣∣∣
∂Ω

= 0, V = Dtx.

Solution of Euler’s eq.

Φ(x) = 0, x
∣∣∣
t=0

= f0, Dtx
∣∣∣
t=0

= V0

Turning initial cond. into a small inhom.

Formal power series solution x0 as t → 0, k ≥ 0:

Dk
tΦ(x0)

∣∣∣
t=0

= 0, x0
∣∣∣
t=0

= f0, Dtx0
∣∣∣
t=0

= V0

Let F0 = Φ(x0), t ≥ 0 and F0 = 0, t ≤ 0,

Fδ(t, y)=F0(t−δ, y), Φ̃(u) = Φ(u+x0)−Φ(x0).

Φ̃(u) = Fδ − F0, u
∣∣∣
t=0

= Dtu
∣∣∣
t=0

= 0

is equiv. to Φ(u + x0) = 0 for 0 ≤ t ≤ δ.

Φ̃(0) = 0 and Fδ − F0 → 0, when δ → 0.



Th Suppose that x and δΦ are smooth. Then

Φ′(x)δx = δΦ, δx
∣∣∣
t=0

= Dtδx
∣∣∣
t=0

= 0

has a smooth solution δx that satisfies

‖Drδx‖r−1 + ‖δx‖r

≤ Kr

∫ t

0
(‖δΦ‖r + ‖|x‖|r+4,2‖δΦ‖0) dτ

if the coordinate and physical condition hold,

where Kr = Kr(‖x‖4,2). Here

‖X‖r = ‖X(t, ·)‖Hr(Ω), ‖X‖r,∞ = ‖X‖Cr(Ω)

‖|X‖|r,k = sup
0≤t≤T

‖X‖r,∞ + ...+ ‖Dk
t X‖r,∞

Include time derivatives up to highest or fixed

order? Smoothing in space or space-time?

Using Sobolev’s lemma and the eq.

Φ′(x)δx = D2
t δx − ∂kp ∂iδx

k + δp. we get the

tame estimate

‖|δx‖|r,2 ≤ Kr(‖|δΦ‖|r+r0,0 + ‖|x‖|r+r0+4,2‖|δΦ‖|0,0)

where r0 = [n/2] + 1.



The coordinate and physical conditions

Let M(t) = supy∈Ω
√
|∂x/∂y|2 + |∂y/∂x|2. Then

M(t) ≤ 2M(0), for t ≤ T,

if T‖|ẋ‖|1M(0) ≤ 1/8

Let N(t) = supy∈∂Ω |∇Np|−1. Then assuming

that T is so small that the above hold we have

N(t) ≤ 2N(0) for t ≤ T,

if T‖|ṗ‖|1M(0)N(0) ≤ 1/8

Each iterate x as well as smoothing of it Sθx

will stay in the set ‖|x‖|4,2 ≤ 1. Must be able

to invert Φ′(Sθx).



Hölder norms

‖u‖a,∞ = sup
x,y∈B

∑
|α|=k

|∂αu(x)−∂αu(y)|
|x− y|a−k

+ sup
x∈B

|u(x)|

Satisfy ‖g‖a ≤ ‖g‖b, if a ≤ b

Smoothing operators Sθ, 1 < θ < ∞:

‖Sθu‖b ≤ θb−a‖u‖a, ‖(I − Sθ)u‖a ≤ θa−b‖u‖b,

for a ≤ b. We can take Ω = {x ∈ Rn; |x| ≤ 1}.
Smoothing operators exist for functions sup-

ported in the interior of a compact set, say

B2 = {x ∈ Rn; |x| < 2} Therefore we first ex-

tend our functions in C∞(Ω) to functions in

C∞
0 (B2). Using Stein’s extension operator one

can do so without changing the Hölder norms

with more than a multiplicative constant.

Alternatively Smoothing in time as well. Can

preserve the condition that the x − x0 to infi-

nite order as t → 0, under a smoothing process.

This is used in the compressible case.



Regularity properties of the Euler map
Suppose that x ∈ F = C∞

(
[0, T ]×Ω

)
and wj ∈

F, for j ≤ k. Set x = x+ r1w1 + ...+ rkwk and
suppose that Φ(x) is a Ck function of (r1, ..., rk)
close to (0, ...,0) with values in F. We now
define the k:th (directional) derivative of Φ at
the point x in the directions wi, i = 1, .., k by

Φ(k)(x)(w1, ..., wk) =
∂

∂r1
· · · ∂

∂rk
Φ(x)

∣∣∣
r1=...=rk=0

We say that Φ(x) is differentiable at x if Φ(x)
is a Ck function of (r1, ..., rk) close to (0, ...,0)
with values in F, and if Φ(j)(x)(w1, ..., wj) is
linear in each of w1, ..., wj, for j ≤ k. Need:

(Φ′(ui)−Φ′(Siui))δui

=
∫ 1

0
Φ′′(Siui + s(I − Si)ui)(ui − Siui, δui) ds

Φ(ui+1)−Φ(ui)−Φ′(ui)δui

=
∫ 1

0
(1− s)Φ′′(ui + sδui)(δui, δui) ds



Tame estimate for the second derivative Φ

is twice differentiable and satisfies

‖|Φ′′(u)(v1, v2)‖|a
≤ Ca

(
‖|v1‖|a+μ,2‖|v2‖|μ,2 + ‖|v1‖|μ,2‖|v2‖|a+μ,2

)

+Ca

(
‖|u‖|a+μ,2‖|v1‖|μ,2‖|v2‖|μ,2

)

provided that ‖|x‖|4,2 ≤ 1.


