T he motion of the free
surface of a liquid

Hans Lindblad
University of California San Diego



Motion of a liquid body in vacuum

(the ocean or a star)

Incompressible or compressible perfect fluid
Without surface tension and gravitation
v-velocity, p-pressure, p-density, t-time

Free boundary problem:

The velocity tells the boundary where to move.
The boundary is the zero set of the pressure
and the pressure determines the acceleration.
(Regularity of the boundary is intimately con-
nected to the regularity of the velocity. )



Euler’'s Incompressible equations

(8 +VEO v, =—-8;p InD i=1,...,n (1)
divV =0, inD (2)

Op= VF=uy, VRO =YV, divi=0,V*

Boundary conditions

(O + VFop)|sp € T(OD) (3)
p =0, on 0D (4)

T(0D) is the tangent space of the boundary.

Initial conditions

{z;(0,z) € D} = Do (5)
V(0,z) = Vp(x),, in Dg (6)



Local Existence?:

Given a domain Dg C R", a vector field Vj
and a function pg in Dg satisfying the com-
patibility conditions (?7). Find a domain D =
Uo<i<7{t} X D¢, Dy C R™, a vector field V and
a function p in D, such that (1)-(6) hold.

Local existence for analytic data
Baouendi-Goulaouic, Nishida
(incompressible irrotational case)

Instability in Sobolev norms?
Rayleigh-Taylor Instability

(heavier fluid above lighter)

Ebin’'s counterexample (when p<0, Vyp>0).

Physical condition

Vnp <—cg <0, on 0Dy, (7)

where Vy = N*9, and N is the exterior normal
Since the pressure of a fluid has to be positive
Needed for local existence in Sobolev Spaces.

Vorticity: curl Vij = (%’Uj — ajvi
Incompressible fluid: divV =0
Irrotational fluid: curlv = 0.



Local existence in Sobolev spaces:

I) Incompressible Irrotational case:

Local existence for Water wave problem:
Yosihara, Nalimov: close to still water in R?2
Wu: in general in R? and R3

(no instability when water wave turns over,
physical cond. hold in the irrotational case)

II) General Incompressible case:

Ebin: local exist with surface tension(announced)
Christodoulou-L: i) Sobolev norms remain bounded
as long as the physical cond. hold, first order
derivatives of the velocity and the second fun-
damental form of the free surface are bounded.

i) local a priori bounds for Sobolev norms.

L: iii) Local existence assuming physical cond.

III) General Compressible case:
L: Local existence assuming physical cond.

IV) Generalizations:

L: Newtonian self gravity, special relativity.
General Relativity: EXxistence in special cases
by Rendall, Christodoulou, Friedrich.



Irrotational Incompressible case
(8t + VO )v; = —d;p (8)
divV = 0, curlv =20 (9)
Taking the divergence of (12) using (13):

Ap = —(8;V7)(9,;V*) < 0, pl. =0 (10)

oD

By strong maximum principle Vyp 5D < 0. Wa-

ter wave problem, uniform gravitational field g

.

Incompressibility cond, p > 0 holds it together

If (13) holds then Av;,=0 so V is determined
by its boundary values and hence one can re-
duce to equations on the boundary only.

If the boundary was smooth, then inverting
(14) would give that 9p = O(V) and so (12)
would be an O.D.E. (8; + Vk9,)V = O(V).

In general improved eq. for divV and curlw.



Lagrangian coordinates: f;: vy — z(t,v):

de/dt=V(t,z), x(0,y)=fo(y), y €

Boundary becomes fixed in the (¢,y) coord.

.e,,UQ

y
Lagrangian (t,y) Eulerian (¢, x)
[0,T] x D = Up<t<T{t} X Dy
Dy = & Dy = 8; + V¥o,
_0y* 0 _ 0
Ok = 5ak By O = 5o
Euler’s eq:

Dyv; = —8;p,divV = 0

Coordinates: D;z' = V?
Dix = 0, k = det(9dz/0y)



(Dydet(M) = det(M)tr(M~1D;M).) so:
DZz' = —8;p, det(dx/dy) = ro,

ko IS a function of y only, e.g. kg = 1.



Energy Conservation Ey(t) = Eg(0) where

Eo(t :/ V|%dz,

o(t) Dtl |[“dx
Proof of Energy conservation: We have
hd:c —/hﬁ:dy, k=det(@z/0y), Dix =20

SO by the above and the divergence theorem

d
—Eo_/ Dy|V |2dz
dt Dy
= —2Vi8ip dx
Dy
— _ [ 2N, VipdS + / 2(0;V)pdx = 0
0Dy Dy

by the boundary cond. and Euler’'s eq.

Higher order Energies

Er(t) = vl grep,y + 2l groD))
where 0;; = 5Z-Nj is the second fundamental

form of 9D;.
Energy bound: If Vyp < —cg < 0 then

Er(t) < Cr(t, cg ) Er(0).



Euler’s eq.
thaji + 0,p =0, ~kr=det(0zx/0y) = ko,

where ko(y), z(t,vy), ;= (0y*/0z")0/0y®*. Here
p(t,y) is determined implicitly by taking the
divergence of the first equation and the time
derivative of the second:

Ap = —(O;VFOLVE,  V; = Dy

Linearized equations Consider a family of so-
lutions x = z(¢,y,r) depending on an extra pa-
rameter r and let dx = 9z (t,y,r)/Or

r=0
D75z + 8;6p — (9yp)8;62" = 0,
divox = O, 5p|aQ = 0.
since [, 8;] = —(8;02%)8;, and dk = rdivézx.
Linearized stability: Let

E.(t) = ||5U||HT(Dt) + ||55’3N||H7“(8Dt)

p|aQ —

0



and suppose that Vyh < —cg < 0. Then

Er(t) S CT($7 t7 Cal)Er(O)

EXistence for linearized eq.: Non standard
because the higher order operator —(8.p)d;6z"
is not elliptic. It is positive because Vyh < 0.

EXxistence for Euler’s eq.: Follows from in-
vertibility and tame estimates for the linearized
operator using the Nash-Moser technique.



Rewriting the linearized equations for X =/x:

X +CX = B(X,X) + Vép, divX|8Q =0

where B is a bounded operator,

X = Lp,X is a modified time (Lie) deriva-
tive:

: : Oz’ 0y i

1 1 a a __
Lp X" = Lp X _ayaDtX , X _aka
that preserves the divergence free condition:
diVﬁDtX = DidivX, where Dt = D; + divV.

C' is a positive symmetric operator on vector
fields satisfying the boundary condition if the
physical condition Vyh < 0 hold.

CX = —V((@p) : X).

Let (X,Z)= [p X Zdx, where X - Z = 6;;X'Z) =
gabXaZb, and 9ab — 5@2—52(3—2;. Vp- X = 3kpXk p—
0a X, Oq = 8/83;“



(X, CZ)

- N
= X
Xy =
Zn(—=Vnp) dS,

XN

- aD;

\ =0.)
since p oD,

= Nkv]\]p,

(Here 8kp|82)t



Energy

Bo = (X, X) + (X,0X) = [_guX"X"+ X"0u(9pX") d

Energy bound:

DiEg = 2(X, X) + (X,CX) + (X, CX)
+ (X,[Lp,,C1X) 4+ L.O.
= 2(X, X 4+ CX)+ (X, [D:,C]1X) + L.O.

Commutator estimate:
|<X7 [‘CDt7C]X>| < Cl<X7 CX>
where c1 = ||V NDp/V np(t, )| In fact

8
Lp,CX; = Iy” ud 8n(3kpX )—8Dt(8kpX )
8:1;7’ 83/

= 0;D(0apX®) = 0;(0apX®) + 0;(8aDipX*)

It follows that D;Eg < CEq so Eg(t) < CEg(0).



Higher order energies

Er = | X grq) + 1Xn 5 00)
Prove that E,(t) < CE.(0).



Orthogonal projection onto divergence free
vector fields Write

PX =X —-Vq, Ag=divX, q‘aQIO
Project the linearized equations:
X +CX = B(X,X) + Vép, divX|aQ =0

where CX = —V((dip)X¥), into an evolution
eq. for the divergence free part:

X4+ AX = PB(X,X)
for the operator
AX = PCX = P(—V(X*3,p))

since the projection of the gradient of a func-

tion that vanishes on the boundary vanishes.

Here A is symmetric and positive when Vyp<O0:

<X,AZ>= aDXNZN(—VNp)dS, divX =divZ=0
t

but not elliptic!



Energies

E=(X,X)+ (X, AX)

Estimates for the divergence free edq.:
X + AX = F, divX = divF =0
(incompressible; det(0x/0y) =1 = p, h = p)
AX = —PV(X*o.p)

Er = | Xl gr) + 1 XNl ar00)

t
Br(8) < Cr(Er(0) + [ I1Fll reydr)
Lowest order energy estimate

E=(X,X)+ (X, AX)

E=2(X,X + AX)+ (X, [Ds, A]X) + L.O. < CE,

using the commutator estimate:
(X, [Dt, AIX)| < C(X, AX).



Lie Derivatives T|aQ c T(9) and divT = 0.
LrpX'=TFo, X" — X*, T

divLrX =0 if div X = 0.

Commutators
(L7, AJXY = (L76Y)8;, AXF 4+ Ap, X
where for f|8Q = 0,
Apx = —P(50;(X*0,1))

where C' = ||V [/ VDl Lo (50)-

Energies 7 family of vector fields that span
T(022).

ET( = Y \JhX, chX) + (chx, Ackx)
I|<r,I€T

E](t) < CE](0).



Estimates of derivatives by the curl, the
divergence and tangential derivatives:

0] < C(|div Z| + |curl Z| + Y |SZ])

SeS
S span T(02)
Estimates for the curl
Lp,curlv =0
Lp,curl §z =0, §z; = §;; X7 — curlv;; XJ

since curl AX = 0.

Lp,curl £§(Sz = 0,



Existence for the divergence free eq.: Re-
place A by a a sequence of bounded operators
Af for which existence is known and such that
we uniformly have the same commutator esti-
mates and hence energy estimates as ¢ — O.

Let x:(s)=x(s/e), where x(s)=1, when s > 1,
x(s) =0, when s <0, and x/(s) > 0 and set
A*X = —P(xe(h)V(X*8;h))
= P(xL(h)(Vh)X"0h)
The equality follows since PV(Xg(h)Xkﬁkh) =0

since we project along gradients of functions
that vanish on the boundary.

T he equation
X+ AXE =F

is an O.D.E. since A¢ is bounded so existence
follows and one prove that with

E; = 1 X N gre) + 1XN 1 ara0)
we have

t
BE(t) < Cr(BE0) + [ I1F ()

where C, is independent of «.



Inverse Function Theorems

Th. 1 Suppose that ¢ is a smooth map be-
tween Banach spaces (e.g. C¥ or HF).
Suppose also that ©(0) = 0 and ®’(0) is in-
vertible. Then for f close to O the equation
d(x) = f has a solution .

Th. 2 Suppose that @ is a smooth tame map
between tame Frechet spaces (e.g. C).
Suppose also that ®(0) = 0, ®'(z) is invertible
for x close to 0 and the inverse ®/(z)~ 1 is a
smooth tame map. Then for f close to O the
equation ®(x) = f has a solution .

Def tame Frechet space: exist grading of semin-
norms ||glla < ||gllp, If @ < b, and exist smooth-
ing operators; Sy, 1 < 0 < oo, satisfying

1Sgully < 8° %ulla, ||(T — Sg)ulla < 697 |ully,
for a < b. P is a tame map if there is an rg
such that for all r: ||P(g)|lr < Cr(l|gllrgry + 1)-

Nash-Moser technique to solve d(z) = f.
Given z solve for éxz so ®(z) + ®'(x)éx = f.
Gives & = z 4+ 6z so ®(z) = f+ O(6z)2. Going
from x to x looses regularity so smooth z.



The Nash-Moser technique (incompressible)

The nonlinear map: z(t,y) € C*°([0,T] x £2)
®;(z) = Dfw;+0p, 9 = (9y*/0x")da,

where p = W(x) is given by solving

Ap=—(@;VMV', p|, =0, V=D
Solution of Euler’'s eq.
®(z) =0,  a,_ =/fo, Duz|,_ =W

Turning initial cond. into a small inhom.
Formal power series solution xg ast — 0, k > O:

qu’(fb‘o)‘t:O: 0, fL‘o|t:O= fo, thﬂo‘t:(): Vo

Let Fp = P(zg), t > 0 and Fyp = 0, t < O,

F5(t,y) = Fo(t—6,y), ®(u) = ®(u+=z0) — P(z0).
d(u) = F5 — Fp, u‘tzo = Dtu‘tzo =0

is equiv. to ®(u+ xg) = 0 for 0 < t < 6.
®(0) =0 and Fs — Fy — 0, when § — O.



Th Suppose that x and d® are smooth. Then

/ _ _ _
D' (x)dx = 5D, 5ZB|t:O = Didx . 0

has a smooth solution dx that satisfies
| Dréx||,—1 + ||6x||r
t
< K | 0] + ll2]],-+4,215®ll0) dr

if the coordinate and physical condition hold,
where K, = Kr(||z|42). Here

1X [l = 11X (Dl () X llro0 = 1 X1l ey
Xk = SUp || X]lro0 + - + | DFX || r00
0<t<T

Include time derivatives up to highest or fixed
order? Smoothing in space or space-time?
Using Sobolev's lemma and the eq.

P/ (z2)ox = th&c — Op 8;0zF + 5p. we get the
tame estimate

Hoz||ly2 < Kr([[|6Ply4rq,0 + Zlllr4ro+a,21l16P]l0,0)
where rog = [n/2] + 1.



The coordinate and physical conditions
Let M(t) = supyeq \/|0z/dy|2 + |8y/dz|2. Then

M(t) < 2M(0), fort<T,
if  T||z]|[;tM(0) <1/8

Let N(t) = sup,ecpe |[Vap|~t. Then assuming
that T is so small that the above hold we have

N(t) <2N(0) fort<T,
it T[pll|1M(O)N(0) <1/8

Each iterate =z as well as smoothing of it Syx
will stay in the set |||z||[42 < 1. Must be able
to invert ®'(Syx).



Holder norms

e’ _He
||u||a,oO — sup Z | U(ﬂf) U(y)l

ok sup fu(@)
w,yEB|a|:k [z — y reB

Satisty [lglla < llgllp, if @ <b

Smoothing operators Sy, 1 < 0 < oo

1Sgully < 6°~ulla, (T — Sp)ulla < 8% 0|ully,

for a <b. We can take Q2 = {z € R"; |z| < 1}.
Smoothing operators exist for functions sup-
ported in the interior of a compact set, say
By = {x € R"; |x| < 2} Therefore we first ex-
tend our functions in C*°(2) to functions in
C§°(B2). Using Stein’s extension operator one
can do so without changing the Holder norms
with more than a multiplicative constant.

Alternatively Smoothing in time as well. Can
preserve the condition that the = — xg to infi-
nite order ast — 0O, under a smoothing process.
This is used in the compressible case.



Regularity properties of the Euler map
Suppose that x € F = C° [O T] x Ql and w; €
F, for 3 <k. Seta:—:r;—l—rlwl—l— rrwg and
suppose that ®(z) is a C* function of (rq, ..., )
close to (0O,...,0) with values in F. We now
define the k:th (directional) derivative of @ at
the point x in the directions w;, : = 1,..,k by
SE (@) (wr, ey ) = - - (T)
87“1 a’l“k

We say that ®(x) is differentiable at z if (%)
is a C* function of (rq, ..., ’r‘k) close to (0O,...,0)
with values in F, and if ®U)(z)(wq,..., w]) is
linear in each of wy,...,w;, for j < k. Need:

r1=...=rp=0

(' (u;) — D'(S;u;))du;
1
= /O (D”(Sz'uz' + s(I — S;)u;) (u; — Siug, du;) ds

D(uir1) — P(u;) — D' (u;)du,
1
= /O (1 — s)D"(u; + séu;) (du;, du;) ds



Tame estimate for the second derivative ¢
is twice differentiable and satisfies

[ (u) (v1, v2)lla
< Ca(lleallatp2llv2llu2 + vl 2 v2lllatp )

+Ca el 2l 22l 2

provided that |[||z]||42 < 1.



