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5.4 Control of Ė4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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ABSTRACT OF THE DISSERTATION
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We prove that the equations of motion of an incompressible, inviscid, self-gravitating fluid with

free boundary are well-posed in Sobolev space. The methodology consists of a fixed-point argu-

ment using a tangential smoothing operator, followed by energy estimates.

viii



Chapter 1

Introduction.

Let Ωt ⊆ R3 be the domain occupied by a fluid at time t ∈ [0, T ] and suppose that the

fluid has velocity v(t, x) and pressure p(t, x) at a point x in Ωt. For an inviscid, self-gravitating

fluid these two quantities are related by Euler’s equation

(

∂t + vi∂i

)

vj = −∂jp − ∂jφ (1.0.1)

in Ωt, where ∂i = ∂
∂xi and vi = δijvj and where φ is the Newtonian gravity-potential defined by

φ(t, x) = −χΩt
∗ Φ(x) (1.0.2)

on Ωt, where χΩt
is a function which takes the value 1 on Ωt and the value 0 on the complement

of Ωt and where Φ is the fundamental solution to the Laplacean. We can impose the condition

that the fluid be incompressible by requiring that the fluid-velocity be divergence-free:

div v = ∂iv
i = 0 in Ωt. (1.0.3)

The absence of surface-tension is imposed with the following boundary condition:

p = 0 on ∂Ωt (1.0.4)

and to make the free-boundary move with the fluid-velocity, we have

∂t + vi∂i is in the tangent-space of ∪t∈[0,T ] [Ωt × {t}]. (1.0.5)

The problem is, then, is to prove the existence of a triple (v, p, Ωt) satisfying (1.0.1) - (1.0.5) in

some interval [0, T ], given the initial-conditions

v = v0 on Ω0, (1.0.6)

where v0 and Ω = Ω0 are known. We will also assume that initially there is a constant c0 such

that

∇p · N ≤ −c0 < 0 on ∂Ω (1.0.7)

1
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where N is the exterior unit normal to ∂Ω.

The main theorem we will prove in this paper is the following:

THEOREM 1.0.1 Let the initial domain Ω be in H8 and let v0 be in H7.5(Ω). Then there is a

unique solution (v, p, Ωt) satisfying (1.0.1), (1.0.3), (1.0.4) and (1.0.6), in some interval [0, T ],

such that Ωt is in H8 and v is in L2
[

[0, T ], H7.5(Ωt)
]

.

1.1 Background.

Past progress has been made in three situations: The first progress was made on the

water-wave problem under the assumption that the fluid be irrotational − that is, the curl of

the fluid-velocity is zero −, incompressible and that the free-boundary not be subject to surface-

tension. Notable results in this area are Wu’s papers [11] and [12] where she uses Clifford

analysis to show well-posedness in two and then three dimensions in an infinitely deep fluid;

and also Lannes’ paper [4] where the Nash-Moser technique is used to prove well-posedness in

arbitrary space-dimesions for a fluid of finite depth.

In [2], Christodoulou and Lindblad proved a priori estimates for the incompressible

Euler’s equation, without the assumption of irrotationality. They were not sufficient to obtain

the existence result, however, because no approximation-scheme was discovered which did not

destroy the structure in the equations on which the estimates relied. In [5] Lindblad proved

that the equations obtained by linearising Euler’s equation around a solution are well-posed.

Using the fact that the linearised operator was invertible, Lindblad then used the Nash-Moser

approximation scheme to obtain the full well-posedness in [6]. Well-posedness was also proved

by Coutand and Shkoller in [3], using a fixed-point argument which relies on smoothing the

fluid-velocity only − crucially − in the direction tangential to the boundary. This is followed

by energy estimates which we will discuss in detail in chapter 5. Also, in [10], Shatah and Zeng

prove a priori estimates under these conditions by considering Euler’s equation as the geodesic

equation on the group of volume-preserving diffeomorphisms. The latter two papers also consider

the case of positive surface-tension.

1.2 A conserved quantity.

Let us begin by defining Lagrangian coordinates and then noting a conserved quantity

for the flow: Suppose that v satisfies (1.0.1) and (1.0.3), and that x satisfies

dx

dt
(t, y) = v(t, x(t, y)) and x(0, y) = y (1.2.1)

for y in Ω and for t in some time interval [0, T ]. This means that x(t, ·) : Ω → Ωt is such that

∂t det

(

∂x

∂y

)

(t, y) = div v ◦ x(t, y) = 0. (1.2.2)
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And since det
(

∂x
∂y

)

(0, y) = 1 we therefore have det
(

∂x
∂y

)

= 1 in Ω. Let

E(t) =

∫

Ωt

v(t, x) · v(t, x)dx +

∫

Ωt

φ(t, x)dx (1.2.3)

=

∫

Ω

v(t, x(t, y)) · v(t, x(t, y))dy +

∫

Ω

φ(t, x(t, y))dy. (1.2.4)

Then

E(0) =

∫

Ω

v0(x) · v0(x)dx −

∫

Ω

φ(0, x)dx (1.2.5)

where the second integral in (1.2.5) converges. Using (1.0.1), the time derivative of the first term

in E is equal to

−2

∫

Ω

(∂ip)(t, x(t, y))vi(t, x(t, y))dy − 2

∫

Ω

(∂iφ)(t, x(t, y))vi(t, x(t, y))dy. (1.2.6)

The first integral in (1.2.6) can be shown to be zero using integration by parts. Now φ(t, x) =
∫

Ωt
−Φ(|x − z|)dz. Thus

(∂iφ)(t, x(t, y)) =

∫

Ω

[x(t, y) − x(t, z)]iΦ
′(|x(t, y) − x(t, z)|)dz.

And therefore the second integral in (1.2.6) is equal to

−2

∫

Ω

∫

Ω

[x(t, y) − x(t, z)] · v(t, x(t, y))Φ′(|x(t, y) − x(t, z)|)dydz. (1.2.7)

The time derivative of the second term in E is equal to
∫

Ω

∫

Ω

[x(t, y) − x(t, z)] · [v(t, x(t, y)) − v(t, x(t, z))]Φ′(|x(t, y) − x(t, z)|)dydz (1.2.8)

=

∫

Ω

∫

Ω

[x(t, y) − x(t, z)] · v(t, x(t, y))Φ′(|x(t, y) − x(t, z)|)dydz (1.2.9)

+

∫

Ω

∫

Ω

[x(t, z) − x(t, y)] · v(t, x(t, z))Φ′(|x(t, z) − x(t, y)|)dzdy (1.2.10)

= 2

∫

Ω

∫

Ω

[x(t, y) − x(t, z)] · v(t, x(t, y))Φ′(|x(t, y) − x(t, z)|)dydz. (1.2.11)

Thus (1.2.7) cancels (1.2.11), which means that Ė = 0. Since
∫

Ωt
φ(t, x)dx < ∞, this means that

‖v‖L2(Ωt) is always finite. We will prove higher order versions of this in chapter 5.

1.3 Summary of the argument.

We show well-posedness for (1.0.1) - (1.0.5) under the initial conditions (1.0.6) and

(1.0.7), using the methodology developed by Coutand and Shkoller in [3]: We suppose to begin

with that we have been given Ω in H9 and v0 in H8(Ω). We prove elliptic estimates for p and

φ in chapter 3 and chapter 4. These are used subsequently, both to prove a priori estimates in

chapter 5 and to prove the existence of a fixed point in chapter 6. In chapter 5, we smooth V in
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the directions tangential to the boundary using a convolution-type operator, with the smoothing

controlled by the parameter κ. Using this smoothing we can write down a version of Euler’s

equation where the transportation velocity is smoothed. Let the flow of Vκ be defined by

xκ(t, y) = y +

∫

[0,t]

Vκ(s, y)ds.

We now define the energy

Eκ(t) = sup
[0,t]

[‖V ‖7.5 + ‖xκ‖8 + κ‖V ‖8] (1.3.1)

and prove that there is T1 > 0, which does not depend on κ, such that Eκ(T1) ≤ E0, where E0

depends on the fact that Ω is in H8, on ‖v0‖8 and on Eκ(0). Now let V be a point in the space

Cκ(T ) =

{

f ∈ L2
(

[0, T ], H8(Ω)
)

: sup
[0,T ]

‖f‖8 ≤ κ−1E0 + 1

}

.

Thus we also control the flow x of V in H8(Ω). To find a solution to Euler’s equation with

smoothed transport-velocity, one seeks a fixed-point of the operator

Λi(V ) = vi
0 −

∫

[0,t]

(∂i
κ pκ) ds −

∫

[0,t]

(∂i
κ φκ) ds.

Here ∂i
κ = δij ∂

∂x
j
κ

are derivatives with respect to the coordinates xκ. We define pκ as follows:

∆pκ = −

(

∂vj
κ

∂xi
κ

)(

∂vi

∂xj
κ

)

+ 1 on Ωt with boundary condition pκ = 0 on ∂Ωt.

And we define φκ by φκ(t, x) = −χΩt
∗ Φ(x). To show that Λ : Cκ(T ) → Cκ(T ) we use the

following elliptic-regularity theorem from chapter 3 and chapter 4:

THEOREM 1.3.1 We have

‖(∇κpκ) ◦ xκ‖8 ≤ P [‖xκ‖8, ‖∂θxκ‖8, ‖V ‖8] (1.3.2)

and

‖(∇κφκ) ◦ xκ‖8 ≤ P
[

‖xκ‖8, ‖∂
1
2

θ xκ‖8

]

. (1.3.3)

were ∂θ is a derivative which is tangential to the boundary.

Theorem 1.3.1 makes clear the main difficulty with this problem; namely, that the ge-

ometry of the domain contributes terms of the highest order. The smoothing along the boundary

allows the order to be reduced, at the cost of powers of 1
κ
: ‖∂θxκ‖8 = κ−1‖xκ‖8 which we can

control.

REMARK: The elliptic estimates for ∇κφκ are new. Their proof uses a Hodge-decomposition

inequality introduced by Lindblad in [5] and also an extension of the coordinate system xκ, to
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avoid the fact that a priori φκ may be ill-behaved along ∂Ωt. It should also be noted that the

estimates are in terms of ∇κpκ and ∇κφκ and not pκ and φκ, which saves commutators.

An application of theorem 1.3.1 proves that for T2 small enough, Λ is invariant on

Cκ(T2). Similar estimates show that Λ is a contraction which provides a unique fixed point

V , which depends on κ, defined on a time interval [0, T2]. Using the a priori estimates we now

extend this solution to the whole interval [0, T1] which does not depend on κ. Thus the fixed-point

solutions converge to a solution of Euler’s equation.

Finally, in chapter 7, we suppose that the initial domain Ω is in H8 and that the initial

data v0 is given in H7.5(Ω). We can smooth the initial data using a standard convolution to

obtain Ωε in H9 and v0,ε in H8(Ω). The previous argument then provides us with solutions vε to

Euler’s equation with initial data v0,ε. We prove that these solutions converge in H7.5(Ω) using

an energy-type argument.



Chapter 2

Preliminaries.

In this chapter we define the coordinates, the cut-off functions, the derivatives and the

norms which we will be using in this paper.

2.1 Coordinates and derivatives.

Let U1, . . . , Uµ ⊆ R3 be an open cover for ∂Ω such that for each Ui with i = 1, . . . , µ

there is a change of variables Ψi : {z ∈ R3 : |zj | ≤ 1 for j = 1, 2, 3} → Ui with

Ψi : {z ∈ R3 : |zj | ≤ 1 for j = 1, 2 and − 1 ≤ z3 ≤ 0} → Ui ∩ Ω

and,

Ψi : {z ∈ R3 : |zj | ≤ 1 for j = 1, 2 and z3 = d0} → Ui ∩ ∂Ωd0.

Here Ωd0 = {y1 + y2 ∈ R3 : y1 ∈ Ω and d(y2) < d0} where d(y) = dist(y, ∂Ω). Let Uµ+1, . . . , Uν

be an open cover for the rest of Ω such that for each Ui with i = µ + 1, . . . , ν there is a change

of variables Ψi : {z ∈ R3 : |zj | ≤ 1 for j = 1, 2, 3} → Ui. Let ξ1, . . . , ξν be a partition of unity

subordinate to U1 . . . , Uν . We will let z′ = (z1, z2) denote the tangential directions and we will

let z3 denote the final, normal, direction.

We will let x be coordinates on Ωt and ∂i, ∂j , ∂k, . . . be derivatives on Ωt; we will let y

be coordinates in a patch on Ω and ∂a, ∂b, ∂c, . . . will denote derivatives in such a patch; and we

will let z and ∂
∂zi to denote the coordinates and derivatives on (−1, 1)3. Moreover, ∇ will denote

an arbitrary derivative on Ωt and ∂ will denote an arbitrary derivative in a patch on Ω.

2.1.1 Tangential derivatives.

In this paper we will use two types of tangential derivatives: The first class contains

the derivatives 1 + ξk

(

∂Ψa
k

∂zi

)

◦ Ψ−1
k

∂
∂ya where k = 1, . . . , µ and i = 1, 2 which are tangential to

6
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the boundary of Ω. We will abuse notation and let ∂θ denote this type of derivative both on Ω

and on Ωt. We also define a fractional tangential derivative 〈∂θ〉
s for a function f on Ω to be the

operator which sends

∫

R2

f̂j(α
′, z3)eiα′·z′

dα′ to

∫

R2

〈α′〉sf̂j(α
′, z3)eiα′·z′

dα′,

where α′ = (α1, α2);

f̂j(α
′, z3) =

∫

R2

fj(z
1, z2, z3)eiα′·z′

dz′;

where 〈α′〉 =
[

1 + |α1|
2 + |α2|

2
]

1
2 ; and where fj = (ξjf) ◦ Ψj.

2.2 Norms.

In this section we define the norms on (−1, 1)2 × (−1, 0), Ω and Ωt.

2.2.1 ‖ · ‖Hs((−1,1)2×(−1,0)).

Let f be a function compactly supported on (−1, 1)2× (−1, 0) then for an integer k ≥ 0

we define

‖f‖2
Hk((−1,1)2×(−1,0)) =

k
∑

j=0

‖∇jf‖2
L2((−1,1)2×(−1,0))

where ∇ denotes
(

∂
∂z1 , ∂

∂z2 , ∂
∂z3

)

. Now because f is compactly supported,

‖∇jf‖2
L2((−1,1)2×(−1,0)) = ‖∇jf‖2

L2(R3) =

∫

R3

|α|2j |f̂ |2(α)dα

where f̂(α) =
∫

R3 f(z)eiα·zdz. Thus we define

‖f‖2
Hs((−1,1)2×(−1,0)) =

∫

R3

〈α〉2s|f̂ |2(α)dα

2.2.2 ‖ · ‖Hs(Ω), ‖ · ‖s and ‖ · ‖Hs(∂Ω).

Let f be a function on Ω. Then ξjf is a function supported in a coordinate neighbour-

hood. For integer k ≥ 0 we define

‖f‖2
Hk(Ω) =

ν
∑

j=1

k
∑

i=1

‖∇i[ξjf ]‖2

where ∇ =
(

∂
∂y1 , ∂

∂y2 , ∂
∂y3

)

and ‖ · ‖ denotes the L2(Ω)-norm. We define the intermediate spaces

by interpolation, see for instance [8] and [1]. Define fj = (ξjf)◦Ψj, which is compactly supported

in R3 and

‖f‖2
s =

ν
∑

j=1

∫

R3

〈α〉2s|f̂j |
2(α)dα.
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LEMMA 2.2.1 ‖ · ‖Hs(Ω) and ‖ · ‖s are equivalent.

PROOF: Let f be defined on Ω. Then ‖f‖2
Hk(Ω) =

∑ν
j=1

∑k
i=1 ‖∇

i[ξjf ]‖2
L2(Ω). We have ∇i[ξjf ] =

ξj(∇
if) + (∇ξj)(∇

i−1f) + . . . + (∇iξ)f and

‖ξj(∇
if)‖2

L2(Ω) =

∫

Ω∩Vj

ξ2
j

[

(∂/∂y)if
]2

dy

=

∫

Ω∩Vj

ξj(∂/∂y)i−1[(∂Ψ−1
j /∂y)∂/∂z[f ◦ Ψj ]]ξj(∂/∂y)ifdy

≤ c‖(ξjf) ◦ Ψj‖Hi((−1,1)2×(−1,0))‖ξj(∇
if)‖L2(Ω).

Finally, for a function g on ∂Ω we define ‖g‖Hs(∂Ω) = ‖〈∂θ〉
s[g]‖.

2.2.3 ‖ · ‖Hs(Ωt) and ‖ · ‖Hs(∂Ωt).

Let f be a function on Ωt. For integer k ≥ 0 we define ‖f‖2
Hk(Ωt)

= ‖f‖2
L2(Ωt)

+

. . . + ‖∇kf‖2
L2(Ωt)

, where ∇ =
(

∂
∂x1 , ∂

∂x2 , ∂
∂x3

)

. We define the intermediate Sobolev spaces by

interpolation. We also define ‖〈∂θ〉
s[f ]‖L2(Ωt) = ‖〈∂θ〉

s[f ◦ x]‖L2(Ω) and for a function g on ∂Ωt

we define ‖g‖Hs(∂Ωt) = ‖g ◦ x‖Hs(∂Ω). For integral s the operator 〈∂θ〉
s is equivalent (in the

L2(Ω)- and L2(∂Ω)-norm) to the application of multiples ∂θ.

2.2.4 Regularity of the domain.

We will use the following norm to quantify the regularity of the domain: ‖Ω‖s =
∑µ

i=1 ‖Ψi‖Hs([−1,1]3).

2.3 Smoothing.

Now we define the smoothing operator which we will be using. It is the main idea from

[3]: Let ϑ : R2 → R be a smooth function which is compactly supported on {z′ ∈ R2 : |z′| ≤ 1}

and such that
∫

R2 ϑ(z′)dz′ = 1. For κ > 0, define

ϑκ(z′) =
1

κ2
ϑ

(

z′

κ

)

then ϑκ is compactly supported on {z′ ∈ R2 : |z′| ≤ κ}. Let f be compactly supported in

{z′ ∈ R2 : |z′| ≤ 1} and let κ be smaller than the distance from the support of f to the boundary

of {z′ ∈ R2 : |z′| ≤ 1}. Define the tangential convolution of ϑκ and f by

ϑκ ∗ f(z) =

∫

R2

ϑκ(z′ − z′′)f(z′′, z3)dz′′.
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It will be obvious from the context whether by ∗ we mean the usual or the tangential convolution.

As can be seen, tangential convolution smooths in the tangential direction:

∂θ

[

ϑκ ∗ f ◦ Ψ−1
i

]

= ϑκ ∗ f ◦ Ψ−1
i +

∑

j=1,2

∫

R2

∂

∂zj
[ϑκ](z′ − z′′)f(z′, z3)dz′′ (2.3.1)

=
[

1 + κ−1
]

ϑκ ∗ f ◦ Ψ−1
i . (2.3.2)

Now suppose that f is a function defined on Ω and define the smoothed version of f to be

fκ =

µ
∑

i=1

ξ
1
2

i ϑκ ∗ ϑκ ∗
[(

ξ
1
2

i f
)

◦ Ψi

]

◦ Ψ−1
i +

ν
∑

i=µ+1

ξif. (2.3.3)

Sometimes we will let fb denote the first term in (2.3.3) − the part which is supported near

the boundary of Ω − and we will let fm denote the second term in (2.3.3) − the part which is

supported in the interior of Ω. Finally, Lagrangian-flow associated with f is given by

y +

∫

[0,t]

f(y, s)ds.

2.4 Cut off functions.

Fix d0 such that the normal N to ∂Ωt can be extended into the image of the set

{y ∈ Ω : d(y) < d0} under x. This fact is used in lemma 2.5.1 below. Let ηi and ζi be

radial functions which form a partition of unity subordinate to the sets {y ∈ R3 : d0

2i
< d(y)}

and {y ∈ R3 : d(y) < d0

i
} respectively. This means that ηi takes the value 1 on the set

{y ∈ R3 : d0

i
≤ d(y)} and ζi takes the value 1 on the set {y ∈ R3 : d(y) ≤ d0

2i
}. We will also let

ηi and ζi denote the analogous functions in the Eulerian frame.

2.5 Hodge-decomposition inequalities.

In this section we present three divergence-curl estimates which are used throughout

this text. Their proofs can be found in appendix B. The first allows pointwise control on all

derivatives near the boundary of Ωt by the divergence, the curl and tangential derivatives. Letting

ζ = ζi we have the following:

LEMMA 2.5.1 Let α be a vector-field on Ωt. Define (curlα)jk = ∂jαk − ∂kαj and div α = ∂jα
j .

Then we have the following pointwise estimate on Ωt:

|ζ∇α| ≤ |ζcurlα| + |ζdiv α| + |ζ ∂θα|, (2.5.1)

where | · | denotes the usual Euclidean distance.

Using lemma 2.5.1 and an induction argument we have the following lemma:
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LEMMA 2.5.2 For 0 ≤ s ≤ 8,

‖ζα‖Hs(Ωt) ≤ P
[

‖x‖8

] [

‖ζα‖L2(Ωt) + ‖ζcurlα‖Hs−1(Ωt) + ‖ζdiv α‖Hs−1(Ωt)

]

(2.5.2)

+ P
[

‖x‖8

]

‖ζ〈∂θ〉
sα‖L2(Ωt). (2.5.3)

We will also use the following estimates which allows Hs(Ωt) control in terms of the

divergence, the curl and boundary derivatives:

LEMMA 2.5.3 Let div α and curlα be defined as in lemma 2.5.1. Then, for 0 ≤ s ≤ 8,

‖α‖Hs(Ωt) ≤ P
[

‖x‖s

] [

‖α‖L2(Ωt) + ‖div α‖Hs−1(Ωt) + ‖curlα‖Hs−1(Ωt)

]

(2.5.4)

+ P
[

‖x‖s

]

‖(〈∂θ〉
s− 1

2 α) · N‖L2(∂Ωt), (2.5.5)

where N is the outward unit normal to ∂Ωt. Also,

‖α‖Hs(Ωt) ≤ P
[

‖x‖s

] [

‖α‖L2(Ωt) + ‖div α‖Hs−1(Ωt) + ‖curlα‖Hs−1(Ωt)

]

(2.5.6)

+ P
[

‖x‖s

]

‖(〈∂θ〉
s− 1

2 α) · Q‖L2(∂Ωt) (2.5.7)

where Q is a unit vector which is tangent to ∂Ωt.



Chapter 3

Elliptic estimates for p.

In this chapter κ > 0 is fixed. As was mentioned in the introduction, we will prove a

priori estimates for a smoothed Euler’s equation. Existence will follow a fixed-point argument

applied to a map Λ (which we will define in chapter 6) defined on the space

Cκ(T ) =

{

f ∈ L2
(

[0, T ], H8(Ω)
)

: sup
t∈[0,T ]

‖f‖8(t) ≤ κ−1E0 + 1

}

(3.0.1)

where E0 = E0(‖Ω‖9, ‖v0‖8), under the assumption that we control ‖Ω‖9 and ‖v0‖8. To prove

the a priori estimates and to apply the fixed point argument, elliptic estimates for p and φ are

required and in this chapter we prove the estimates for p. The result in section 3.1 will be used

to show that Λ is invariant on C(T ). The result in section 3.2 will be used to show that Λ

is also a contraction. In section 3.3, we prove the estimates for p which will be used for the

energy estimates in chapter 5 and estimates for establishing optimal regularity in chapter 7. The

estimates for φ are in chapter 4.

3.1 Estimates to show that Λ is invariant.

Let U be a point in C(T ) and let xκ be the flow of Uκ, where Uκ is the smoothed version

of U . We have

sup
[0,T ]

‖∂xκ − Id‖7 ≤ sup
[0,T ]

∫

[0,t]

‖∂Uκ‖7 ds ≤ T sup
[0,T ]

‖∂Uκ‖7 ≤ T sup
[0,T ]

‖U‖8 (3.1.1)

and therefore for small enough T , Bi
a =

∂xi
κ

∂ya is invertible and its inverse Aa
i = ∂ya

∂xi
κ

is well-defined.

By choosing T to be smaller if necessary, we can assume that 1
2 ≤ c1 ≤ det(B) ≤ c2 ≤ 3

2 .

LEMMA 3.1.1 For 0 ≤ i ≤ 7, we have ‖A‖i ≤ P
[

‖xκ‖8

]

.

PROOF: This follows an induction argument by applying derivatives to the relation δj
i = Aa

i Bj
a

and using interpolation.

11
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Let V and W be points in C(T ) and define vκ = Vκ ◦ x−1
κ and w = W ◦ x−1

κ . Define a

function f on Ωt = xκ(Ω, t) by

∆f = −(∇vκ)(∇w) + 1 on Ωt, (3.1.2)

where ∇ denotes derivatives with respect to the coordinates xκ, with boundary condition

f = 0 on ∂Ωt. (3.1.3)

In this section we prove the following theorem:

THEOREM 3.1.2 ‖∇f‖H8(Ωt) ≤ P
[

‖xκ‖8, κ−1‖xκ‖8, ‖vκ‖H8(Ωt), ‖w‖H8(Ωt)

]

where P is a poly-

nomial which is linear in κ−1‖xκ‖8.

Using the cut off functions defined in chapter 2 we have ‖∇f‖H8(Ωt) ≤ ‖η1∇f‖H8(Ωt) +

‖ζ1∇f‖H8(Ωt). We begin by proving interior estimates for f .

3.1.1 Interior estimates.

In this section we prove the following estimate:

PROPOSITION 3.1.3 For all 1 ≤ i and all 0 ≤ s ≤ 8 we have

‖∇s[ηi∇f ]‖L2(Ωt) ≤ P
[

‖xκ‖8, ‖vκ‖H8(Ωt), ‖w‖H8(Ωt)

]

. (3.1.4)

We prove proposition 3.1.3 by induction on s. For s = 0, we have ‖ηi∇f‖L2(Ωt) ≤

‖ηi‖L∞(Ωt)‖∇f‖L2(Ωt) and

‖∇f‖2
L2(Ωt)

=

∫

Ωt

(∂jf)(∂jf)dx =

∫

Ωt

f(∇vκ)(∇w)dx −

∫

Ωt

fdx. (3.1.5)

By Poincaré’s inequality, the terms in (3.1.5) can be controlled by

P
[

‖xκ‖8, ‖vκ‖H4(Ωt), ‖w‖H4(Ωt)

]

‖∇f‖L2(Ωt). (3.1.6)

This proves the case for s = 0. Now suppose that s = 8 and that we have proposition 3.1.3 for

smaller s. We have

‖∇8[ηi∇f ]‖2
L2(Ωt)

=

∫

Ωt

(∂j1 . . . ∂j8 [ηi∂j9f ])(∂j1 . . . ∂j8 [ηi∂
j9f ])dx. (3.1.7)

Now

∂j1 . . . ∂j8 [ηi∂
j9f ] = ηi(∂

j1 . . . ∂j8∂j9f) +
∑

(∇k1ηi)(∇
k2+1f) (3.1.8)

where the sum is over k1 + k2 = 8 such that k2 ≤ 7. To control the second term in (3.1.8) we

use the following procedure: Let i1 = i. Suppose that we have found i1, . . . , il. The support

of ∇kηil
is contained in the image under xκ of the set {y ∈ R3 : d0

2il
< d(y) < d0

il
}. Pick il+1

such that d0

il+1
≤ d0

2il
. Then ηil+1

takes the value 1 on the set {y ∈ R3 : d0

il+1
≤ d(y)} and

{y ∈ R3 : d0

2il
< d(y) < d0

il
} ⊆ {y ∈ R3 : d0

il+1
≤ d(y)}. Thus we have lemma 3.1.4:
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LEMMA 3.1.4 For k2 ≥ 1 we have

(∇k1ηi1)(∇
k2f) =

∑

(∇k1ηi1)(∇
l2ηi2 ) . . . (∇ln−1ηin−1

)(∇ln [ηin
∇f ]) (3.1.9)

where the sum is over all l2 + . . . + ln = k2 − 1; where for instance if l2 = 0 the term ∇l2ηi2

is taken to not be present in the sum; and where if ln = 0 the term ∇ln [ηin
∇f ] is taken to be

ηin
∇f .

PROOF: We prove this by induction on k2. For k2 = 1 we have (∇k1ηi1)(∇f) = ηi2 (∇
k1ηi1)(∇f),

which is of the correct form. Suppose that k2 ≥ 2 and that we have the result for smaller k2.

Then

(∇k1ηi1)(∇
k2f) = ηi2 (∇k1ηi1)(∇

k2f) (3.1.10)

= (∇k1ηi1)(∇
k2−1[ηi2∇f ]) (3.1.11)

− (∇k1ηi1)
∑

l1+l2=k2−1, l2≤k2−2

(∇l1ηi2)(∇
l2+1f) (3.1.12)

applying the inductive hypothesis to the second term in (3.1.10) gives the result.

On Ωt, we are considering ηi ◦ x−1
κ and therefore ∂j [ηi ◦ x−1

κ ] = (∂aηi)A
a
j . Thus ∇ηi

has the same regularity as A and by lemma 3.1.4, we can therefore control the second term in

(3.1.8). Integrating the first term in (3.1.8) by parts twice we have

−

∫

Ωt

(∂j1 . . . ∂j8∂
j9 [ηi∂j9f ])ηi(∂

j1 . . . ∂j8f)dx (3.1.13)

−

∫

Ωt

(∂j1 . . . ∂j8 [ηi∂j9f ])(∂j9ηi)(∂
j1 . . . ∂j8f)dx (3.1.14)

=

∫

Ωt

(∂j1 . . . ∂j7∂
j9 [ηi∂j9f ])ηi(∂

j1 . . . ∂j8∂j8f)dx (3.1.15)

+

∫

Ωt

(∂j1 . . . ∂j7∂
j9 [ηi∂j9f ])(∂j8ηi)(∂

j1 . . . ∂j8f)dx (3.1.16)

−

∫

Ωt

(∂j1 . . . ∂j8 [ηi∂j9f ])(∂j9ηi)(∂
j1 . . . ∂j8f)dx (3.1.17)

where we can control the second and third term in (3.1.15) using lemma 3.1.4. Also, ∂j9 [ηi∂j9f ] =

(∂j9ηi)(∂j9f) − ηi(∇vκ)(∇w) + ηi and therefore the first term in (3.1.15) is equal to

∫

Ωt

∂j1 . . . ∂j7 [(∂
j9ηi)(∂j9f)]ηi(∂

j1 . . . ∂j8∂j8f)dx (3.1.18)

−

∫

Ωt

∂j1 . . . ∂j7 [ηi(∇vκ)(∇w)]ηi(∂
j1 . . . ∂j8∂j8f)dx (3.1.19)

+

∫

Ωt

∂j1 . . . ∂j7 [ηi]ηi(∂
j1 . . . ∂j8∂j8f)dx (3.1.20)

The above terms in (3.1.18) can be controlled using lemma 3.1.4 and the inductive hypothesis.

This concludes the proof of proposition 3.1.3.
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3.1.2 Boundary estimates.

In this section we let ζ = ζ1. For 0 ≤ s ≤ 8, we have

∇s[ζ∇f ] = ζ(∇s+1f) +
∑

k1+k2=s, k2≤s−1

(∇k1ζ)(∇k2+1f). (3.1.21)

Since ∇ζ is supported in the interior of Ωt and has the same regularity as A, we can control the

sum by proposition 3.1.3, using lemma 3.1.4. Therefore, in this section we prove the following

proposition:

PROPOSITION 3.1.5 For all 1 ≤ s ≤ 8 we have

‖ζ∇sf‖L2(Ωt) ≤ P
[

‖xκ‖8, ‖vκ‖H8(Ωt), ‖w‖H8(Ωt)

]

(3.1.22)

and

‖ζ∇9f‖L2(Ωt) ≤ P
[

‖xκ‖8, ‖∂θxκ‖8, ‖vκ‖H8(Ωt), ‖w‖H8(Ωt)

]

(3.1.23)

where P is a polynomial which is linear in ‖∂θxκ‖8.

We will build regularity using the following lemma which is a corollary of lemma 2.5.1.

LEMMA 3.1.6 For 1 ≤ s ≤ 8,

‖ζ∇s+1f‖L2(Ωt) ≤ P
[

‖xκ‖8

]



1 + ‖vκ‖H8(Ωt)‖w‖H8(Ωt) +
∑

0≤j≤s

‖ζ∂j
θ∇f‖L2(Ωt)



 . (3.1.24)

PROOF: We prove this by induction on s. For s = 1 we have, according to lemma 2.5.1,

|ζ∇2f | ≤ |∇vκ||∇w| + 1 + |ζ∂θ∇f | which is of the correct form for (3.1.24). Now suppose that

s = 8 and that we have (3.1.24) for 1 ≤ s ≤ 7. Again by lemma 2.5.1, we have |ζ∇s+1f | ≤

|ζ∇s−1curl∇f |+ |ζ∇s−1div∇f |+ |ζ∂θ∇
sf |. Here we have div∇f = ∆f = −(∇vκ)(∇w)+1 and

therefore pointwise on Ωt we have |ζ∇s−1div∇f | = |ζ∇s−1[(∇vκ)(∇w)]|. We also have

ζ∇s−1∂θ∇f = ζ∇s−1[(∂θxκ)(∇2f)] = ζ∂θ∇
sf +

∑

k1+k2=s−1, k2≤s−2

(∇k1∂θxκ)ζ(∇k2+2f).

(3.1.25)

For 0 ≤ k1 ≤ 4, we have ‖∇k1∂θxκ‖L∞(Ωt) ≤ ‖xκ‖8 and ‖ζ∇k2+2f‖L2(Ωt) is controlled by the

inductive hypothesis since k2 + 2 ≤ s = 8. For 5 ≤ k1 ≤ 7, we have ‖∇k1∂θxκ‖L2(Ωt) ≤ ‖xκ‖8

and in this case 0 ≤ k2 ≤ 2, and therefore ‖ζ∇k2+2f‖L∞(Ωt) ≤ ‖ζ∇k2+2+3f‖L2(Ωt), in addition

to terms which we control by proposition 3.1.3. We control ‖ζ∇k2+2+3f‖L2(Ωt) by the inductive

hypothesis because k2 + 2 + 3 ≤ 7. Now |ζ∇s−1∂θ∇f | ≤ |ζ∇s−2curl ∂θ∇f |+ |ζ∇s−2div ∂θ∇f |+

|ζ∂θ∇
s−2∂θ∇f | and ζ∇s−2div ∂θ∇f = ζ∇s−2[(∇∂θxκ)(∇2f) + ∂θ∆f ]. We have

ζ∇s−2[(∇∂θxκ)(∇2f)] =
∑

k1+k2=s−2

(∇k1+1∂θxκ)ζ(∇k2+2f). (3.1.26)
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For 0 ≤ k1 ≤ 3, we have ‖∇k1+1∂θxκ‖L∞(Ωt) ≤ ‖xκ‖8 and ‖ζ(∇k2+2f)‖L2(Ωt) is controlled by

the inductive hypothesis. For 4 ≤ k1 ≤ 6 we have ‖∇k1+1∂θxκ‖L2(Ωt) ≤ ‖xκ‖8 and in this

case 0 ≤ k2 ≤ 2 and we control ‖ζ(∇k2+2f)‖L∞(Ωt) ≤ ‖ζ(∇k2+2+3f)‖L2(Ωt) using the inductive

hypothesis. Also, ζ∇s−2∂θ∆f = ζ∇s−2∂θ[(∇vκ)(∇w)] which we control appropriately. This

concludes the proof.

By lemma 3.1.6, to prove proposition 3.1.5, it is enough to prove that we control

‖ζ∂j
θ∇f‖L2(Ωt) for 0 ≤ j ≤ 8 which is the content of the following proposition:

PROPOSITION 3.1.7 For 0 ≤ j ≤ 7, we have

‖ζ∂j
θ∇f‖L2(Ωt) ≤ P

[

‖xκ‖8, ‖vκ‖H8(Ωt), ‖w‖H8(Ωt)

]

(3.1.27)

and

‖ζ∂8
θ∇f‖L2(Ωt) ≤ P

[

‖xκ‖8, ‖∂θxκ‖8, ‖vκ‖H8(Ωt), ‖w‖H8(Ωt)

]

(3.1.28)

where P is a polynomial which is linear in ‖∂θxκ‖8.

We prove this result by induction. We have already proved the base-case. Since the

case for j = 7 follows similarly to the case for j = 8 we will now prove the case for j = 8 and

suppose that we have (3.1.27) for 0 ≤ j ≤ 7. We have

‖ζ∂8
θ∇f‖2

L2(Ωt)
=

∫

Ωt

(ζ∂8
θ∂if)(ζ∂8

θ∂if)dx (3.1.29)

=

∫

Ωt

(ζ∂8
θ∂if)(ζ∂i∂8

θf)dx −

∫

Ωt

(ζ∂8
θ∇f)(∇∂8

θxκ)(ζ∇f)dx (3.1.30)

+
∑

∫

Ωt

(ζ∂8
θ∇f)(∇∂k1

θ xκ) . . . (∇∂
kl−1

θ xκ)(ζ∂kl

θ ∇f) (3.1.31)

where the sum is over k1 + . . .+kl = 8 such that k1, . . . , kl ≤ 7, which means that we can control

all the terms in the sum using the inductive hypothesis. The second term in (3.1.30) we control

appropriately as well. The first term in (3.1.30) we integrate by parts to obtain

−

∫

Ωt

(ζ∂8
θ∇f)(∇ζ)(∂8

θf)dx −

∫

Ωt

(ζ∂i∂8
θ∂if)(ζ∂8

θf)dx (3.1.32)

where we control the first term by proposition 3.1.3 because ∇ζ is supported in the interior of

Ωt. The second term in (3.1.32) is equal to
∫

Ωt

(∇∂8
θxκ)(ζ∇2f)(ζ∂8

θf)dx −

∫

Ωt

(ζ∂8
θ∆f)(ζ∂8

θf)dx (3.1.33)

−
∑

∫

Ωt

(∇∂k1

θ xκ) . . . (∇∂
kl−1

θ xκ)(ζ∇∂kl

θ ∇f)(ζ∂8
θf)dx (3.1.34)

where the sum is over k1 + . . . + kl = 8 such that k1, . . . , kl ≤ 7. Using lemma 3.1.6 and the fact

that for 1 ≤ k ≤ 9,

‖∂k
θ f‖L2(Ωt) ≤ P

[

‖xκ‖8

]

∑

0≤l≤k−1

‖∂l
θ∇f‖L2(Ωt) (3.1.35)
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we control the first term in (3.1.33) appropriately. The second term in (3.1.33) we integrate by

parts to obtain

−

∫

Ωt

(ζ∂7
θ [(∇vκ)(∇w)])(∂θζ)(∂8

θf)dx −

∫

Ωt

ζ∂7
θ [(∇vκ)(∇w)](ζ∂9

θ f)dx (3.1.36)

where no boundary terms arise because the components of ∂θ are orthogonal to N . The first

term in (3.1.36) vanishes because ∂θζ = 0. We control the second term in (3.1.36) appropriately

by (3.1.35). This concludes the proof of proposition 3.1.7.

3.2 Estimates to show that Λ is a contraction.

To show that Λ is a contraction we need the following estimates: First, let U , V and

W be points in C(T ). Let xκ be the flow of Uκ, where Uκ is the smoothed version of U . Define

Ωt = xκ(Ω, t), vκ = Vκ ◦ x−1
κ and w = W ◦ x−1

κ . Define a function f by

∆f = −(∇vκ)(∇w) on Ωt, (3.2.1)

where ∇ denotes differentiation with respect to the coordinates xκ, with boundary condition

f = 0 on ∂Ωt. (3.2.2)

Employing the same approach as in section 3.1, we can prove the following theorem:

THEOREM 3.2.1 For f defined by (3.2.1) and (3.2.2) we have

‖∇f‖H7(Ωt) ≤ P
[

‖xκ‖8

]

‖vκ‖H7(Ωt)‖w‖H7(Ωt) (3.2.3)

and

‖∇f‖H8(Ωt) ≤ P
[

‖xκ‖8, κ−1‖xκ‖8

]

‖vκ‖H8(Ωt)‖w‖H8(Ωt) (3.2.4)

where P is linear in κ−1‖xκ‖8.

Second, let U1, U2, V and W be in C(T ). Smooth U1, U2 and V to obtain (U1)κ, (U2)κ

and Vκ. Let u1 and u2 be the flows of (U1)κ and (U2)κ respectively. Let x1 and x2 be the

coordinates on Ωt,1 = u1(t, Ω) and Ωt,2 = u2(t, Ω) respectively. For k = 1, 2, define

∆fk = −

(

∂

∂xi
k

[V j
κ ◦ u−1

k ]

)

(

∂

∂xj
k

[W i ◦ u−1
k ]

)

+ 1 on Ωt,k (3.2.5)

with boundary condition

p = 0 on ∂Ωt,k. (3.2.6)

The estimates to compare f1 and f2 must be performed in Lagrangian coordinates. We now

prove the following theorem:
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THEOREM 3.2.2

‖(∇1f1) ◦ u1 − (∇2f2) ◦ u2‖8 (3.2.7)

≤
[

1 + κ−1
]

‖U1 − U2‖8P
[

‖U1‖8, ‖U2‖8, κ−1‖U1‖8, κ−1‖U2‖8, ‖V ‖8, ‖W‖8

]

(3.2.8)

where ∇k denotes derivatives with respect to the coordinates xk on Ωt,k.

3.2.1 Interior estimates.

In this case, as in section 3.1, the interior estimates follow more readily than the bound-

ary estimates. We therefore state the interior estimates and omit the proof:

PROPOSITION 3.2.3 For all 1 ≤ i, we have

‖(ηi∇1f1) ◦ u1 − (ηi∇2f2) ◦ u2‖8 (3.2.9)

≤ ‖U1 − U2‖8P
[

‖U1‖8, ‖U2‖8, κ−1‖U1‖8, κ−1‖U2‖8, ‖V ‖8, ‖W‖8

]

. (3.2.10)

3.2.2 Boundary estimates.

To obtain the boundary estimates we now build regularity in much the same way that

we did in section 3.1. Define

A(k)a
i (y) =

(

∂(u−1
k )a

∂xi
k

)

(s, uk(s, y)) and B(k)i
a(y) =

(

∂ui
k

∂ya

)

(s, y).

First we prove a lemma showing a relationship between A(1) and A(2), and U1 and U2.

LEMMA 3.2.4 For 0 ≤ j ≤ 4 we have

‖∂jA(1) − ∂jA(2)‖∞ ≤ P
[

‖U1‖8, ‖U2‖8

]

‖U1 − U2‖8 (3.2.11)

and for I with 0 ≤ j ≤ 7 we have

‖∂jA(1) − ∂jA(2)‖ ≤ P
[

‖U1‖8, ‖U2‖8

]

‖U1 − U2‖8. (3.2.12)

Also, ‖∂jB(1) − ∂jB(2)‖ ≤ P
[

‖U1‖8, ‖U2‖8

]

‖U1 − U2‖8.

PROOF: Since A(1) − A(2) = B(1)−1 − B(2)−1 and

B(k)−1 =
C(k)

det(B(k))
,

where C(k) is the cofactor matrix of B(k) we have ‖A(1) − A(2)‖ ≤ c‖U1 − U2‖1 and ‖A(1) −

A(2)‖∞ ≤ c‖U1 − U2‖4. This proves the base-case of both (3.2.11) and (3.2.12). Now for j ≥ 1,

∂jA(k) = −
∑

(∂j1A(k))(∂j2B)(∂j3A(k))
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where the sum is over j1 + j2 + j3 = j and such that j2, j3 ≤ j − 1. Thus

∂jA(1) − ∂jA(2) =
∑

(∂j1A(2))(∂j2B(2))(∂j3A(2)) −
∑

(∂j1A(1))(∂j2B(1))(∂j3A(1))

(3.2.13)

=
∑

(∂j1A(2))(∂j2B(2))(∂j3A(2)) −
∑

(∂j1A(1))(∂j2B(2))(∂j3A(2))

(3.2.14)

+
∑

(∂j1A(1))(∂j2B(2))(∂j3A(2)) −
∑

(∂j1A(1))(∂j2B(1))(∂j3A(2))

(3.2.15)

+
∑

(∂j1A(1))(∂j2B(1))(∂j3A(2)) −
∑

(∂j1A(1))(∂j2B(1))(∂j3A(1))

(3.2.16)

=
∑

[

(∂j1A(2)) − (∂j1A(1))
]

(∂j2B(2))(∂j3A(2)) (3.2.17)

+
∑

(∂j1A(1))
[

(∂j2B(2)) − (∂j2B(1))
]

(∂j3A(2)) (3.2.18)

+
∑

(∂j1A(1))(∂j2B(1))
[

(∂j3A(2)) − (∂j3A(1))
]

. (3.2.19)

One infers (3.2.11) from (3.2.13). Now suppose that 1 ≤ j ≤ 7 and that we have (3.2.12) for

smaller j. In the first sum, if j1 ≤ 4 then we control ‖∂j1A(2) − ∂j1A(1)‖∞ appropriately using

(3.2.11). If j2 ≤ 4 then we control ‖∂j2B(2)‖∞ by ‖U2‖8. In this case, 0 ≤ j3 ≤ 6 and therefore

we can control ‖∂j3A(2)‖ by ‖U2‖8. If 5 ≤ j2 ≤ 7 then we can control ‖∂j2B(2)‖ by ‖U2‖8; and

now 0 ≤ j1, j3 ≤ 2 so we can control ‖∂j1A(2) − ∂j1A(1)‖∞ using (3.2.11) and ‖∂j3A(2)‖∞ by

‖U2‖8. If 5 ≤ j1 ≤ 6, then we control ‖∂j1A(2) − ∂j1A(1)‖ appropriately using the inductive

hypothesis, since j1 ≤ j − 1. And 1 ≤ j2, j3 ≤ 2 which means that we control ‖∂j2B(1)‖∞ and

‖∂j3A(2)‖∞ appropriately. The second and third sum follow similarly.

Just as lemma 2.5.1 was central to the proof of lemma 3.1.6, so lemma B.4.1 from

appendix B is central to lemma 3.2.5 below. We let ζ = ζ1, where the ζi are cut off functions

defined in chapter 2.

LEMMA 3.2.5 For 0 ≤ j ≤ 7,

‖(ζ∇1∂
j∇1f1) ◦ u1 − (ζ∇2∂

j∇2f2) ◦ u2‖ (3.2.20)

≤ ‖U1 − U2‖8P
[

‖U1‖8, ‖U2‖8, κ−1‖U1‖8, κ−1‖U2‖8, ‖V ‖8, ‖W‖8

]

(3.2.21)

+ ‖(ζ∂θ∂
j∇1f1) ◦ u1 − (ζ∂θ∂

j∇2f2) ◦ u2‖, (3.2.22)

and for 0 ≤ j ≤ 4 we have

‖(ζ∇1∂
j∇1f1) ◦ u1 − (ζ∇2∂

j∇2f2) ◦ u2‖∞ (3.2.23)

≤ ‖U1 − U2‖8P
[

‖U1‖8, ‖U2‖8, κ−1‖U1‖8, κ−1‖U2‖8, ‖V ‖8, ‖W‖8

]

(3.2.24)

+ ‖(ζ∂θ∂
j+3∇1f1) ◦ u1 − (ζ∂θ∂

j+3∇2f2) ◦ u2‖. (3.2.25)
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PROOF: Let j = 0. Then according to lemma B.4.1 we have,

|(ζ∇2
1f1) ◦ u1 − (ζ∇2

2f2) ◦ u2| ≤ |(ζ∆1f1) ◦ u1 − (ζ∆2f2α2) ◦ u2| (3.2.26)

+ |(ζ∂θ∇1f1) ◦ u1 − (ζ∂θ∇2f2) ◦ u2| + |Q1 − Q2||(ζ∇
2
2f2) ◦ u2|.

(3.2.27)

Now

(∆1f1) ◦ u1 − (∆2f2) ◦ u2 = −A(1)(∂Vκ)A(1)(∂W ) + A(2)(∂Vκ)A(2)(∂W ) (3.2.28)

= −A(1)(∂Vκ)A(1)(∂W ) + A(2)(∂Vκ)A(1)(∂W ) (3.2.29)

− A(2)(∂Vκ)A(1)(∂W ) + A(2)(∂Vκ)A(2)(∂W ) (3.2.30)

= [A(2) − A(1)](∂Vκ)A(1)(∂W ) + A(2)(∂Vκ)[A(2) − A(1)](∂W )

(3.2.31)

and this can be controlled by ‖U1−U2‖8P
[

‖U1‖8, ‖U2‖8

]

‖V ‖8‖W‖8. The second term in (3.2.26)

can be controlled by ‖ (∂θ∇1f1) ◦ u1 − (∂θ∇2f2) ◦ u2‖ and the third term can be controlled by

‖U1 − U2‖8P
[

‖U2‖8, ‖V ‖8, ‖W‖8

]

.

Now suppose that 1 ≤ j ≤ 4, and that we have (3.2.20) for smaller j. For a function θ defined

on Ωt,1,

∂j ∂

∂xi
1

θ −
∂

∂xi
1

∂jθ =
∑

(∂j1A(1))B(1)(∇1∂
j2θ)

where the sum is over j1 + j2 = j and j2 ≤ j − 1 we see that

(curl1∂
j∇1f1) ◦ u1 − (curl2∂

j∇2f2) ◦ u2 (3.2.32)

=
∑

(∂j1A(1))B(1)(∇1∂
j2∇1f1) ◦ u1 (3.2.33)

−
∑

(∂j1A(2))B(2)(∇2∂
j2∇2f2) ◦ u2 (3.2.34)

=
∑

[(∂j1A(1)) − (∂j1A(2))]B(1)(∇1∂
j2∇1f1) ◦ u1 (3.2.35)

+
∑

(∂j1A(2))[B(1) − B(2)](∇1∂
j2∇1f1) ◦ u1 (3.2.36)

+
∑

(∂j1A(2))B(2)[(∇1∂
j2∇1f1) ◦ u1 − (∇2∂

j2∇2f2) ◦ u2]. (3.2.37)

We can control the above by the inductive hypothesis since j2 ≤ j − 1. In addition, to control

(div1∂
j∇1f1) ◦ u1 − (div2∂

j∇2f2) ◦ u2 we must also control

(

∂j∆1f1

)

◦ u1 −
(

∂j∆2f2

)

◦ u2 = [(∂j1A(2)) − (∂j1A(1))](∂∂j2Vκ)((∂j3A(1))(∂∂j4W ) (3.2.38)

+ (∂j1A(2))(∂∂j2V j
κ )[((∂j3A(2)) − (∂j3A(1))](∂∂j4W ). (3.2.39)

where the sum is over j1 + j2 + j3 + j4 = j. As we have seen, we can control the above terms by

‖U1 − U2‖8P [‖U1‖8, ‖U2‖8, ‖V ‖8, ‖W‖8] for 0 ≤ j ≤ 7. Now we prove (3.2.23) for 0 ≤ j ≤ 1,

and using this result we can prove (3.2.20) for j = 5. Using that result we can prove (3.2.23) for

j = 2, etc.
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Suppose now that we control ‖(ζ∂j
θ∇1f1) ◦ u1 − (ζ∂j

θ∇2f2) ◦ u2‖ appropriately for 0 ≤

j ≤ 8. Then (3.2.20) says that we can control ‖(ζ∇1∂
j
θ∇1f1) ◦ u1 − (ζ∇2∂

j
θ∇2f2) ◦ u2‖ for

0 ≤ j ≤ 7. That is, we control ‖(ζ∂j
θ∂∇1f1)◦u1− (ζ∂j

θ∂∇2f2)◦u2‖ for 0 ≤ j ≤ 7. Using (3.2.20)

again, this means that we can control ‖(ζ∇1∂∂j
θ∇1f1) ◦ u1 − (ζ∇2∂∂j

θ∇2f2) ◦ u2‖ for 0 ≤ j ≤ 6.

Inductively, then, we can control ‖(ζ∇1f1) ◦ u1− (ζ∇2f2) ◦ u2‖8. It remains, therefore, to bound

‖(ζ∂j
θ∇1f1) ◦ u1 − (ζ∂j

θ∇2f2) ◦ u2‖ for 0 ≤ j ≤ 8:

PROPOSITION 3.2.6 For 0 ≤ j ≤ 8,

‖(ζ∂j
θ∇1f1) ◦ u1 − (ζ∂j

θ∇2f2) ◦ u2‖ (3.2.40)

≤ κ−1‖U1 − U2‖8, P
[

‖U1‖8, ‖U2‖8, κ−1‖U1‖8, κ−1‖U2‖8, ‖V ‖8, ‖W‖8

]

. (3.2.41)

We prove this proposition by induction on j. We have

(∇1f1) ◦ u1 − (∇2f2) ◦ u2 = A(1)a
i [(∂aF1) − (∂aF2)] + [A(1)a

i − A(2)a
i ] (∂aF2) , (3.2.42)

where Fk = fk ◦ uk. We control the second term in (3.2.42) by lemma 3.2.4. Also,

∫

Ω

δijA(1)a
i [(∂aF1) − (∂aF2)] A(1)b

j [(∂bF1) − (∂bF2)] dy (3.2.43)

= −

∫

Ω

∂b

[

δijA(1)a
i A(1)b

j [(∂aF1) − (∂aF2)]
]

[F1 − F2]dy (3.2.44)

≤ ‖∂b

[

δijA(1)a
i A(1)b

j [(∂aF1) − (∂aF2)]
]

‖‖F1 − F2‖. (3.2.45)

Using the Poincaré inequality we have ‖F1 − F2‖ ≤ c‖∂F1 − ∂F2‖.

∂b

[

δijA(1)a
i A(1)b

j [(∂aF1) − (∂aF2)]
]

= ∂b

[

δijA(1)a
i A(1)b

j(∂aF1)
]

− ∂b

[

δijA(1)a
i A(1)b

j(∂aF2)
]

(3.2.46)

and

∂b

[

δijA(1)a
i A(1)b

j(∂aF1)
]

= δij(∂bA(1)a
i )A(1)b

j(∂aF1) + δijA(1)a
i (∂bA(1)b

j)(∂aF1) (3.2.47)

+ δijA(1)a
i A(1)b

j(∂a∂bF1). (3.2.48)

We have (∆f1)(u1(t, y)) = δijA(1)b
j(∂bA(1)a

i )(∂aF1) + δijA(1)b
jA(1)a

i (∂a∂bF1) and we therefore

see that

∂b

[

δijA(1)a
i A(1)b

j(∂aF1)
]

= −A(1)a
i (∂aV j

κ )A(1)b
j(∂bW

i)+1+δijA(1)a
i (∂bA(1)b

j)(∂aF1). (3.2.49)
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We also have,

∂b

[

δijA(1)a
i A(1)b

j(∂aF2)
]

= δij(∂bA(1)a
i )A(1)b

j(∂aF2) + δijA(1)a
i (∂bA(1)b

j)(∂aF2) (3.2.50)

+ δijA(1)a
i A(1)b

j(∂a∂bF2) (3.2.51)

= δij [(∂bA(1)a
i ) − (∂bA(2)a

i )] A(1)b
j(∂aF2) (3.2.52)

+ δij(∂bA(2)a
i )
[

A(1)b
j − A(2)b

j

]

(∂aF2) (3.2.53)

+ δij [A(1)a
i − A(2)a

i ] A(1)b
j(∂a∂bF2) (3.2.54)

+ δijA(2)a
i

[

A(1)b
j − A(2)b

j

]

(∂a∂bF2) (3.2.55)

+ δij(∂bA(2)a
i )A(2)b

j(∂aF2) (3.2.56)

+ δijA(2)a
i A(2)b

j(∂a∂bF2) + δijA(1)a
i (∂bA(1)b

j)(∂aF2). (3.2.57)

We control the first four terms in (3.2.52) by P
[

‖U1‖8, ‖U2‖8, ‖Vκ‖8, ‖W‖8

]

‖U1−U2‖8. Similarly

to (3.2.49), δij(∂bA(2)a
i )A(2)b

j(∂aF2)+ δijA(2)a
i A(2)b

j(∂a∂bF2) = −A(2)a
i (∂aV j

κ )A(2)b
j(∂bW

i)+1.

Combining this with the first two terms from (3.2.49), we have

− A(1)a
i (∂aV j

κ )A(1)b
j(∂bW

i) + A(2)a
i (∂aV j

κ )A(2)b
j(∂bW

i) (3.2.58)

= −A(1)a
i (∂aV j

κ )A(1)b
j(∂bW

i) + A(2)a
i (∂aV j

κ )A(1)b
j(∂bW

i) (3.2.59)

− A(2)a
i (∂aV j

κ )A(1)b
j(∂bW

i) + A(2)a
i (∂aV j

κ )A(2)b
j(∂bW

i) (3.2.60)

= [A(2)a
i − A(1)a

i ] (∂aV j
κ )A(1)b

j(∂bW
i) (3.2.61)

+ A(2)a
i (∂aV j

κ )
[

A(2)b
j − A(1)b

j

]

(∂bW
i) (3.2.62)

which can be controlled by P
[

‖U1‖8, ‖U2‖8, ‖Vκ‖8, ‖W‖8

]

‖U1 − U2‖8. Finally, combining last

term from (3.2.49) and the last term from (3.2.52) we have, ‖δijA(1)a
i (∂bA(1)b

j)(∂aF1−∂aF2)‖ ≤

‖U1‖8‖∂bA(1)b
j‖∞‖∂aF1 − ∂aF2‖. The following lemma shows that ∂bA(1)b

j is small.

LEMMA 3.2.7

‖∂bA
b
j‖∞ ≤ T ‖ det(A)‖∞ sup

[0,T ]

P
[

‖xκ‖8

]

exp

[

T sup
[0,T ]

P
[

‖Vκ‖1

]

]

.

PROOF: Using the formula

∇det(M) = det(M)tr
[

M−1∇M
]

(3.2.63)

we have

∂j det(B) = det(B)Aa
i (∂jB

i
a) (3.2.64)

= − det(B)(∂jA
a
i )Bi

a (3.2.65)

= − det(B)(∂iA
a
j )Bi

a (3.2.66)

= − det(B)(∂aAa
j ). (3.2.67)
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Thus ‖∂aA(1)a
j ‖∞ ≤ ‖ det(A)‖∞‖∇det(B)‖∞. Again, using (3.2.63) we have ∂t det(B) =

det(B)Aa
i (∂t∂axκ) = det(B)Aa

i (∂aV i
κ). Since det(B)(0, y) = 1 we have

det(B)(t, y) = exp

[

∫

[0,t]

Aa
i (∂aV i

κ)ds

]

and

∇det(B)(t, y) = exp

[

∫

[0,t]

Aa
i (∂aV i

κ)ds

] [

∫

[0,t]

[

(∇A)(∂aVκ) + A(∇2Vκ)
]

ds

]

.

Thus

‖∇det(B)‖∞ ≤ T sup
[0,T ]

P
[

‖xκ‖8

]

exp

[

T sup
[0,T ]

P
[

‖Vκ‖1

]

]

.

This concludes the base case. Now suppose that j = 8 and that we have proposition

3.2.6 for smaller j. Then

‖(∂8
θ∇1f1) ◦ u1 − (∂8

θ∇2f2) ◦ u2‖
2 (3.2.68)

=

∫

Ω

δij [(∂8
θA(1)a

i )(∂aF1) − (∂8
θA(2)a

i )(∂aF2)][(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.69)

+

∫

Ω

δij [Aa
i (1)(∂a∂8

θF1) − Aa
i (2)(∂a∂8

θF2)][(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.70)

+
∑

∫

Ω

δij [(∂j1
θ Aa

i (1))(∂a∂j2
θ F1) − (∂j1

θ Aa
i (2))(∂a∂j2

θ F2)][(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy

(3.2.71)

where the sum is over all j1 and j2 such that j1 + j2 = 8 and j1, j2 ≤ 7. The first factor in the

third term in (3.2.69) is equal to

(∂j1
θ Aa

i (1))(∂a∂j2
θ F1) − (∂j1

θ Aa
i (2))(∂a∂j2

θ F2) = [(∂j1
θ Aa

i (1)) − (∂j1
θ Aa

i (2))](∂a∂j2
θ F1) (3.2.72)

+ (∂j1
θ Aa

i (2))[(∂a∂j2
θ F1) − (∂a∂j2

θ F2)] (3.2.73)

thus the third term in (3.2.69) can be controlled appropriately. The first term in (3.2.69) gives

∫

Ω

δij [(∂8
θA(1)a

i )(∂aF1) − (∂8
θA(2)a

i )(∂aF2)][(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.74)

= −

∫

Ω

δij [Ac
i (1)(∂c∂

8
θuk

1)(∂1kf1) ◦ u1 − Ac
i (2)(∂c∂

8
θuk

2)(∂2kf2) ◦ u1] (3.2.75)

× [(∂8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.76)

−

∫

Ω

δij [(∂j1
θ Ac

i (1))(∂j2
θ Bk

c (1))(∂j3
θ Aa

k(1))(∂aF1) − (∂j1
θ Ac

i (2))(∂j2
θ Bk

c (2))(∂j3
θ Aa

k(2))(∂aF2)]

(3.2.77)

× [(∂8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy. (3.2.78)
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The first factor in the the second integral in (3.2.75) is equal to

(∂j1
θ Ac

i (1))(∂j2
θ Bk

c (1))(∂j3
θ Aa

k(1))(∂aF1) − (∂j1
θ Ac

i (2))(∂j2
θ Bk

c (2))(∂j3
θ Aa

k(2))(∂aF2) (3.2.79)

= [(∂j1
θ Ac

i (1)) − (∂j1
θ Ac

i (2))](∂j2
θ Bk

c (1))(∂j3
θ Aa

k(1))(∂aF1) (3.2.80)

+ (∂j1
θ Ac

i (2))[(∂j2
θ Bk

c (1)) − (∂j2
θ Bk

c (2))](∂j3
θ Aa

k(1))(∂aF1) (3.2.81)

+ (∂j1
θ Ac

i (2))(∂j2
θ Bk

c (2))[(∂j3
θ Aa

k(1)) − (∂j3
θ Aa

k(2))](∂aF1) (3.2.82)

+ (∂j1
θ Ac

i (2))(∂j2
θ Bk

c (2))(∂j3
θ Aa

k(2))[(∂aF1) − (∂aF2)] (3.2.83)

and therefore we can control the second integral in (3.2.75) appropriately. Because of the tan-

gential smoothing, the first integral in (3.2.75) is equal to

− κ−1

∫

Ω

δij [Ac
i (1)(∂c∂

7
θuk

1)(∂1kf1) ◦ u1 − Ac
i (2)(∂c∂

7
θuk

2)(∂2kf2) ◦ u1] (3.2.84)

× [(∂8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.85)

which we control appropriately. Integrating the first half of the second term from (3.2.69) by

parts gives

∫

Ω

δijAa
i (1)(∂a∂8

θF1)[(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.86)

= −

∫

Ω

δij(∂aAa
i (1))(∂8

θF1)[(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.87)

−

∫

Ω

δij(∂8
θF1)[(∂1i∂

8
θ∂1jf1) ◦ u1 − Aa

i (1)∂a(∂8
θ∂2jf2) ◦ u2]dy (3.2.88)

Integrating the second half of the second term from (3.2.69) by parts gives

−

∫

Ω

δijAa
i (2)(∂a∂8

θF2)[(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.89)

=

∫

Ω

δij(∂aAa
i (2))(∂8

θF2)[(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]dy (3.2.90)

+

∫

Ω

δij(∂8
θF2)[A

a
i (2)∂a(∂8

θ∂1jf1) ◦ u1 − (∂2i∂
8
θ∂2jf2) ◦ u2]dy. (3.2.91)

The first two factors in the first term in (3.2.87) combines with the first two factors in the first

term in (3.2.90) to give

− δij(∂aAa
i (1))(∂8

θF1)[(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2] (3.2.92)

+ δij(∂aAa
i (2))(∂8

θF2)[(∂
8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2] (3.2.93)

= −δij [(∂aAa
i (1)) − (∂aAa

i (2))](∂8
θF1)[(∂

8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2] (3.2.94)

− δij(∂aAa
i (2))[(∂8

θF1) − (∂8
θF2)][(∂

8
θ∂1jf1) ◦ u1 − (∂8

θ∂2jf2) ◦ u2]. (3.2.95)

The first term in (3.2.94) we control. The second term in (3.2.94) will be controlled using the

following lemma:
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LEMMA 3.2.8 For 1 ≤ j ≤ 9,

‖∂j
θF1 − ∂j

θF2‖ ≤ ‖U1 − U2‖8P
[

‖U1‖8, ‖U2‖8, ‖V ‖8, ‖W‖8

]

(3.2.96)

+ P
[

‖U1‖8, ‖U2‖8

]

∑

0≤k≤j−1

‖(∂k
θ∇1f) ◦ u1 − (∂k

θ∇2f) ◦ u1‖. (3.2.97)

PROOF: We have

∂j
θF1 = ∂j−1[∂θu

k
1(∂1kf) ◦ u1] (3.2.98)

=
∑

(∂j1+1
θ uk

1)(∂j2∂1kf1) ◦ u1 + (∂θu
k
1)(∂

j−1∂1kf1) ◦ u1 (3.2.99)

where the sum is over j1 + j2 = j − 1 and j2 ≤ j − 2, and similarly for ∂j
θF2. Thus

∂j
θF1 − ∂j

θF2 =
∑

(∂j1+1
θ uk

1)(∂j2
θ ∂1kf1) ◦ u1 −

∑

(∂j1+1
θ uk

2)(∂
j2
θ ∂2kf2) ◦ u2 (3.2.100)

+ (∂θu
k
1)(∂j1+1

θ ∂1kf1) ◦ u1 − (∂θu
k
2)(∂

j1+1
θ ∂2kf2) ◦ u2 (3.2.101)

=
∑

[(∂j1+1
θ uk

1) − (∂j1+1
θ uk

2)](∂
j2
θ ∂1kf1) ◦ u1 (3.2.102)

+
∑

(∂j1+1
θ uk

2)[(∂j2
θ ∂1kf1) ◦ u1 − (∂j2

θ ∂2kf2) ◦ u2] (3.2.103)

+ [(∂θu
k
1) − (∂θu

k
2)](∂j2

θ ∂1kf1) ◦ u1 (3.2.104)

+ (∂θu
k
2)[(∂j1+1

θ ∂1kf1) ◦ u1 − (∂j1+1
θ ∂1kf2) ◦ u1]. (3.2.105)

The second term in (3.2.87) gives

− δij(∂8
θF1)(∂1i∂

8
θ∂1jf1) ◦ u1 + δij(∂8

θF1)A
a
i (1)∂a(∂8

θ∂2jf2) ◦ u2 (3.2.106)

= −δij(∂8
θF1)[(∂1i∂

8
θ∂1jf1) ◦ u1 − (∂2i∂

8
θ∂2jf2) ◦ u2] (3.2.107)

− δij(∂8
θF1)[A

a
i (2) − Aa

i (1)]∂a(∂8
θ∂2jf2) ◦ u2. (3.2.108)

and the second term in (3.2.90) gives

δij(∂8
θF2)A

a
i (2)∂a(∂8

θ∂1jf1) ◦ u1 − δij(∂8
θF2)(∂2i∂

8
θ∂2jf2) ◦ u2 (3.2.109)

= δij(∂8
θF2)[A

a
i (2) − Aa

i (1)]∂a(∂8
θ∂1jf1) ◦ u1 (3.2.110)

+ δij(∂8
θF2)[(∂1i∂

8
θ∂1jf1) ◦ u1 − (∂2i∂

8
θ∂2jf2) ◦ u2]. (3.2.111)

The second term from (3.2.107) combines with the first term from (3.2.110) to give

− δij(∂8
θF1)[A

a
i (2) − Aa

i (1)]∂a(∂8
θ∂2jf2) ◦ u2 + δij(∂8

θF2)[A
a
i (2) − Aa

i (1)]∂a(∂8
θ∂1jf1) ◦ u1

(3.2.112)

= −δij [(∂8
θF1) − (∂8

θF2)][A
a
i (2) − Aa

i (1)]∂a(∂8
θ∂2jf2) ◦ u2 (3.2.113)

− δij(∂8
θF2)[A

a
i (2) − Aa

i (1)][∂a(∂8
θ∂1jf1) ◦ u1 − ∂a(∂8

θ∂2jf2) ◦ u2]. (3.2.114)
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Here we control the first of the above terms by lemma 3.2.8. The first term from (3.2.107)

combines with the second term from (3.2.110) to give

−

∫

Ω

δij [(∂8
θF1) − (∂8

θF2)][(∂1i∂
8
θ∂1jf1) ◦ u1 − (∂2i∂

8
θ∂2jf2) ◦ u2]dy. (3.2.115)

Here we commute ∂1i through the ∂θ. This generates commutators which we can control because

of the tangential smoothing. We also obtain the following term

−

∫

Ω

δij [(∂8
θF1) − (∂8

θF2)][(∂
8
θ∆1f1) ◦ u1 − (∂8

θ∆2f2) ◦ u2]dy (3.2.116)

=

∫

Ω

δij [(∂9
θF1) − (∂9

θF2)][(∂
7
θ∆1f1) ◦ u1 − (∂7

θ∆2f2) ◦ u2]dy (3.2.117)

where we control the first factor by lemma 3.2.8. Again, we use the fact that

δijAa
i (1)∂a

[

Ab
j(1)(∂bF1)

]

= −Aa
i (1)(∂aV j)Ab

j(1)(∂bW
i) + 1 (3.2.118)

which shows that we can control the second factor in (3.2.116) appropriately.

3.3 Estimates for chapter 5 and chapter 7.

In this section we record the results which will be used to prove the energy estimates in

chapter 5 and the optimal regularity result in chapter 7. Let U and V be points in C(T ) and let

xκ be the flow of Uκ. Define vκ = Vκ ◦x−1
κ , v = V ◦x−1

κ and Ωt = xκ(t, Ω). We define a function

f on Ωt by

∆f = −(∇vκ)(∇v) + 1 on Ωt (3.3.1)

with boundary condition

f = 0 on ∂Ωt. (3.3.2)

Similarly to theorem 3.1.2 we have the following:

THEOREM 3.3.1 For f defined by (3.3.1) and (3.3.2) we have

‖∇f‖H7.5(Ωt) ≤ P
[

‖xκ‖8, κ−0.5‖xκ‖8, ‖vκ‖H7.5(Ωt), ‖v‖H7.5(Ωt)

]

(3.3.3)

where P is a polynomial which is linear in κ−0.5‖xκ‖8 and also

‖∇f‖H7(Ωt) ≤ P
[

‖xκ‖8, ‖vκ‖H7(Ωt), ‖v‖H7(Ωt)

]

. (3.3.4)

We will also need estimates for ∂t∇f to establish the energy estimates. Thus we have

the following theorem which follows similarly to theorem 3.1.2 and theorem 3.3.1. Note that to

derive this estimate we need the estimates from chapter 4.



26

THEOREM 3.3.2 For f defined by (3.3.1) and (3.3.2) we have

‖∂t∇f‖H7(Ωt) ≤ P
[

‖xκ‖8, ‖vκ‖H8(Ωt), ‖v‖H8(Ωt)

]

. (3.3.5)

To establish optimal regularity in chapter 7 we also need the following theorem which

follows similarly to theorem 3.3.2

THEOREM 3.3.3 For f defined by (3.3.1) and (3.3.2) we have

‖η∂2
t ∇f‖H6(Ωt) ≤ P

[

‖xκ‖7.5, ‖vκ‖H6.5(Ωt), ‖v‖H6.5(Ωt)

]

(3.3.6)

where η = η1 is the cut off function defined in chapter 2. We also have

‖∂2
t ∇f‖H5.5(Ωt) ≤ P

[

‖xκ‖7.5, ‖vκ‖H6.5(Ωt), ‖v‖H6.5(Ωt)

]

. (3.3.7)



Chapter 4

Elliptic estimates for φ.

In this chapter κ > 0 is fixed. Now we prove the estimates for φ: In section 4.1 we

prove estimates to show that Λ is invariant on C(T ) (defined in (3.0.1); in section 4.2 we prove

results needed to show that Λ is a contraction; and in section 4.3 we prove the results needed for

the energy estimates in chapter 5 and the optimal regularity result in chapter 7.

Let U be a point in C(T ), which was defined in (3.0.1), and let xκ be the smoothed

flow associated with U . Define Ωt = xκ(t, Ω) and define the function φ by

φ(t, x) = −χΩt
∗ Φ(x), (4.0.1)

where χΩt
(x) takes the value 1 when x is a point in Ωt and the value 0 otherwise and where Φ

is the fundamental solution to the Laplacean.

4.1 Estimates to show that Λ is invariant.

In this section we prove the following theorem:

THEOREM 4.1.1 We have ‖∇φ‖H7(Ωt) ≤ P
[

‖xκ‖8

]

and ‖∇φ‖H8(Ωt) ≤ P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

where P is a polynomial which is linear in κ−0.5‖xκ‖8.

Using the cut off functions defined in chapter 2, we have ‖∇φ‖H8(Ωt) ≤ ‖η1∇φ‖H8(Ωt) +

‖ζ1∇φ‖H8(Ωt). We begin by proving the interior regularity.

4.1.1 Interior regularity.

In this section we prove the following result:

PROPOSITION 4.1.2 For any 1 ≤ i and 0 ≤ s ≤ 8

‖∇s[ηi∇φ]‖L2(Ωt) ≤ P
[

‖xκ‖8

]

(4.1.1)

27
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where P is a polynomial.

We prove that (4.1.1) holds by induction on s. Suppose that s = 0. We have

‖ηi∇φ‖L2(Ωt) ≤ ‖ηi‖L∞(Ωt)‖∇φ‖L2(Ωt) and

‖∇φ‖2
L2(Ωt)

=

∫

Ωt

(∂jφ)(∂jφ)dx =

∫

∂Ωt

N j(∂jφ)φdx −

∫

Ωt

∆φφdx. (4.1.2)

Since we have ‖φ‖L∞(Ωt) ≤ P
[

‖xκ‖3

]

and ‖∇φ‖L∞(Ωt) ≤ P
[

‖xκ‖3

]

, we control both terms in

(4.1.2) appropriately. This proves (4.1.1) for s = 1. Now suppose that s = 8 and that we have

the result for smaller s. Then

‖∇8[ηiφ]‖2
L2(Ωt)

=

∫

Ωt

(∂j1 . . . ∂j8 [ηi∂j9φ])(∂j1 . . . ∂j8 [ηi∂
j9φ])dx. (4.1.3)

Now as we saw in (3.1.8),

∂j1 . . . ∂j8 [ηi∂
j9φ] = ηi(∂

j1 . . . ∂j8∂j9φ) +
∑

(∇k1ηi)(∇
k2+1φ) (4.1.4)

where the sum is over k1 + k2 = 8 such that k2 ≤ 7. We control the second term in (4.1.4) using

lemma 3.1.4. Integrating the first term in (4.1.4) by parts twice we have

−

∫

Ωt

(∂j1 . . . ∂j8∂
j9 [ηi∂j9φ])ηi(∂

j1 . . . ∂j8φ)dx (4.1.5)

−

∫

Ωt

(∂j1 . . . ∂j8 [ηi∂j9f ])(∂j9ηi)(∂
j1 . . . ∂j8φ)dx (4.1.6)

=

∫

Ωt

(∂j1 . . . ∂j7∂
j9 [ηi∂j9φ])ηi(∂

j1 . . . ∂j8∂j8φ)dx (4.1.7)

+

∫

Ωt

(∂j1 . . . ∂j7∂
j9 [ηi∂j9φ])(∂j8ηi)(∂

j1 . . . ∂j8φ)dx (4.1.8)

−

∫

Ωt

(∂j1 . . . ∂j8 [ηi∂j9φ])(∂j9ηi)(∂
j1 . . . ∂j8φ)dx (4.1.9)

where we can control the second and third term in (4.1.7) using lemma 3.1.4. Also, ∂j9 [ηi∂j9φ] =

(∂j9ηi)(∂j9φ) + ηi and therefore the first term in (4.1.7) is equal to

∫

Ωt

∂j1 . . . ∂j7 [(∂
j9ηi)(∂j9φ)]ηi(∂

j1 . . . ∂j8∂j8φ)dx +

∫

Ωt

∂j1 . . . ∂j7 [ηi]ηi(∂
j1 . . . ∂j8∂j8φ)dx

(4.1.10)

The above terms in (4.1.10) can be controlled using lemma 3.1.4 and the inductive hypothesis.

This concludes the proof of proposition 4.1.2.

4.1.2 Boundary regularity.

Let ζ denote ζ1. We have ∇[ζ∇φ] = (∇ζ)(∇φ) + ζ (∇2φ) and ∇ζ is supported in the

interior of Ωt. Thus we control the first term by theorem 4.1.2 and we need only be concerned

with terms of the form ζ∇sφ, for 1 ≤ s ≤ 9. In this section we prove the following result:
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THEOREM 4.1.3 For 1 ≤ s ≤ 9

‖ζ∇sφ‖L2(Ωt) ≤ P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

(4.1.11)

where P is a polynomial which is linear in κ−0.5‖xκ‖8.

Since integration by parts on Ωt will yield a boundary term which is difficult to deal

with because ∂Ωt is the complement of the singular support of φ, we now extend the region

of integration: There is d0 > 0 such that Ωd0 ⊆ ∪ν
i=1Ui, where Ωd0 = {y1 + y2 ∈ R3 : y1 ∈

Ω and d(y2) < d0} and therefore the norms ‖ · ‖Hs(Ωd0 ) are well-defined. Now we define the

extended flow x̃κ = E(xκ) where E is the extension operator on Ω − see, for instance, [7] −

and define Ṽκ = ∂tx̃κ. Then we have ‖x̃κ‖Hs(Ωd0 ) ≤ c‖xκ‖Hs(Ω) and similarly for Ṽκ. Define

B̃i
a =

∂x̃i
κ

∂ya . Then since 1
2 ≤ det(B) ≤ 3

2 on Ω, possibly by picking a smaller d0, x̃κ is a change

of variables on Ω̃ = Ωd0 and such that the normal N to ∂Ωt can be extended into the region

between ∂Ωt and the boundary of Ω̃t = x̃κ(t, Ω̃). Let Ã be the inverse of B̃. We now define φ̃ as

follows:

φ̃(t, x) = −χΩt
∗ Φ(x) for x in Ω̃t (4.1.12)

where again Φ is the fundamental solution for the Laplacean. This means that on Ωt, we have

φ̃ = φ and therefore that φ̃ and φ have the same regularity on Ωt. It also means that φ̃ is smooth

on ∂Ω̃t. Finally, let the norms on the extended domains Ω̃ and Ω̃t be defined analogously to the

norms on Ω and Ωt.

Having extended the domain we now approximate φ̃: Let χm denote a smooth radial

function compactly supported in {y ∈ Ω̃ \ Ω : d(y) < 1
m
}, which takes the value 1 on the set

{y ∈ Ω : 1
m

≤ d(y)}. This means that ∂θχm = 0. By an abuse of notation we will also let χm

denote the analogous function in the Eulerian frame. Define φ̃m(t, x) = −χm ∗ Φ(x) for x in Ω̃t.

We now show that the approximations converge to φ̃.

LEMMA 4.1.4 ‖∇φ̃m −∇φ̃‖L2(Ω̃t)
≤ c‖χm − χΩt

‖L2(Ω̃t)
.

PROOF: From (4.1.12) it is clear that φ̃ is in H1(Ω̃t) so integration by parts is justified. Similarly,

for φ̃m. Now,

‖∇φ̃m −∇φ̃‖2
L2(Ω̃t)

=

∫

Ω̃t

(∂j φ̃m − ∂j φ̃)(∂j φ̃m − ∂j φ̃)dx (4.1.13)

=

∫

∂Ω̃t

N j(∂j φ̃m − ∂j φ̃)(φ̃m − φ̃)dS(x) −

∫

Ω̃t

(χm − χΩt
)(φ̃m − φ̃)dx.

(4.1.14)

To control the first term in (4.1.14) we note that there is δ > 0 such that dist(∂Ω̃t, ∂Ωt) > δ.

This means that for all x on ∂Ω̃t and for all z in Ωt we have |x − z| > δ. Hence for x on ∂Ω̃t,

|∇φ̃m(x) −∇φ̃(x)| ≤

∫

Ω̃t

|χm(z) − χΩt
(z)|Φ′(|x − z|)dz ≤ ‖χm − χΩt

‖L2(Ω̃t)
.
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Also for x in ∂Ω̃t and for x in Ω̃t, |φ̃m(x) − φ̃(x)| ≤ ‖χm − χΩt
‖L2(Ω̃t)

‖Φ(|x − ·|)‖L2(Ω̃t)
≤

c‖χm − χΩt
‖L2(Ω̃t)

, so we can control the first and second term in (4.1.14) appropriately.

Let φ̃m,n = φ̃m − φ̃n and let χm,n = χm − χn. We will now show that (ζ∇∂j
θ∇φ̃m) is a

Cauchy sequence in L2(Ω̃t).

PROPOSITION 4.1.5 For 0 ≤ j ≤ 7, we have

‖ζ∇∂j
θ∇φ̃m,n‖L2(Ω̃t)

≤ P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

‖χm,n‖L6(Ω̃t)
, (4.1.15)

where P is linear in κ−0.5‖xκ‖8.

We begin by proving a lemma which says that we need only be concerned with tangential

derivatives:

LEMMA 4.1.6 Let f satisfy ∆f = g in Ω̃t where ∂θg = 0. For 0 ≤ j ≤ 6,

‖ζ∇∂j
θ∇f‖L2(Ω̃t)

≤ P
[

‖xκ‖8

]

j+1
∑

k=0

‖ζ∂k
θ∇f‖L2(Ω̃t)

+ ‖g‖L6(Ω̃t)
(4.1.16)

and

‖ζ∇∂7
θ∇f‖L2(Ω̃t)

≤ P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

j+1
∑

k=0

‖ζ∂k
θ∇f‖L2(Ω̃t)

+ ‖g‖L6(Ω̃t)
(4.1.17)

where P is linear in κ−0.5‖xκ‖8. Also for 0 ≤ j ≤ 4,

‖ζ∇∂j
θ∇f‖L6(Ω̃t)

≤ P
[

‖xκ‖8

]

j+3
∑

k=0

‖ζ∂k
θ∇f‖L2(Ω̃t)

+ ‖g‖L6(Ω̃t)
(4.1.18)

PROOF: We prove this result by induction. For j = 0 we have ‖ζ∇2f‖L2(Ω̃t)
≤ ‖ζ∆f‖L2(Ω̃t)

+

‖ζ∂θ∇f‖L2(Ω̃t)
, by lemma B.5.1, which can be found in appendix B. Now suppose that 1 ≤

j ≤ 5 and that we have (4.1.16) for smaller j. Then ‖ζ∇∂j
θ∇f‖L2(Ω̃t)

≤ ‖ζdiv∂j
θ∇f‖L2(Ω̃t)

+

‖ζcurl∂j
θ∇f‖L2(Ω̃t)

+ ‖ζ∂j+1
θ ∇f‖L2(Ω̃t)

. Now ζdiv ∂j
θ∇f = ζ∂j

θ∆f +
∑

(∂k
θ Ã)(ζ∇∂l

θ∇f) where

the sum is over k + l = j such that l ≤ j − 1 ≤ 1. Since ∂j
θ∆f = 0, we have ‖ζdiv∂j

θ∇f‖L2(Ω̃t)
≤

P
[

‖xκ‖8

]

‖ζ∇∂l
θ∇f‖L2(Ω̃t)

which we control by induction. Similarly, we also control

‖ζcurl∂j
θ∇f‖L2(Ω̃t)

. Now we prove (4.1.18) for j = 0:

‖ζ∇2f‖L6(Ω̃t)
≤ ‖g‖L6(Ω̃t)

+ ‖ζ∂θ∇f‖L6(Ω̃t)
≤ ‖g‖L6(Ω̃t)

+ ‖ζ∇∂θ∇f‖L2(Ω̃t)
(4.1.19)

using Sobolev’s inequality and proposition 4.1.2. Also, for 1 ≤ j ≤ 4 we have

‖ζ∇∂j
θ∇f‖L6(Ω̃t)

≤
∑

‖(∂k
θ Ã)(∇∂l

θ∇f)‖L6(Ω̃t)
+ ‖ζ∂j+1

θ ∇f‖L6(Ω̃t)
(4.1.20)

≤
∑

‖(∂k
θ Ã)(∇∂l

θ∇f)‖L6(Ω̃t)
+ ‖ζ∇∂j+1

θ ∇f‖L2(Ω̃t)
(4.1.21)

which we control appropriately. Now we can prove (4.1.16) for 6 ≤ j ≤ 7.

Using lemma 4.1.6, we see that it is enough to control ‖ζ∂j
θ∇φ̃m,n‖L2(Ω̃t)

appropriately

for 0 ≤ j ≤ 8 which is the content of the following proposition:
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PROPOSITION 4.1.7 For 0 ≤ j ≤ 6 we have

‖ζ∂j
θ∇φ̃m,n‖L2(Ω̃t)

≤ P
[

‖xκ‖8

]

‖χm,n‖L6(Ω̃t)
. (4.1.22)

and for 7 ≤ j ≤ 8 we have

‖ζ∂j
θ∇φ̃m,n‖L2(Ω̃t)

≤ P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

‖χm,n‖L6(Ω̃t)
. (4.1.23)

where P is linear in κ−0.5‖xκ‖8.

PROOF: We prove that (4.1.22) and (4.1.23) hold by induction on the order. The start of the

induction is similar to lemma 4.1.4. Since the proof of (4.1.22) is similar to the proof of (4.1.23)

we now suppose that we have j = 8 and suppose that we have already have appropriate control

of the lower order cases. We have

‖ζ∂8
θ∇φ̃m,n‖

2
L2(Ω̃t)

=

∫

Ω̃t

(ζ∂8
θ∂iφ̃m,n)(ζ∂8

θ∂iφ̃m,n)dx (4.1.24)

=

∫

Ω̃t

(ζ∂8
θ∂iφ̃m,n)(ζ∂i∂8

θ φ̃m,n)dx (4.1.25)

−

∫

Ω̃t

(ζ∂8
θ∂iφ̃m,n)(∂i∂8

θxl
κ)(ζ∂lφ̃m,n)dx (4.1.26)

+
∑

∫

Ω̃t

(ζ∂8
θ∇φ̃m,n)(∇∂l1

θ xκ) . . . (∇∂
ls−1

θ xκ)(ζ∂ls
θ ∇φ̃m,n)dx (4.1.27)

where l1 + . . . + ls = 8 and l1, . . . , ls ≤ 7. For l1, . . . , ls−1 ≤ 5 we control the third term

in (4.1.25) by P
[

‖xκ‖8

]

‖ζ∂8
θ∇φ̃m,n‖L2(Ω̃t)

‖ζ∂ls
θ ∇φ̃m,n‖L2(Ω̃t)

, which we control by induction.

Suppose that 6 ≤ l1 ≤ 7. Then ‖∇∂l1
θ xκ‖L3(Ω̃t)

≤ κ−0.5‖xκ‖8; and l2, . . . , ls−1 ≤ 2, so we control

the other terms containing x. We also have 0 ≤ ls ≤ 2 and therefore ‖ζ∂ls
θ ∇φ̃m,n‖L6(Ω̃t)

≤

‖ζ∇∂ls
θ ∇φ̃m,n‖L2(Ω̃t)

, which we control appropriately by lemma 4.1.6. Thus we control the third

term in (4.1.25). Integrating the first two terms in (4.1.25) by parts gives
∫

Ω̃t

(ζ∂8
θ∂iφ̃m,n)(∂8

θxl
κ)(ζ∂i∂lφ̃m,n)dx −

∑

∫

Ω̃t

(ζ∂i∂8
θ∂iφ̃m,n)(∂j1

θ xκ)(ζ∂j2
θ ∇φ̃m,n)dx (4.1.28)

+
∑

∫

Ω̃t

(N i∂8
θ∂iφ̃m,n)(∂j1

θ xκ)(∂j2
θ ∇φ̃m,n)dS(x) (4.1.29)

where the sums are over all j1 + j2 = 8 such that j1, j2 ≤ 7. Here we are ignoring the terms

which arise from the derivative falling on ζ because in this case we can use proposition 4.1.2. We

control the first term in (4.1.28). Also,

ζ∂i∂8
θ∂iφ̃m,n = (∇∂8

θxκ)(ζ∇2φ̃m,n) +
∑

(∇∂l1
θ xκ) . . . (∇∂

ls−1

θ xκ)(ζ∇∂ls
θ ∇φ̃m,n) (4.1.30)

where l1 + . . . + ls = 8 and l1, . . . , ls ≤ 7, since ∂8
θ∆φ̃m,n = 0. For l1, . . . , ls−1 ≤ 5 we control

the second term in (4.1.30) appropriately by lemma 4.1.6. If 6 ≤ l1 ≤ 7 then we control ∇∂l1
θ xκ

as before and 0 ≤ l2, . . . , ls−1 ≤ 2 so we can control the other terms containing xκ in L∞(Ω̃t).

We also have 0 ≤ ls ≤ 2 so we can control ‖ζ∇∂ls
θ ∇φ̃m,n‖L6(Ω̃t)

by lemma 4.1.6. We therefore
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control the second term in (4.1.30). Let us now consider the first term in (4.1.30): Commute one

∂θ to the outside to obtain, in addition to a lower order term,
∫

Ω̃t

(∂θ∇∂7
θxκ)(ζ∇2φ̃m,n)(∂j1

θ xκ)(ζ∂j2
θ ∇φ̃m,n)dxκ (4.1.31)

= −

∫

Ω̃t

(∇∂7
θxκ)(ζ∂θ∇

2φ̃m,n)(∂j1
θ xκ)(ζ∂j2

θ ∇φ̃m,n)dx (4.1.32)

−

∫

Ω̃t

(∇∂7
θxκ)(ζ∇2φ̃m,n)(∂j1+1

θ xκ)(ζ∂j2
θ ∇φ̃m,n)dx (4.1.33)

−

∫

Ω̃t

(∇∂7
θxκ)(ζ∇2φ̃m,n)(∂j1

θ xκ)(ζ∂j2+1
θ ∇φ̃m,n)dx (4.1.34)

where no boundary terms arise because the components of ∂θ are orthogonal to the normal on

∂Ω̃t. In all of the terms in (4.1.32) we control the first two factors in each integrand using lemma

4.1.6. In the second term in (4.1.32) we also have, for j1 ≤ 5, ‖(∂j1+1
θ xκ)(ζ∂j2

θ ∇φ̃m,n)‖L2(Ω̃t)
≤

‖xκ‖8‖ζ∂j2
θ ∇φ̃m,n‖L2(Ω̃t)

which we control. For 6 ≤ j1 ≤ 7 we have 1 ≤ j2 ≤ 2 and therefore we

control the second term in (4.1.32) in this case also. The third term in (4.1.32) follows similarly.

Now we control the boundary term in (4.1.28):

∑

∫

∂Ω̃t

(∂k1

θ xκ) . . . (∂ks

θ xκ)(∂i∂k1
. . . ∂ks

φ̃m,n)N i(∂l1
θ xκ) . . . (∂ls

θ xκ)(∂l1 . . . ∂ls φ̃m,n)dS(x)

(4.1.35)

where the sum is over k1 + . . . + ks = 8 and l1 + . . . + ls = 8 such that l1, . . . , ls ≤ 7. As was

mentioned above, there is δ > 0 such that for all x on ∂Ω̃t and z in Ωt we have |x − z| > δ.

Therefore |∇sφ̃m,n(x)| ≤ ‖χm,n‖L2(Ω̃t)
. The highest order term of the above terms is

∫

∂Ω̃t

(∂8
θxκ)(∇φ̃m,n)N(∂7

θxκ)(∂θxκ)(∇2φ̃m,n)dS(x) (4.1.36)

which is controlled by P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

using the trace theorem. This concludes the proof.

By lemma 4.1.6, therefore, we have proposition 4.1.5. By the dominated convergence

theorem, (ζ∇∂j
θ∇φ̃m)∞m=1 is therefore a Cauchy sequence in L2(Ω̃t), for 0 ≤ j ≤ 7. This

means that ζ∇∂j
θ∇φ̃m → ζ∇∂j

θ∇φ̃ in L2(Ω̃t). From lemma 4.1.6 and proposition 4.1.7 we have

‖ζ∇∂j
θ∇φ̃m‖L2(Ω̃t)

≤ P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

, for 0 ≤ j ≤ 7 and therefore have ‖ζ∇∂j
θ∇φ̃‖L2(Ω̃t)

≤

P
[

‖xκ‖8, κ−0.5‖xκ‖8

]

and hence

‖∇∂j
θ∇φ‖L2(Ωt) ≤ P

[

‖xκ‖8, κ−0.5‖xκ‖8

]

, (4.1.37)

for 0 ≤ j ≤ 7, where P is a polynomial which is linear in κ−0.5‖xκ‖8. From now on we no longer

consider the extended domain and all norms are now the usual, non-extended, norms. Now we

build some more regularity for φ.

LEMMA 4.1.8 For 1 ≤ s ≤ 8,

‖ζ∇s+1φ‖L2(Ωt) ≤ P
[

‖xκ‖8

]

+
∑

0≤j≤s

‖ζ∂j
θ∇f‖L2(Ωt). (4.1.38)
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PROOF: We prove this by induction on s. For s = 1 we have, according to lemma 2.5.1,

|ζ∇2φ| ≤ 1+ |ζ∂θ∇φ| which is of the correct form for (4.1.38). Now suppose that s = 8 and that

we have (4.1.38) for 1 ≤ s ≤ 7. Again by lemma 2.5.1, we have |ζ∇s+1φ| ≤ |ζ∇s−1curl∇φ| +

|ζ∇s−1div∇φ| + |ζ∂θ∇
sφ|. Here we have div∇φ = ∆φ = 1 and therefore pointwise on Ωt we

have |ζ∇s−1div∇φ| = 0. We also have

ζ∇s−1∂θ∇φ = ζ∇s−1[(∂θxκ)(∇2φ)] = ζ∂θ∇
sφ +

∑

k1+k2=s−1, k2≤s−2

(∇k1∂θxκ)ζ(∇k2+2φ).

(4.1.39)

For 0 ≤ k1 ≤ 4, we have ‖∇k1∂θxκ‖L∞(Ωt) ≤ ‖xκ‖8 and ‖ζ∇k2+2φ‖L2(Ωt) is controlled by the

inductive hypothesis since k2 + 2 ≤ s = 8. For 5 ≤ k1 ≤ 7, we have ‖∇k1∂θxκ‖L2(Ωt) ≤ ‖xκ‖8

and in this case 0 ≤ k2 ≤ 2, and therefore ‖ζ∇k2+2φ‖L∞(Ωt) ≤ ‖ζ∇k2+2+3φ‖L2(Ωt), in addition

to terms which we control by proposition 4.1.2. We control ‖ζ∇k2+2+3φ‖L2(Ωt) by the inductive

hypothesis because k2 + 2 + 3 ≤ 7. Now |ζ∇s−1∂θ∇φ| ≤ |ζ∇s−2curl ∂θ∇φ| + |ζ∇s−2div ∂θ∇φ|+

|ζ∂θ∇
s−2∂θ∇φ| and ζ∇s−2div ∂θ∇φ = ζ∇s−2[(∇∂θxκ)(∇2φ) + ∂θ∆φ]. We have

ζ∇s−2[(∇∂θxκ)(∇2φ)] =
∑

k1+k2=s−2

(∇k1+1∂θxκ)ζ(∇k2+2φ). (4.1.40)

For 0 ≤ k1 ≤ 3, we have ‖∇k1+1∂θxκ‖L∞(Ωt) ≤ ‖xκ‖8 and ‖ζ(∇k2+2φ)‖L2(Ωt) is controlled by

the inductive hypothesis. For 4 ≤ k1 ≤ 6 we have ‖∇k1+1∂θxκ‖L2(Ωt) ≤ ‖xκ‖8 and in this

case 0 ≤ k2 ≤ 2 and we control ‖ζ(∇k2+2φ)‖L∞(Ωt) ≤ ‖ζ(∇k2+2+3φ)‖L2(Ωt) using the inductive

hypothesis. Also, ζ∇s−2∂θ∆φ = 0. This concludes the proof.

Using lemma 4.1.8, we control ‖ζ∇sφ‖L2(Ωt) for 0 ≤ s ≤ 8 and hence we obtain theorem

4.1.1.

4.2 Estimates to show that Λ is a contraction.

To show that Λ is a contraction, fix U1 and U2 in C(T ). Smooth U1 and U2 to obtain

(U1)κ and (U2)κ. Let x1 and x2 be the flows of (U1)κ and (U2)κ respectively. Let Ωk,t = xk(t, Ω)

for k = 1, 2 and define

φk(t, x) = −χΩk,t
∗ Φ(x). (4.2.1)

Just as the results in section 3.2 followed the methods similar to those employed in section 3.1,

so too do the estimates in this section follow the methods employed in section 4.1. Thus we have

the following theorem:

THEOREM 4.2.1

‖(∇1φ1) ◦ u1 − (∇2φ2) ◦ u2‖8 ≤ κ−0.5‖U1 − U2‖8P
[

‖U1‖8, ‖U2‖8, κ−0.5‖U1‖8, κ−0.5‖U2‖8

]

.
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4.3 Estimates for chapter 5 and chapter 7.

Let φ be defined as in (4.0.1). To prove the energy estimates in chapter 5 we need the

following theorem which follows similarly to theorem 4.1.1.

THEOREM 4.3.1 ‖∇φ‖H7.5(Ωt) ≤ P
[

‖xκ‖8

]

.

To obtain the optimal regularity results in chapter 7 we also need the following estimate.

Note that this estimate requires estimates from chapter 3.

THEOREM 4.3.2 We have

‖∂2
t ∇φ‖H6.5(Ωt) ≤ P

[

‖xκ‖7.5, ‖v‖6.5

]

(4.3.1)

and

‖∂t∇φ‖H6.5(Ωt) ≤ P
[

‖xκ‖7.5, ‖v‖6.5

]

. (4.3.2)



Chapter 5

A priori estimates for smoothed

Euler.

In this chapter κ > 0 is fixed. Using the smoothing defined in chapter 2 we can write

down the following smoothed version of the equations (1.0.1), (1.0.3) and (1.0.4):

(

∂t + vi
κ∂i

)

vj = −∂jp − ∂jφ in Ωt (5.0.1)

div v = 0 in Ωt (5.0.2)

p = 0 on ∂Ωt (5.0.3)

together with smoothed versions of the conditions (1.0.5), (1.0.7) and (1.0.6):

∂t + vi
κ∂i is in the tangent-space of ∪t∈[0,T ] [Ωt × {t}] (5.0.4)

∇p · N ≤ −c0 < 0 on ∂Ω (5.0.5)

v = v0 on Ω (5.0.6)

where Ω = Ω0, the initial domain. Suppose that v satisfies (5.0.1) - (5.0.6) and define

Eκ(t) = sup
[0,t]

[‖V ‖7.5 + ‖xκ‖8 + κ‖V ‖8] (5.0.7)

where V (t, y) = v(t, x(t, y)) and x is the flow of v defined by the differential equation (1.2.1).

Here, xκ is the smoothed flow of V . In this chapter we prove the following theorem:

THEOREM 5.0.3 There is T1 > 0 independent of κ such that Eκ(T1) ≤ E0, where E0 =

E0(Eκ(0), ‖Ω‖9, ‖v0‖8).

As a result of theorem 5.0.3, we have sup[0,T1] ‖V ‖8 ≤ κ−1E0. We will prove this

theorem by proving that there is T1 > 0 such that

Eκ(T1) ≤ P
[

Eκ(0), ‖Ω‖9, ‖v0‖8

]

+ T1P [Eκ(T1)] . (5.0.8)

35
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To control ‖V ‖7.5 we use lemma 2.5.2 and lemma 2.5.3 together with,

E1 = ‖curl [v]‖H6.5(Ωt) and E2(t) = ‖ζ〈∂θ〉
7.5v‖L2(Ωt). (5.0.9)

To control ‖xκ‖8 we use

E3(t) =

µ
∑

k=1

∫

∂Ωt

(−∇p · N)
[

ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ · N
]2

det (A) ◦ x−1
κ dS(x),

(5.0.10)

where N is the external unit normal to ∂Ωt. In the term in (5.0.10), we will suppress det (A)◦x−1
κ

when it does not play an important role, since it will not produce any terms of higher order and

its inclusion produces more cumbersome computations. To control ‖xκ‖8 we will also use

E4(t) =

µ
∑

k=1

∥

∥

∥
div

[

ϑκ ∗
[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]∥

∥

∥

2

H6(Ωt)
(5.0.11)

+

µ
∑

k=1

∥

∥

∥
curl

[

ϑκ ∗
[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]∥

∥

∥

2

H6(Ωt)
. (5.0.12)

We have

∥

∥

∥

(

〈∂θ〉
6.5ϑκ ∗

[(

ξ
1
2

k 〈∂θ〉x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

)

· N
∥

∥

∥

L2(∂Ωt)
(5.0.13)

=

∫

∂Ωt

[

ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ · N
]2

dS(x) (5.0.14)

≤
1

c0c1

∫

∂Ωt

(−∇p · N)
[

ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ · N
]2

dS(x) (5.0.15)

≤
E3

c0c1
. (5.0.16)

From lemma 2.5.3, we have, by (5.0.13)

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k 〈∂θ〉x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

∥

∥

∥

2

H7(Ωt)
≤ P

[

‖xκ‖7

]

[

E4 +
E3

c0c1

]

. (5.0.17)

This means that we similarly control

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k ∂〈∂θ〉x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

∥

∥

∥

2

H6(Ωt)
(5.0.18)

and therefore

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

∥

∥

∥

2

H6.5(∂Ωt)
. (5.0.19)

Using E4 and (5.0.19) we therefore control

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

∥

∥

∥

2

H7(Ωt)
(5.0.20)

and therefore

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k

∥

∥

∥

2

7
and

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k x
)

◦ Ψk

]

◦ Ψ−1
k

∥

∥

∥

2

8
. (5.0.21)
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In addition we will use

E5(t) =

ν
∑

k=µ+1

‖div [∂[ξkx] ◦ x−1
κ ]‖H6(Ωt) +

ν
∑

k=µ+1

‖curl [∂[ξkx] ◦ x−1
κ ]‖H6(Ωt), (5.0.22)

as well as

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

∥

∥

∥

L2(Ωt)
(5.0.23)

which together with lemma 2.5.3 gives control of ‖xκ‖8. To build regularity for κ‖V ‖8 we use

lemma 2.5.3 and the following asymptotic energy components:

E6(t) = κ2

µ
∑

k=1

2
∑

i=1

∫

∂Ωt∩Uk

[(

ξ
1
2

k 〈∂θ〉
7.5V

)

◦ x−1
κ · Tk,i

]2

dS(x)

where Tk,i = ∂(xκ◦Ψk)
∂zi ◦ Ψ−1

k ◦ x−1
κ and E7(t) = κ2‖div [[∂V ] ◦ x−1

κ ]‖2
H6(Ωt)

+ κ2‖curl [[∂V ] ◦

x−1
κ ]‖2

H6(Ωt)
.

5.1 Control of Ė1.

We have [∂t, ∂i]x
j
κ = −(∂iv

j
κ) and therefore ∂tcurl [v] = (∇vκ)(∇v). Since H6.5(Ωt) is

an algebra we can control ‖curl [v]‖H6.5(Ωt).

5.2 Control of Ė2.

The time derivative of E2 is equal to

2

∫

Ω

(ζ〈∂θ〉
7.5V i)(ζ〈∂θ〉

7.5∂tVi)dy = −2

∫

Ω

(ζ〈∂θ〉
7.5V i)(ζ〈∂θ〉

7.5∂ip)dy (5.2.1)

− 2

∫

Ω

(ζ〈∂θ〉
7.5V i)(ζ〈∂θ〉

7.5∂iφ)dy. (5.2.2)

We control the second term in (5.2.1) using theorem 4.3.1. In the first term in (5.2.1) we commute

the ∂i through the 〈∂θ〉 and obtain

−2

∫

Ω

(ζ〈∂θ〉
7.5V i)(ζ∂i〈∂θ〉

7.5p)dy + 2

∫

Ω

(ζ〈∂θ〉
7.5V i)(ζ∂i〈∂θ〉

7.5xj
κ)(∂jp)dy + lower order terms

(5.2.3)

The first term in (5.2.3) we integrate by parts to obtain, in addition to lower order terms,

−2

∫

Ω

(ζ〈∂θ〉∂i〈∂θ〉
6.5V i)(ζ〈∂θ〉

7.5p)dy ≤ ‖〈∂θ〉
1
2 div [〈∂θ〉

6.5v]‖‖〈∂θ〉
8p‖ (5.2.4)

using proposition A.0.3. We control the first factor in (5.2.4) because div [v] = 0 and the second

by theorem 3.3.1. We leave the second term in (5.2.3) until later.
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5.3 Control of Ė3.

Let xk = xκ ◦ Ψk. The time derivative of E3 is equal to

∫

∂Ωt

∂t|∇p|
[

ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]

◦ x−1
k · N

]2

dS(x) (5.3.1)

+ 2

∫

∂Ωt

|∇p|ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]

◦ x−1
k · (∂tN)

[

ϑκ ∗
(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]

◦ x−1
k · NdS(x)

(5.3.2)

+ 2

∫

∂Ωt

|∇p|ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5V

)

◦ Ψk

]

◦ x−1
k · Nϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]

◦ x−1
k · NdS(x).

(5.3.3)

We control the first two terms in (5.3.1). Because Ni = −∂ip
|∇p| , the third term in (5.3.1) is equal

to

− 2

∫

∂Ωt

ζ2ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψk

]

◦ x−1
k Niϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ x−1
k (∂lp)dS(x)

(5.3.4)

= −2

∫

Ωt

ζ2∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψk

]

◦ x−1
k ϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ x−1
k (∂lp)dx (5.3.5)

− 2

∫

Ωt

ζ2ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψk

]

◦ x−1
k ∂iϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ x−1
k (∂lp)dx (5.3.6)

− 2

∫

Ωt

ζ2ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψk

]

◦ x−1
k ϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ x−1
k (∂i∂lp)dx (5.3.7)

using the divergence theorem. We control the third term in (5.3.5). In the first term in (5.3.5) we

commute one of the 〈∂θ〉 out. By proposition A.0.3 the first term in (5.3.5) is therefore controlled

by

∥

∥

∥
∂iϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
7V i

)

◦ Ψk

]

◦ x−1
k

∥

∥

∥

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
8xl
)

◦ Ψk

]

◦ x−1
k (∂lp)

∥

∥

∥
. (5.3.8)

We control the second factor in (5.3.8). To deal with the first factor we have lemma 5.3.1.

LEMMA 5.3.1 For a function f on Ω we have

∣

∣

∣
∂iϑκ ∗

[(

ξ
1
2

k f
)

◦ Ψk

]

◦ x−1
k − ϑκ ∗

[

ξ
1
2

k ◦ Ψk∂i[f ◦ x−1
κ ] ◦ xκ ◦ Ψk

]

◦ x−1
k

∣

∣

∣
(5.3.9)

≤ κ‖A‖4‖f‖1. (5.3.10)

PROOF: We have

∂iϑκ ∗
[(

ξ
1
2

k f
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ = A

(

∂z

∂y

)

∂

∂z
ϑκ ∗

[(

ξ
1
2

k f
)

◦ Ψk

]

=

(

∂y

∂x

)(

∂z

∂y

)

ϑκ ∗

[(

ξ
1
2

k ◦ Ψk

∂

∂z
[f ◦ Ψk]

)]

.
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Now for g and h defined on (0, 1)2,

|gϑκ ∗ [h] − ϑκ ∗ [gh]| =

∣

∣

∣

∣

∣

∫

(0,1)2
ϑκ(z′′) [g(z′ − z′′) − g(z′)] h(z′ − z′′)dz′′

∣

∣

∣

∣

∣

(5.3.11)

≤ κ‖g‖4

∫

(0,1)2
ϑκ(z′′)|h|(z′ − z′′)dz′′ (5.3.12)

≤ κ‖g‖4‖h‖. (5.3.13)

Therefore

∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7V i

)

◦ Ψk

]

◦ x−1
k = ϑκ ∗

[(

ξ
1
2

k ◦ Ψk[∂i∂
7
θvi] ◦ xκ ◦ Ψk

)]

◦ x−1
k + R (5.3.14)

where the remainder is controlled by κ‖A‖4‖V ‖8, according to lemma 5.3.1. Since div [v] = 0,

0 = 〈∂θ〉
7div [v] =

∑

(〈∂θ〉
iA)(〈∂θ〉

j+1v) + div 〈∂θ〉
7v where the sum is over i + j = 7 and j ≤ 6.

Thus we can control the first factor in (5.3.8). Let S = (0, 1)2 × (−1, 0]. Changing variables in

the second term in (5.3.5), using the fact that the integral contains the term det (A) ◦x−1
κ , which

had been suppressed, gives

−

∫

S

ζ2
[

∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ ΨkΦlk ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψk

]

(5.3.15)

× det

(

∂Ψk

∂z

)

◦ Ψkdz. (5.3.16)

where Φlk = (∂lp) ◦ xk. Let us again suppress the Jacobian. For the above term we have the

following lemma:

LEMMA 5.3.2 (αµανδα) Let f and g be functions defined on S. Then

∫

S

f ϑκ ∗ [g] dz =

∫

S

ϑκ ∗ [f ] g dz.

PROOF:

∫

S

f ϑκ ∗ [g] dz =

∫

(−1,0]

∫

(0,1)2

∫

(0,1)2
f(z′, z3)ϑκ(z′ − z′′)g(z′′, z3)dz′′dz′dz3

=

∫

S

ϑκ ∗ [f ] g dz,

because ϑκ is even.
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Using lemma 5.3.2 the term in (5.3.15) is equal to

−

∫

S

ζ2ϑκ ∗
[[

∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ ΨkΦlk

] (

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψkdz

(5.3.17)

= −

∫

S

ζ2Φlkϑκ ∗
[[

∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ Ψk

] (

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψkdz

(5.3.18)

+

∫

S

ζ2Φlkϑκ ∗
[[

∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ Ψk

] (

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψkdz

(5.3.19)

−

∫

S

ζ2ϑκ ∗
[

Φlk

[

∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ Ψk

] (

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψkdz.

(5.3.20)

Using (5.3.11) we see that the last two integrals in (5.3.18) can be estimated by

κ‖〈∂θ〉
7.5V ‖‖∇p‖4‖∇ϑκ ∗ [ζ

1
2 〈∂θ〉

7.5x]‖ (5.3.21)

which we can control since ϑκ ∗ [〈∂θ〉h] = 〈∂θ〉ϑκ ∗ [h] = κ−1ϑκ ∗ [h]. The first term in (5.3.18) is

equal to

−

∫

S

ζ2Φlk

[

∂iϑκ ∗ ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ Ψk

(

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψkdz

(5.3.22)

+

∫

S

ζ2Φlk

[

∂iϑκ ∗ ϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ Ψk

(

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψkdz

(5.3.23)

−

∫

S

ζ2Φlkϑκ ∗
[[

∂iϑκ ∗
[(

ξ
1
2

k 〈∂θ〉
7.5xl

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

◦ xκ ◦ Ψk

] (

ξ
1
2

k 〈∂θ〉
7.5V i

)

◦ Ψkdz

(5.3.24)

Using lemma 5.3.1 we can control the two last terms in (5.3.22) by

κ‖〈∂θ〉
7.5V ‖‖∇p‖4‖A‖4

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
7.5x

)

◦ Ψk

]∥

∥

∥

1

≤ ‖〈∂θ〉
7.5V ‖‖∇p‖4‖A‖4

∥

∥

∥
ϑκ ∗

[(

ξ
1
2

k 〈∂θ〉
6.5x

)

◦ Ψk

]∥

∥

∥

1

using, again, the smoothing properties of the convolution. Thus from (5.3.22) we obtain, in

addition to a collection of lower order terms

−

µ
∑

k=1

∫

Ω

ζ2 (∂lp) ◦ xκ

[

∂i〈∂θ〉
7.5
[

ξ
1
2

k ◦ x−1
κ ϑκ ∗ ϑκ ∗

[(

ξ
1
2

k xl
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]]

◦ xκ (5.3.25)

× (〈∂θ〉
7.5V i)dy (5.3.26)

= −

∫

Ω

ζ2 (∂lp) ◦ xκ(∂i〈∂θ〉
7.5xl

κ) ◦ xκ〈∂θ〉
7.5V idy (5.3.27)

+

∫

Ω

(∂lp) ◦ xκ(∂i〈∂θ〉
7.5xl

m) ◦ xκ〈∂θ〉
7.5V idy. (5.3.28)
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Here we control the second term in (5.3.27) by integrating by parts and using proposition A.0.3.

The first term in (5.3.27) combines with the second term in (5.2.3) to give us

−

∫

Ωt

ζ2(〈∂θ〉
7.5vi)(〈∂θ〉

7.5∂ip) det(A) ◦ x−1
κ dx (5.3.29)

−

∫

Ωt

ζ2(〈∂θ〉
7.5vi)(∂i〈∂θ〉

7.5xl
κ)(∂lp) det(A) ◦ x−1

κ dx (5.3.30)

= ([∇, 〈∂θ〉
1
2 ]〈∂θ〉

7xκ)(∇p) (5.3.31)

+
∑

∫

Ωt

ζ2(〈∂θ〉
7 1

2 vi).5rac12[(∇〈∂θ〉
j1xκ) . . . (∇〈∂θ〉

js−1xκ)(〈∂θ〉
js∇p)]dx (5.3.32)

where the sum is over j + · · · + js = 7 and j1, . . . , js ≤ 6. We control the terms above using

proposition A.0.1.

5.4 Control of Ė4.

First we deal with the divergence term. Let αk = ϑκ ∗
[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦Ψ−1
k ◦ x−1

κ . We

have

∂tdiv αk = (∇vκ)(∇αk) + div ∂tαk (5.4.1)

= (∇vκ)(∇αk) + ϑκ ∗
[(

ξ
1
2

k (∇∂xκ)(∇v)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ (5.4.2)

+ divϑκ ∗
[(

ξ
1
2

k ∂v
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ − ϑκ ∗
[(

ξ
1
2

k div ∂v
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ . (5.4.3)

Therefore we have an equation of the form ∂tf = g which we can integrate with respect to time

to obtain f(t) = f(0)+
∫

[0,t] g(s)ds. Since H6(Ωt) is a Banach algebra for Ωt ⊆ R3 we control the

first and second terms in (5.4.2) can be controlled by ‖V ‖7‖αk‖7 and ‖xκ‖8‖V ‖7 respectively.

The last two terms in (5.4.2) can, according to lemma 5.3.1, be controlled by κ‖xκ‖7‖V ‖8. Now

we deal with the curl term. Let αk be defined as above. We now consider the two time derivatives

on curl αk:

∂2
t curl αk = ∂t [(∇vκ)(∇αk) + curl∂tαk] (5.4.4)

= ∂t [(∇vκ)(∇αk)] + [(∇vκ)(∇∂tαk)] + curl ∂2
t αk (5.4.5)

= ∂t [(∇vκ)(∇αk)] − [(∇∂tvκ)(∇αk)] + curl ∂2
t αk. (5.4.6)
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Now

(curl ∂2
t αk)ij = ∂iϑκ ∗

[(

ξ
1
2

k ∂∂tvj

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ − ϑκ ∗
[(

ξ
1
2

k ∂i∂∂tvj

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

(5.4.7)

− ∂jϑκ ∗
[(

ξ
1
2

k ∂∂tvi

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ + ϑκ ∗
[(

ξ
1
2

k ∂j∂∂tvi

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

(5.4.8)

+ ϑκ ∗
[(

ξ
1
2

k ∂i∂∂tvj

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ − ϑκ ∗
[(

ξ
1
2

k ∂j∂∂tvi

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

(5.4.9)

= (∇vκ)∇ϑκ ∗
[(

ξ
1
2

k ∂v
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ (5.4.10)

+ ϑκ ∗
[(

ξ
1
2

k (∇vκ)(∇∂v)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ (5.4.11)

+ ∂t

[

∂iϑκ ∗
[(

ξ
1
2

k ∂vj

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ − ϑκ ∗
[(

ξ
1
2

k ∂i∂vj

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

(5.4.12)

+ ∂t

[

∂jϑκ ∗
[(

ξ
1
2

k ∂vi

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ − ϑκ ∗
[(

ξ
1
2

k ∂j∂vi

)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

]

(5.4.13)

+ ϑκ ∗
[(

ξ
1
2

k (∇∂xκ)(∇∂tv)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ , (5.4.14)

using (6.0.27). The first term in (5.4.10) is equal to

∂t[(∇vκ)∇ϑκ ∗
[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ ] − (∇∂tvκ)∇ϑκ ∗
[(

ξ
1
2

k ∂x
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

(5.4.15)

and the second term in (5.4.10) is equal to

∂tϑκ ∗
[(

ξ
1
2

k (∇vκ)(∇∂x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ − ϑκ ∗
[(

ξ
1
2

k (∇∂tvκ)(∇∂x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ .

(5.4.16)

Together (5.4.6), (5.4.10), (5.4.15) and (5.4.16) give an equation which is of the form

∂t[∂tf + g] = h. Integrating with respect to time once yields ∂tf = (∂tf1)(0) − g(t) + g(0) +
∫

[0,t] h(u)du. Another integration with respect to time again gives

f(t) = f(0) + t(∂tf)(0) −

∫

[0,t]

g(u)du + tg(0) +

∫

[0,t]

∫

[0,u2]

h(u1)du1du2.

In H6(Ωt) we control f(0) by E(0) and (∂tf)(0) by ‖v0‖8. We have already seen that we can

control the first term in (5.4.6). The second term in (5.4.6) and the first and second term in

(5.4.15) can all be controlled using the fact that H6(Ωt) is a Banach algebra. Applying six



43

derivatives to the first term in (5.4.16) we have

∂6ϑκ ∗
[(

ξ
1
2

k (∇vκ)(∇∂x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ (5.4.17)

=
∑

ϑκ ∗
[(

ξ
1
2

k (∂i+1vκ)(∂j+2x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ (5.4.18)

+ ϑκ ∗
[(

ξ
1
2

k (∇vκ)(∂8x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ

(5.4.19)

where the sum is over all i and j such that i + j = 6 and j ≤ 5. We can control the first of these

terms. We also have

ϑκ ∗
[(

ξ
1
2

k (∇vκ)(∂8x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ = (∇vκ)ϑκ ∗
[(

ξ
1
2

k (∂8x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ(5.4.20)

+ ϑκ ∗
[(

ξ
1
2

k (∇vκ)(∂8x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ(5.4.21)

− (∇vκ)ϑκ ∗
[(

ξ
1
2

k (∂8x)
)

◦ Ψk

]

◦ Ψ−1
k ◦ x−1

κ .(5.4.22)

Here we control the first term in (5.4.20) by ‖V ‖4‖αk‖7. Also, using (5.3.11) from lemma 5.3.1

we control the last two terms in (5.4.20) by κ‖V ‖5‖V ‖8. Similarly, we control the second term

in (5.4.16). Terms three and four, and five and six in (5.4.10) can be controlled by κ‖xκ‖7‖V ‖8.

The last term in (5.4.10) can be controlled.

5.5 Control of Ė5.

This follows similarly to the result in section 5.4.

5.6 Control of Ė6.

The time derivative of E6 is equal to

− 2κ2

∫

∂Ωt

[(

ξ
1
2

k 〈∂θ〉
7.5V

)

◦ x−1
κ · Tk,i

] [(

ξ
1
2

k 〈∂θ〉
7.5[∇p] ◦ xκ

)

◦ x−1
κ · Tk,i

]

dS(x) (5.6.1)

− 2κ2

∫

∂Ωt

[(

ξ
1
2

k 〈∂θ〉
7.5V

)

◦ x−1
κ · Tk,i

] [(

ξ
1
2

k 〈∂θ〉
7.5[∇φ] ◦ xκ

)

◦ x−1
κ · Tk,i

]

dS(x) (5.6.2)

+ 2κ2

∫

∂Ωt

[(

ξ
1
2

k 〈∂θ〉
7.5V

)

◦ x−1
κ · Tk,i

] [(

ξ
1
2

k 〈∂θ〉
7.5V

)

◦ x−1
κ · (∂tTk,i)

]

dS(x). (5.6.3)

We control the second term in (5.6.1) by theorem 4.1.1. We also control the third term in (5.6.1).

Now ∇p · Tk,i = 0 for all k and i = 1, 2. Thus

0 = 〈∂θ〉
7.5 [∇p · Tk,i] (5.6.4)

= [〈∂θ〉
7.5[∇p] ◦ xκ] ◦ x−1

κ · Tk,i + 〈∂θ〉
1
2 [[〈∂θ〉

7[∇p] ◦ xκ] ◦ x−1
κ · Tk,i] (5.6.5)

− [〈∂θ〉
7.5[∇p] ◦ xκ] ◦ x−1

κ · Tk,i + 〈∂θ〉
1
2

[

∑

(〈∂θ〉
j1∇p) · (〈∂θ〉

j2Tk,i)
]

(5.6.6)

+ 〈∂θ〉
1
2 [(∇p)(〈∂θ〉

7Tk,i)] (5.6.7)
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where the sum is over j1 + j2 = 7 and j1, j2 ≤ 6. The second and third term in (5.6.5) can

be controlled by ‖Tk,i‖H2(∂Ωt)‖[〈∂θ〉
7[∇p] ◦ xκ] ◦ x−1

κ ‖L2(∂Ωt) ≤ ‖xκ‖
2
4‖[〈∂θ〉

1
2∇p] ◦ xκ‖7 using

the trace theorem. According to theorem 3.3.1, we can control κ‖[〈∂θ〉
1
2∇p] ◦ xκ‖7. We control

the fourth term in (5.6.5) by ‖[∇p] ◦ xκ‖7‖xκ‖8. The last term in (5.6.5) can be controlled by

‖[∇p]◦xκ‖4‖Tk,i‖H7.5(∂Ωt) +‖[∇p]◦xκ‖5‖‖Tk,i‖H7(∂Ωt). We have κ‖Tk,i‖H7.5(∂Ωt) ≤ ‖Ω‖9‖xκ‖8,

which we control.

5.7 Control of Ė7.

This follows similarly to 5.1.

5.8 The constant c0 in (5.0.5).

Using elliptic estimates for ∂t∇p from theorem 3.3.2, we can show that assuming that

we have N i∂ip ≤ −c0 < 0 on ∂Ω, then we also have that estimate for a smaller c0 on some

time-interval [0, T ].



Chapter 6

A fixed point formulation.

Fix κ > 0 and suppose that we control ‖Ω‖9 and ‖v0‖8. As was mentioned in the

introduction, in this chapter we give a fixed point formulation of the smoothed version of Euler’s

equation (5.0.1) - (5.0.6), defined in chapter 5. We will look for the fixed point solution in the

space

Cκ(T ) =

{

f ∈ L2
(

[0, T ], H8(Ω)
)

: sup
t∈[0,T ]

‖f‖8(t) ≤ κ−1E0 + 1

}

(6.0.1)

where E0 = E0(Eκ(0), ‖Ω‖9, ‖v0‖8), obtained in theorem 5.0.3 is such that ‖v0‖8 ≤ κ−1E0. Let

U , V and W be points in C(T ). Smooth U and V to obtain Uκ and Vκ. Let xκ be the flow of

Uκ and let Ωt = xκ(t, Ω). We now define a function p which because it depends on U , V , and

W will sometimes be denoted by p[U, V, W ]:

∆p = −
(

∂i[V
j
κ ◦ x−1

κ ]
) (

∂j [W
i ◦ x−1

κ ]
)

+ 1 on Ωt, (6.0.2)

where ∂i = ∂
∂xi

κ
, with boundary condition

p = 0 on ∂Ωt. (6.0.3)

We also define a function φ which depends on U , and will therefore sometimes be denoted φ[U ]:

φ(t, x) = −χΩt
∗ Φ(x). (6.0.4)

Define, for y in Ω,

Λi(U)(V )(W )(t, y) = vi
0(y) −

∫

[0,t]

(

∂ip
)

(s, xκ(s, y)) ds −

∫

[0,t]

(

∂iφ
)

(s, xκ(s, y)) ds.

Using results from chapter 3 and chapter 4 we now prove that Λ is invariant and contractive on

C(T ).

LEMMA 6.0.1 Fix U and V in C(T ). Then Λ(U)(V ) : C(T ) → C(T ) has a unique fixed-point.

45
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PROOF: By theorem 3.1.2 and theorem 4.1.1 we have estimates for p and φ and thus

‖Λ(U)(V )(W )‖8 ≤ ‖v0‖8 +

∫

[0,t]

P
[

‖U‖8, κ−1‖U‖8, ‖V ‖8, ‖W‖8

]

ds (6.0.5)

+

∫

[0,t]

P
[

‖U‖8, κ−0.5‖U‖8

]

ds (6.0.6)

and therefore

sup
[0,T ]

‖Λ(U)(V )(W )‖8 ≤ κ−1E0 + T sup
[0,T ]

P
[

κ−1E0 + 1, κ−1[κ−1E0 + 1], κ−0.5[κ−1E0 + 1]
]

.

(6.0.7)

For T small enough, therefore, Λ(U)(V ) maps C(T ) into C(T ). Let W1 and W2 be two points

in C(T ). Then

Λi(U)(V )(W1)(t, y) − Λi(U)(V )(W2)(t, y) =

∫

[0,t]

∂i (p2 − p1) (s, xκ(s, y)) ds

where pk = p[U, V, Wk]. Let q = p2 − p1. Then q satisfies

∆q = −
(

∂i[V
j
κ ◦ x−1

κ ]
) (

∂j [[W
i
2 − W i

1 ] ◦ x−1
κ ]
)

on Ωt (6.0.8)

with boundary condition q = 0 on ∂Ωt. Using theorem 3.2.1 we have

sup
[0,T ]

‖Λ(U)(V )(W2) − Λ(U)(V )(W1)‖8 (6.0.9)

≤ T sup
[0,T ]

P
[

‖U‖8, κ−1‖U‖8

]

‖V ‖8 sup
[0,T ]

‖W2 − W1‖8 (6.0.10)

≤ TP
[[

κ−1E0 + 1
]

, κ−1[κ−1E0 + 1]
]

sup
[0,T ]

‖W2 − W1‖8. (6.0.11)

Since it is possible to pick T small enough that

α(T ) = TP
[[

κ−1E0 + 1
]

, κ−1[κ−1E0 + 1]
]

< 1, (6.0.12)

Λ(U)(V ) is a contraction mapping. C(T ) is a non-empty Banach-space so by the Banach con-

traction mapping theorem, Λ(U)(V ) has therefore a unique fixed-point.

Let Λ1(U)(V ) denote the unique fixed-point obtained in lemma 6.0.1.

LEMMA 6.0.2 Fix U in C(T ). Then Λ1(U) : C(T ) → C(T ) has a unique fixed-point.

PROOF: By lemma 6.0.1, Λ1(U) : C(T ) → C(T ) is a well-defined map. Let V1 and V2 be two

points in C(T ). Then

sup
[0,T ]

‖Λ1(U)(V2) − Λ1(U)(V1)‖8 (6.0.13)

= sup
[0,T ]

‖Λ(U)(V2)(Λ1(U)(V2)) − Λ(U)(V1)(Λ1(U)(V1))‖8 (6.0.14)

≤ sup
[0,T ]

‖Λ(U)(V2)(Λ1(U)(V2)) − Λ(U)(V2)(Λ1(U)(V1))‖8 (6.0.15)

+ sup
[0,T ]

‖Λ(U)(V2)(Λ1(U)(V1)) − Λ(U)(V1)(Λ1(U)(V1))‖8. (6.0.16)
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Let W = Λ1(U)(V1) and let pk = p[U, Vk, W ]. Define q = p1 − p2, then q satisfies

∆q = −
(

∂i[[(V1)
j
κ − (V2)

j
κ] ◦ x−1

κ ]
) (

∂j [W
i ◦ x−1

κ ]
)

on Ωt with boundary condition q = 0 on ∂Ωt.

Theorem 3.2.1 provides the following estimate of the second term in (6.0.13):

T sup
[0,T ]

P
[

‖U‖8, κ−1‖U‖8

]

sup
[0,T ]

‖V2 − V1‖8 sup
[0,T ]

‖Λ1(U)(V1)‖8. (6.0.17)

Thus the estimate from (6.0.11) of the first term in (6.0.13) gives

sup
[0,T ]

‖Λ1(U)(V2) − Λ1(U)(V1)‖8 ≤ α(T ) sup
[0,T ]

‖Λ1(U)(V2) − Λ1(U)(V1)‖8 + α(T ) sup
[0,T ]

‖V2 − V1‖8

and therefore

sup
[0,T ]

‖Λ1(U)(V2) − Λ1(U)(V1)‖8 ≤
α(T )

1 − α(T )
‖V2 − V1‖8. (6.0.18)

We can pick T small enough that α(T ) is small enough that α(T )
1−α(T ) < 1 and therefore Λ1(U)

is a contraction mapping. By the Banach contraction mapping theorem, Λ1(U) has therefore a

unique fixed-point.

Let Λ2(U) denote the unique fixed-point obtained in lemma 6.0.2,.

LEMMA 6.0.3 Λ2 : C(T ) → C(T ) has a unique fixed-point.

PROOF: We deduce by lemma 6.0.2, that Λ2 : C(T ) → C(T ) is a well-defined map. Let U1, U2

and V be points in C(T ). By the definition of Λ, Λ1 and Λ2 we have Λ2(U) = Λ1(U)(Λ2(U))

and Λ1(U)(V ) = Λ(U)(V )(Λ1(U)(V )). Thus

Λ2(U) = Λ1(U)
(

Λ2(U)
)

= Λ(U)
(

Λ2(U)
)(

Λ1(U)
(

Λ2(U)
)

)

(6.0.19)

and

sup
[0,T ]

‖Λ2(U2) − Λ2(U1)‖8 (6.0.20)

= sup
[0,T ]

∥

∥

∥
Λ(U2)

(

Λ2(U2)
)(

Λ1(U2)
(

Λ2(U2)
)

)

− Λ(U1)
(

Λ2(U1)
)(

Λ1(U1)
(

Λ2(U1)
)

)
∥

∥

∥

8
(6.0.21)

≤ sup
[0,T ]

∥

∥

∥
Λ(U2)

(

Λ2(U2)
)(

Λ1(U2)
(

Λ2(U2)
)

)

− Λ(U2)
(

Λ2(U2)
)(

Λ1(U1)
(

Λ2(U1)
)

)∥

∥

∥

8
(6.0.22)

+ sup
[0,T ]

∥

∥

∥
Λ(U2)

(

Λ2(U2)
)(

Λ1(U1)
(

Λ2(U1)
)

)

− Λ(U2)
(

Λ2(U1)
)(

Λ1(U1)
(

Λ2(U1)
)

)∥

∥

∥

8
(6.0.23)

+ sup
[0,T ]

∥

∥

∥
Λ(U2)

(

Λ2(U1)
)(

Λ1(U1)
(

Λ2(U1)
)

)

− Λ(U1)
(

Λ2(U1)
)(

Λ1(U1)
(

Λ2(U1)
)

)∥

∥

∥

8
. (6.0.24)

The first of the above terms can be controlled by

α(T ) sup
[0,T ]

‖Λ1(U2)
(

Λ2(U2)
)

− Λ1(U1)
(

Λ2(U1)
)

‖8 = α(T ) sup
[0,T ]

‖Λ2(U2) − Λ2(U1)‖8

according to (6.0.11). The second of the above terms can be controlled by

α(T ) sup
[0,T ]

‖Λ2(U2) − Λ2(U1)‖8
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according to (6.0.17). The third term can, according to theorem 3.2.2 and theorem 4.2.1, be

controlled by α(T ) sup[0,t] ‖U2 − U1‖8. Thus we have

sup
[0,T ]

‖Λ2(U2) − Λ2(U1)‖8 ≤
α(T )

1 − 2α(T )
sup
[0,T ]

‖Λ2(U2) − Λ2(U1)‖8.

This shows that Λ2 is a contraction and hence it has a unique fixed-point.

Thus we have a unique fixed point solution V in C(T2), where T2 > 0 depends on E0

and κ, which on [0, T2] satisfies

V (t, y) = Λ(V )(V )(V )(t, y) (6.0.25)

= v0(y) −

∫

[0,t]

(∇p) (s, xκ(s, y)) ds −

∫

[0,t]

(∇φ) (s, xκ(s, y)) ds. (6.0.26)

Therefore we have

∂tV = −(∇p) ◦ xκ − (∇φ) ◦ xκ (6.0.27)

in Ω where xκ is the flow of Vκ. Let Ωt = xκ(t, Ω) then p above is defined on Ωt by

∆p = −
(

∂iv
j
κ

) (

∂jv
i
)

+ 1 on Ωt, (6.0.28)

where vκ = Vκ ◦ x−1
κ , v = V ◦ x−1

κ and ∂i = ∂
∂xi

κ
, with boundary condition

p = 0 on ∂Ωt (6.0.29)

and φ is defined by

φ(t, x) = −χΩt
∗ Φ(x). (6.0.30)

Also, we have div ∂tv = −∆p− ∆φ = (∂iv
j
κ)(∂jv

i) and div∂tv = ∂i∂tv
i = (∂iv

j
κ)(∂jv

i) + ∂tdiv v.

Thus ∂tdiv v = 0. And div [Λ(V, V, V )]◦x−1
κ (0, x) = div v0 = 0. Thus div v = 0. This means that

v satisfies (5.0.1) - (5.0.6) and therefore we have estimates for v in L∞[[0, T1], H
8(Ω)] via theorem

5.0.3. Suppose now that the time interval for existence, [0, T2], is shorter than the time interval

on which we have a priori estimates, [0, T1] and that T2 is the largest such T2. By theorem 5.0.3,

we have sup[0,T1] ‖V ‖8 ≤ κ−1E0 and in particular, ‖V (T2, ·)‖8 ≤ κ−1E0. Now define

Cκ(T ) =

{

f ∈ L2
(

[T2, T ], H8(Ω)
)

: sup
t∈[T2,T ]

‖f‖8(t) ≤ κ−1E0 + 1

}

(6.0.31)

and a map

Λi(U)(V )(W )(t, y) = V i(T2, y) −

∫

[T2,t]

(

∂ip
)

(s, xκ(s, y)) ds −

∫

[T2,t]

(

∂iφ
)

(s, xκ(s, y)) ds.

(6.0.32)

Using the above argument we can show that we also have existence on [T2, 2T2] which contradicts

the fact that T2 was the largest such T2. This must mean that T2 = T1 and therefore we have

existence on [0, T1], an interval independent of κ. Existence for Euler’s equation then follows a

standard compactness argument which can be found, for example, in [9].



Chapter 7

Optimal regularity and

uniqueness.

In previous chapters we have supposed that we controlled ‖Ω‖9 and ‖v0‖8. We now relax

those assumptions and suppose instead that we control ‖Ω‖8 and ‖v0‖7.5. We can regularise

this initial data using a standard convolution to obtain Ωε in H9 and v0,ε in H8(Ωε). From

the previous sections we obtain a sequence of solutions ∂txε with flows xε under such initial

conditions. Let us suppress the ε and define the following energy:

E(t) = sup
[0,t]

[

‖∂3
t x‖6.5 + ‖∂2

t x‖7 + ‖∂tx‖7.5 + ‖N‖H6.5(∂Ωt)

]

(7.0.1)

where N is the outward unit normal to ∂Ωt. The theorem we prove in this section is the following:

THEOREM 7.0.4 There is T such that E(T ) ≤ P
[

E(0)
]

.

To build regularity for the first term in (7.0.1) we define E1 = ‖η 〈∂θ〉
6.5∂3

t x‖2 and

E2 = ‖ζ〈∂θ〉
6.5∂3

t x‖2, where η = η1 and ζ = ζ1 are cut off functions defined in chapter 2. And to

build regularity for the second term in (7.0.1) we define

E3(t) =
1

2

∫

∂Ωt

(−∇p · N)(〈∂θ〉
6.5∂2

t x) · (〈∂θ〉
6.5∂2

t x)dS(x). (7.0.2)

Establishing control of the third and fourth term in (7.0.1) follows once we have control the first

and second. Now we control the time derivatives of E1, E2 and E3.

7.1 Control of Ė1.

The time derivative of E1 is

−2

∫

Ωt

(η 〈∂θ〉
6.5∂3

t xi)(η 〈∂θ〉
6.5∂2

t ∂ip)dx − 2

∫

Ωt

(η 〈∂θ〉
6.5∂3

t xi)(η 〈∂θ〉
6.5∂2

t ∂iφ)dx (7.1.1)
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where the first term in (7.1.1) can be controlled using theorem 3.3.3 and the second term in

(7.1.1) can be controlled using theorem 4.3.2.

7.2 Control of Ė2.

We have

Ė2(t) = −2

∫

Ωt

(ζ〈∂θ〉
6.5∂3

t xi)(ζ〈∂θ〉
6.5∂2

t ∂ip)dx − 2

∫

Ωt

(ζ〈∂θ〉
6.5∂3

t xi)(ζ〈∂θ〉
6.5∂2

t ∂iφ)dx. (7.2.1)

The second term in (7.2.1) is controlled using theorem 4.3.2. Commuting ∂i to the outside in the

first term in (7.2.1) gives

− 2

∫

Ωt

(ζ〈∂θ〉
6.5∂3

t xi)(ζ∂i〈∂θ〉
6.5∂2

t p)dx + 2

∫

Ωt

(ζ〈∂θ〉
6.5∂3

t xi)(ζ∂i〈∂θ〉
6.5∂2

t xk)(∂kp)dx (7.2.2)

+ lower order terms (7.2.3)

We integrate the first term in (7.2.2) by parts − the result can be controlled using half integration

by parts and the fact that div [∂tx] = 0. We leave the second term from (7.2.2) until section 7.3.

7.3 Control of Ė3.

The time derivative of E3 is

1

2

∫

∂Ωt

∂t|∇p|(〈∂θ〉
6.5∂2

t x) · (〈∂θ〉
6.5∂2

t x)dS(x) (7.3.1)

+

∫

∂Ωt

(−∇p · N)(〈∂θ〉
6.5∂3

t x) · (〈∂θ〉
6.5∂2

t x)dS(x). (7.3.2)

We can control the first term in (7.3.1). We apply the divergence theorem to the second term in

(7.3.1) to obtain

−

∫

Ωt

(∆p)(〈∂θ〉
6.5∂3

t xi)(〈∂θ〉
6.5∂2

t xi)dx −

∫

Ωt

(∂jp)(∂j〈∂θ〉
6.5∂3

t xi)(〈∂θ〉
6.5∂2

t xi)dx (7.3.3)

−

∫

Ωt

(∂jp)(〈∂θ〉
6.5∂3

t xi)(∂j〈∂θ〉
6.5∂2

t xi)dx. (7.3.4)

We control the first term in (7.3.3). Since curl [∂2
t x] = 0 we have

∂j〈∂θ〉
6.5∂3

t xi = 〈∂θ〉
6.5∂t∂

j∂2
t xi − (∂j〈∂θ〉

6.5∂tx
k)(∂k∂2

t xi) + lower order terms (7.3.5)

= 〈∂θ〉
6.5∂t∂i∂

2
t xj − (∂j〈∂θ〉

6.5∂tx
k)(∂k∂2

t xi) + lower order terms (7.3.6)

= ∂i〈∂θ〉
6.5∂3

t xj + (∂i〈∂θ〉
6.5∂tx

k)(∂k∂2
t xj) + lower order terms (7.3.7)
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and, of course, similarly for ∂j〈∂θ〉
6.5∂2

t xi. This means that the second term in (7.3.3) is, in

addition to lower order terms, equal to

−

∫

Ωt

(∂jp)(∂i〈∂θ〉
6.5∂3

t xj)(〈∂θ〉
6.5∂2

t xi)dx (7.3.8)

=

∫

Ωt

p (∂j∂
i〈∂θ〉

6.5∂3
t xj)(〈∂θ〉

6.5∂2
t xi)dx +

∫

Ωt

p (∂i〈∂θ〉
6.5∂3

t xj)(∂j〈∂θ〉
6.5∂2

t xi)dx (7.3.9)

= −

∫

Ωt

(∂ip)(∂j〈∂θ〉
6.5∂3

t xj)(〈∂θ〉
6.5∂2

t xi)dx −

∫

Ωt

p (∂j〈∂θ〉
6.5∂3

t xj)(∂i〈∂θ〉
6.5∂2

t xi)dx (7.3.10)

−

∫

Ωt

(∂ip)(〈∂θ〉
6.5∂3

t xj)(∂j〈∂θ〉
6.5∂2

t xi)dx −

∫

Ωt

p (〈∂θ〉
6.5∂3

t xj)(∂i∂j〈∂θ〉
6.5∂2

t xi)dx. (7.3.11)

The first term in (7.3.10) we control using half integration by parts and the fact that div [∂tx] = 0.

The second term in (7.3.10) we integrate by parts to obtain

∫

Ωt

(∂jp)(〈∂θ〉
6.5∂3

t xj)(∂i〈∂θ〉
6.5∂2

t xi)dx +

∫

Ωt

p (〈∂θ〉
6.5∂3

t xj)(∂j∂
i〈∂θ〉

6.5∂2
t xi)dx (7.3.12)

and where we control the first term in (7.3.12) using the fact that div [∂tx] = 0 and the second

term in (7.3.12) cancels the fourth term in (7.3.10). We will shortly deal with the third term in

(7.3.10). First we use (7.3.7) on the third term in (7.3.3) which is therefore equal to a collection

of lower order terms as well as

−

∫

Ωt

(∂jp)(〈∂θ〉
6.5∂3

t xi)(∂i〈∂θ〉
6.5∂2

t xj)dx (7.3.13)

which in addition to the third term in (7.3.10) cancels the second term from (7.2.2).

7.4 Controlling the third and fourth term in (7.0.1).

Now we have (∇p) ◦ x = ∂2
t x − (∇φ) ◦ x which means that ∇p and therefore

N =
∇p

|∇p|
(7.4.1)

are controlled in H6.5(∂Ωt), using the sign condition. Finally, to control ‖∂tx‖7.5 we use the

relation ∂2
t xi = −∂ip − ∂iφ. Thus we have ∂3

t xi = (∂i∂tx
k)(∂kp) − ∂iṗ − ∂t∂iφ which we can

dot with a vector Tk,j = ∂(x◦Ψk)
∂zj tangential to ∂Ωt. Since ṗ = 0 on ∂Ωt we have Tk,j · ∇ṗ =

0 and therefore (T i
k,j∂i∂tx

k) · N |∇p| = −T i
k,j∂

3
t xi + T i

k,j∂t∂iφ. This means that we control

‖(∂θ∂tx
k) · N‖H6(∂Ωt) which together with lemma 2.5.3 provides control of ‖∂tx‖7.5.

7.5 Uniqueness.

Suppose that two solutions v1 and v2 arise from the same initial data. The above

estimates then show that their difference is zero in some time interval.



Appendix A

Properties of 〈∂θ〉.

PROPOSITION A.0.1 Let f and g be functions on Ω. Then

‖〈∂θ〉
1
2 [fg] − 〈∂θ〉

1
2 [f ]g‖2 ≤ c‖f‖2‖g‖2

2. (A.0.1)

PROOF: Let hj = (ζjf) ◦ Ψj . We have

fj(z) =

∫

R2

f̂j(α
′
1, z

3)eiα′

1·z
′

dα′
1 and gj(z) =

∫

R2

ĝj(α
′
2, z

3)eiα′

2·z
′

dα′
2.

From now on we will suppress the z3 in the above expressions. Therefore

(fg)j =

∫

R2

∫

R2

f̂j(α
′
1)ĝj(α

′
2)e

iα′

1·z
′

eiα′

2·z
′

dα′
1dα′

2.

Substitute α′ = α′
1 + α′

2. Then α′
1 = α′ − α′

2 and

fjgj =

∫

R2

[
∫

R2

f̂j(α
′ − α′

2)ĝj(α
′
2)dα′

2

]

eiα′·z′

dα′.

Hence, a half derivative of the above is equal to
∫

R2

〈α′〉
1
2

[
∫

R2

f̂j(α − α2)ĝj(α
′
2)dα′

2

]

eiα′·z′

dα′. (A.0.2)

And half derivative of fj is equal to
∫

R2

〈α′
1〉

1
2 f̂j(α

′
1)e

iα′

1·z
′

dα′
1

Therefore the product of a half derivative of fj, and gj is equal to
∫

R2

∫

R2

〈α′
1〉

1
2 f̂j(α

′
1)ĝj(α

′
2)e

iα′

1·z
′

eiα′

2·z
′

dα′
1dα′

2 (A.0.3)

=

∫

R2

[
∫

R2

〈α′ − α′
2〉

1
2 f̂j(α

′ − α′
2)ĝj(α

′
2)dα′

2

]

eiα′·z′

dα′. (A.0.4)

The difference between (A.0.2) and (A.0.4) is
∫

R2

∫

R2

[

〈α′〉
1
2 − 〈α′ − α′

2〉
1
2

]

f̂j(α
′ − α′

2)ĝj(α
′
2)dα′

2e
iα′·z′

dα′. (A.0.5)

To control the above we have the following lemma.
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LEMMA A.0.2 Let η1 and η2 be points in Rn. Then

∣

∣

∣
〈η1 + η2〉

1
2 − 〈η1〉

1
2

∣

∣

∣
≤ c〈η2〉

1
2 .

PROOF: Suppose that η1 and η2 are such that 0 ≤ |η1| ≤ |η2|. Then

∣

∣

∣
〈η1 + η2〉

1
2 − 〈η1〉

1
2

∣

∣

∣
≤ C〈η2〉

1
2 .

Now suppose that η1 and η2 are such that 0 ≤ |η2| < |η1|. Then

〈η1〉
1
2

∣

∣

∣

∣

∣

(1 + (η1 + η2) · (η1 + η2))
1
4

(1 + η1 · η1)
1
4

− 1

∣

∣

∣

∣

∣

= 〈η1〉
1
2

∣

∣

∣

∣

∣

(

1 + η1 · η1 + 2η1 · η2 + η2 · η2

1 + η1 · η1

)
1
4

− 1

∣

∣

∣

∣

∣

(A.0.6)

= 〈η1〉
1
2

∣

∣

∣

∣

∣

(

1 +
2η1 · η2 + η2 · η2

1 + η1 · η1

)
1
4

− 1

∣

∣

∣

∣

∣

. (A.0.7)

Define c(x) = (1 + x)
1
4 − 1. And there is a constant C which bounds c(x)

|x| , for all x in (−4, 4).

Therefore,

〈η1〉
1
2

∣

∣

∣

∣

∣

(

1 +
2η1 · η2 + η2 · η2

1 + η1 · η1

)
1
4

− 1

∣

∣

∣

∣

∣

≤ C〈η1〉
1
2
2η1 · η2 + η2 · η2

〈η1〉2
(A.0.8)

≤ C〈η1〉
1
2
〈η1〉〈η2〉 + 〈η2〉

2

〈η1〉2
(A.0.9)

≤
〈η2〉

〈η1〉
1
2

. (A.0.10)

Since |η2| < |η1|,
〈η1〉

1
2

〈η2〉
1
2

> 1, from where the result follows.

And from lemma A.0.2 we see that (A.0.5) is controlled by

∫

R2

[
∫

R2

〈α′
2〉

1
2 |f̂j(α

′ − α′
2)||ĝj(α

′
2)|dα′

2

]2

dα′ (A.0.11)

≤ c

∫

R2

[

∫

R2

〈α′
2〉

1
2 〈α′

2〉
a

〈α′
2〉

a
|f̂j(α

′ − α′
2)||ĝj(α

′
2)|dα′

2

]2

dα′ (A.0.12)

≤ c

∫

R2

[
∫

R2

〈α′
2〉

2( 1
2
+a)|ĝj(α

′
2)|

2dα′
2

]

[

∫

R2

|f̂j(α
′ − α′

2)|
2

〈α′
2〉

2a
dα′

2

]

dα′ (A.0.13)

≤ c

[
∫

R2

〈α′
2〉

2( 1
2
+a)|ĝj(α

′
2)|

2dα′
2

] [
∫

R2

1

〈α′
2〉

2a

∫

R2

|f̂j(α
′ − α′

2)|
2dα′dα′

2

]

. (A.0.14)

For a such that 2a > 2 the last integral converges in three dimensions. Therefore (A.0.14) is

controlled by ‖〈∂θ〉
2[g]‖‖f‖2.

A similar result holds on ∂Ω.

PROPOSITION A.0.3 Let f and g be functions on Ω. Let ( , ) be the L2(Ω)-innerproduct. Then

|(f, ∂θ[g])| ≤ c‖〈∂θ〉
1
2 [f ]‖‖〈∂θ〉

1
2 [g]‖.



54

PROOF: We have
∣

∣

∣

∣

∣

∫

(−1,0)

∫

(−1,1)2
fk(∂gl/∂zj)dz′dz3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

(−1,0)

∫

R2

f̂k α′
l ĝl dα′dz3

∣

∣

∣

∣

∣

(A.0.15)

=

∣

∣

∣

∣

∣

∫

(−1,0)

∫

R2

α
1
2

j f̂k α
1
2

j ĝi dα′dz3

∣

∣

∣

∣

∣

(A.0.16)

≤

∣

∣

∣

∣

∣

∫

(−1,0)

[
∫

R2

〈α′〉|f̂k|
2dα′

]
1
2
[
∫

R2

〈α′〉|ĝi|
2dα′

]
1
2

dz3

∣

∣

∣

∣

∣

(A.0.17)

≤ c‖〈∂θ〉
1
2 [f ]‖‖〈∂θ〉

1
2 [g]‖. (A.0.18)



Appendix B

Hodge-decomposition inequalities.

In this section we prove the Hodge-decomposition inequalities which were stated in

chapter 2 and is used throughout this paper.

B.1 The first one.

The first controls all derivatives in terms of the curl, the divergence and derivatives

which act near the boundary, and which are tangential to the boundary.

LEMMA B.1.1 Let α be a vector-field on Ω̃t. Define (curlα)jk = ∂jαk −∂kαj and div α = ∂jα
j .

Then we have the following pointwise estimate on Ωt:

|ζ∇α| ≤ |ζcurlα| + |ζdiv α| + |ζ ∂θα|, (B.1.1)

where | · | denotes the usual Euclidean distance.

PROOF: Here we will suppress the index on ζ, letting it be denoted simply by ζ. Define

(def α)jk = ∂jαk + ∂kαj . Thus 2∇α = curl α + def α. Let β = diag(∂1α1, . . . , ∂nαn) and

define γ = ζdef α − ζβ. Then |ζ∇α| ≤ |ζcurl α| + |ζdiv α| + |γ|. It remains to control γ. Also

define

Qjk = δjk − N jNk, (B.1.2)

the projection onto tangential vector-fields. Hence

|γ|2 = δijδklγikγjl

=
(

Qij + N iN j
) (

Qkl + NkN l
)

γikγjl

= QijQklγikγjl + QijNkN lγikγjl + N iN jQklγikγjl

+ N iN jNkN lγikγjl.

55



56

Since γ is symmetric, N iN jQklγikγjl = QijNkN lγikγjl. Also,

N iN jNkN lγikγjl = [N iNkγik]2 = [δikγik − Qikγik]2 = [Qikγik]2 ≤ QijQklγikγjl, (B.1.3)

since for a symmetric matrix M we have [Tr(M)]2 ≤ cTr(M2). From (B.1.3),

QijQklγikγjl + QijNkN lγikγjl + N iN jQklγikγjl + N iN jNkN lγikγjl

≤ QijQklγikγjl + 2QijNkN lγikγjl + cQijQklγikγjl

≤ 2cQij(Qkl + NkN l)γikγjl

= 2cQijδklγikγjl.

Using the fact that γ = ζdef α − ζβ we have

Qijδklγikγjl = Qijδkl(ζdef α)ik(ζdef α)jl + Qijδkl(ζdef α)ikζβjl + Qijδklζβik(ζdef α)jl (B.1.4)

+ Qijδklζβikζβjl (B.1.5)

where the second and third term can be controlled by ε|ζ∇α|2 + 1
ε
|ζdiv α|2 and the fourth term

can be controlled by |ζdiv α|2. The first term in (B.1.4) can be controlled as follows:

Qijδkl(ζdef α)ik(ζdef α)jl = Qijδkl(ζ∂iαk + ζ∂kαi)(ζ∂jαl + ζ∂lαj) (B.1.6)

= Qijδkl(ζ∂iαk)(ζ∂jαl) + Qijδkl(ζ∂iαk)(ζ∂lαj) (B.1.7)

+ Qijδkl(ζ∂kαi)(ζ∂jαl) + Qijδkl(ζ∂kαi)(ζ∂lαj). (B.1.8)

Let ∇i
Q = Qij∂j . Since Qij = δmnQimQjn, the first term in (B.1.7) can be bounded by |ζ∇Q[α]|2.

The second and third term in (B.1.7) can be bounded by ε|ζ∇α|2 + 1
ε
|ζ∇Q[α]|2. The fourth term

we manipulate as follows: Qijδkl(ζ∂kαi)(ζ∂lαj) = δmnQmi(ζ∂kαi)Q
nj(ζ∂kαj) and

Qmi(ζ∂kαi) = Qmi(ζ∂iαk) + Qmi[ζ∂kαi − ζ∂iαk] (B.1.9)

= ζ∇m
Q [αk] + Qmi(ζcurl α)ki. (B.1.10)

Thus the fourth term in (B.1.7) can be controlled by (1 + 1
ε
)|ζ∇Q[α]|2 + |ζcurl α|2 + ε|ζ∇α|2.

This concludes the proof.

B.2 The second one.

From the lemma B.1.1 we prove the following corollary:

LEMMA B.2.1 For 1 ≤ s ≤ 8,

‖ζα‖Hs(Ωt) ≤ P
[

‖x‖8

] [

‖ζα‖L2(Ωt) + ‖ηα‖Hs−1(Ωt) + ‖ζcurlα‖Hs−1(Ωt) + ‖ζdiv α‖Hs−1(Ωt)

]

(B.2.1)

+ P
[

‖x‖8

]

‖ζ〈∂θ〉
sα‖L2(Ωt). (B.2.2)
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PROOF: The base case is when s = 1 we have on Ωt, according to lemma 2.5.1, ‖ζ∇α‖ ≤

‖ζcurlα‖L2(Ωt) + ‖ζdiv α‖L2(Ωt) + ‖ζ∂θα‖L2(Ωt), which means that (B.2.1) holds. Now suppose

that 2 ≤ s ≤ 5 and that we have the result for smaller s. Then, by lemma 2.5.1 we see that

‖ζ∇sα‖L2(Ωt) ≤ ‖ζcurlα‖Hs−1(Ωt) + ‖ζdiv α‖Hs−1(Ωt) + ‖ζ∂θ∇
s−1α‖L2(Ωt) + ‖ηα‖Hs−1(Ωt).

(B.2.3)

To manipulate the second to last term in (B.2.3) we write

∇s−1∂θα − ∂θ∇
s−1α =

∑

j+k=s−1,k≤s−2

(∇j∂θx)(∇k+1α). (B.2.4)

We have ‖∇j∂θx‖L∞(Ωt) ≤ ‖x‖8 and we control ‖∇k+1α‖L2(Ωt) by induction. Now

‖ζ∇s−1∂θα‖L2(Ωt) ≤ ‖ζcurl∇s−2∂θα‖L2(Ωt) + ‖ζdiv∇s−2∂θα‖L2(Ωt) + ‖ζ∂θ∇
s−2∂θα‖L2(Ωt)

(B.2.5)

≤ ‖ζ∇s−2[(∇∂θx)(∇α)]‖L2(Ωt) + ‖ζ∇s−2∂θcurl α‖L2(Ωt) (B.2.6)

+ ‖ζ∇s−2∂θdiv α‖L2(Ωt) + ‖ζ∂θ∇
s−2∂θα‖L2(Ωt). (B.2.7)

The first term in (B.2.6) is controlled by

∑

‖(∇j+1∂θx)(ζ∇k+1α)‖L2(Ωt) (B.2.8)

where the sums is over j + k = s − 2. This term can be controlled by ‖x‖8‖ζ∇α‖Hs−1(Ωt). We

control the second term in (B.2.6) by

∑

‖(∇j∂θx)(ζ∇k+1curlα)‖L2(Ωt) (B.2.9)

where the sum is over j + k = s − 2. We control this term by ‖x‖8‖ζcurl α‖Hs−1(Ωt). Similarly

for the third term in (B.2.6).

Now suppose that s = 8 and that we have the result for smaller s. For 0 ≤ j ≤ 4 we

control the commutator term in (B.2.4) as above. For 4 ≤ j ≤ 7 we have ‖∇j∂θx‖L2(Ωt) ≤ ‖x‖8

and ‖ζ∇k+1α‖L∞(Ωt) ≤ ‖ζα‖H7(Ωt) which we control by induction. We control the term in

(B.2.8) as follows: For 0 ≤ j ≤ 3 we have ‖∇j+1∂θx‖L∞(Ωt)‖ζ∇
k+1α‖L2(Ωt) ≤ ‖x‖8‖ζα‖H7(Ωt).

For 4 ≤ j ≤ 6 we have ‖∇j+1∂θx‖L2(Ωt)‖ζ∇
k+1α‖L∞(Ωt) ≤ ‖x‖8‖ζα‖H6(Ωt). The term in (B.2.9)

we control by ‖x‖8‖ζcurlα‖H7(Ωt) and similarly for the third term in (B.2.6).

B.3 The third one.

The third Hodge-decomposition inequality controls all derivatives in terms of the curl,

the divergence and boundary derivatives which are tangential to the boundary.
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PROPOSITION B.3.1 Let α be a 1-form on Ωt. Let div α and curlα be defined as in lemma

2.5.1. Then

‖α‖Hs(Ωt) ≤ P
[

‖x‖8

] [

‖α‖L2(Ωt) + ‖divα‖Hs−1(Ωt) + ‖curlα‖Hs−1(Ωt)

]

(B.3.1)

+ P
[

‖x‖8

]

‖(〈∂θ〉
s− 1

2 α) · N‖L2(∂Ωt), (B.3.2)

where N is the outward unit normal to ∂Ωt and where p(s) is a polynomial which depends on s.

Also,

‖α‖Hs(Ωt) ≤ P
[

‖x‖8

] [

‖α‖L2(Ωt) + ‖divα‖Hs−1(Ωt) + ‖curlα‖Hs−1(Ωt)

]

(B.3.3)

+ P
[

‖x‖8

]

µ
∑

k=1

n−1
∑

l=1

‖(〈∂θ〉
s− 1

2 α) · Tk,l‖L2(Uk∩∂Ωt). (B.3.4)

PROOF: First we prove (B.3.1) and (B.3.3) for s = 1, then we will use lemma B.2.1 to obtain

the higher order results. Finally, we will use interpolation to obtain the result for real s. Now

‖∇α‖L2(Ωt) =

∫

Ωt

∂jαi∂
jαidx =

∫

∂Ωt

αiNj∂
jαidS(x) − (α, ∆α)Ωt

where we define (α, ∆α)Ωt
=
∫

Ωt
αi∂j∂

jαidx. And

−(α, ∆α)Ωt
= −

∫

Ωt

αi

[

∂i∂jαj + ∂j∂
jαi − ∂i∂jαj

]

dx

=

∫

Ωt

αi

[

−∂idiv α + ∂j (curl α)
i
j

]

dx

= −

∫

∂Ωt

N iαidiv αdS(x) +

∫

Ωt

[divα]2 dx

+

∫

∂Ωt

αiN
j (curlα)i

j dS(x) −

∫

Ωt

∂jαi (curlα)i
j dx.

Also,

−

∫

Ωt

∂jαi (curl α)
i
j dx = −

∫

Ωt

(curl α)
j
i (curlα)

i
j dx −

∫

Ωt

∂iα
j (curlα)

i
j dx

and

−

∫

Ωt

∂iα
j (curl α)

i
j dx = −

∫

∂Ωt

Niα
j (curlα)

i
j dS(x) +

∫

Ωt

αj∂i (curlα)
i
j dx.

Moreover,
∫

Ωt

αj∂i (curlα)
i
j dx =

∫

Ωt

αj∂i

[

∂iαj − ∂jα
i
]

dx

= (α, ∆α)Ωt
−

∫

Ωt

αj∂i∂jα
idx

= (α, ∆α)Ωt
−

∫

∂Ωt

αjNj∂iα
idS(x) +

∫

Ωt

[div α]
2
dx.

From the above we see that

−2 (α, ∆α)Ωt
= 2

∫

Ωt

[div α]2 dx −

∫

Ωt

(curlα)j
i (curlα)i

j dx

− 2

∫

∂Ωt

α · Ndiv αdS(x) +

∫

∂Ωt

(

αiN
j − Niα

j
)

(curlα)
i
j dS(x).
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The boundary terms are
∫

∂Ωt

αiNj∂
jαidS(x) −

∫

∂Ωt

α · Ndiv αdS(x) +
1

2

∫

∂Ωt

(

αiN
j − Niα

j
)

(curlα)i
j dS(x). (B.3.5)

The second term in (B.3.5) can be manipulated using Q: On ∂Ωt, α = α ·NN +Qα and therefore

−α · Ndivα = −(∂iN
i)[α · N ]2 − α · N∇N [α · N ] − α · NNi∇N [Qiα] − α · N∇Qi[Q

iα] (B.3.6)

where ∇N = N i∂i. In the above,

−α · NNi∇N [Qiα] = −[α · N ]2Ni∇N [Qij ]Nj − α · NNi∇N [Qij ]Qjα. (B.3.7)

And the third term from (B.3.5) we manipulate as follows:

1

2

(

αiN
j − Niα

j
)

(curl α)
i
j =

1

2

(

αiN
j − Niα

j
(

∂iαj − ∂jα
i
))

(B.3.8)

=
1

2

[

αiN
j∂iαj − αiN

j∂jα
i − Niα

j∂iαj + Niα
j∂jα

i
]

(B.3.9)

= αiN
j∂iαj − αiN

j∂jα
i. (B.3.10)

The second term in (B.3.10) cancels the first term in (B.3.5). The first term in (B.3.10) we deal

with as follows:

αiN
j∂iαj = αi∂

i[α ·N ]−αiαj(∂
iN j) = α ·N∇N [α ·N ]+Qiα∇

i
Q[α ·N ]−αiαj(∂

iN j). (B.3.11)

The first term in (B.3.11) cancels the second term in (B.3.6). The remaining terms therefore are
∫

∂Ωt

[

−(∂iN
i)[α · N ]2 − [α · N ]2Ni∇N [Qij ]Nj − α · NNi∇N [Qij ]Qjα

]

dS(x) (B.3.12)

+

∫

∂Ωt

[

−α · N∇Qi[Q
iα] + Qiα∇

i
Q[α · N ] − αiαj(∂

iN j)
]

dS(x). (B.3.13)

To get the lower order terms into the form we want we use the fact that we can trade normal

and tangential boundary components: Define τij = 2αiαj − δij(α
k)(αk). Then

∣

∣

∣
‖α · N‖2

L2(∂Ωt)
− ‖Qα‖2

L2(∂Ωt)

∣

∣

∣
=

∣

∣

∣

∣

∫

∂Ωt

[

N iN jαiαj − Qijαiαj

]

dS(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂Ωt

[

2N iN j − δij
]

[αiαj ]dS(x)

∣

∣

∣

∣

≤

µ
∑

k=1

∣

∣

∣

∣

∫

Uk∩∂Ωt

ξkN iN jτijdS(x)

∣

∣

∣

∣

≤

µ
∑

k=1

∣

∣

∣

∣

∫

Uk∩Ωt

ξk(∂iN j)τijdx

∣

∣

∣

∣

+

µ
∑

k=1

∣

∣

∣

∣

∫

Uk∩Ωt

ξkN j∂iτijdx

∣

∣

∣

∣

.

Now

∂iτij = 2divααj + 2αi(∂iαj) − (∂jαk)(αk) − (αk)(∂jα
k)

= 2divααj + 2αi(∂iαj) +
(

−(∂jαk)(αk) + (∂kαj)(α
k)
)

− (∂kαj)(α
k)

+
(

−(αk)(∂jα
k) + (αk)(∂kαj)

)

− (αk)(∂kαj).
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Thus,

∣

∣

∣
‖α · N‖2

L2(∂Ωt)
− ‖Qα‖2

L2(∂Ωt)

∣

∣

∣
≤ ‖x‖5

[

‖α‖2
L2(Ωt)

+ ‖divα‖L2(Ωt) + ‖curlα‖L2(Ωt)

]

. (B.3.14)

Hence all the lower order terms in (B.3.12) can be controlled by

‖α · N‖2
L2(∂Ωt)

+ ‖α‖2
L2(Ωt)

+ ‖div α‖2
L2(Ωt)

+ ‖curlα‖2
L2(Ωt)

or

‖Qα‖2
L2(∂Ωt)

+ ‖α‖2
L2(Ωt)

+ ‖divα‖2
L2(Ωt)

+ ‖curlα‖2
L2(Ωt)

. (B.3.15)

In (B.3.15) above, we have

‖Qα‖2
L2(∂Ωt)

≤

µ
∑

k=1

‖ξk‖∞

n−1
∑

j=1

∫

Uk∩∂Ωt

δl1m1

T l1
k,j

|Tk,j |

T l2
k,j

|Tk,j |
αl2

T m1

k,j

|Tk,j |

T m2

k,j

|Tk,j |
αm2

dS(x) (B.3.16)

≤

µ
∑

k=1

n−1
∑

j=1

‖α · Tk,j‖
2
L2(Uk∩∂Ωt)

. (B.3.17)

Also, ‖α · N‖L2(∂Ωt) ≤ ‖(〈∂θ〉
1
2 α) · N‖L2(∂Ωt) and similarly ‖α · Tk,j‖L2(Uk∩∂Ωt). To control the

fourth term in (B.3.12) we have

∫

∂Ωt

α · N∇Qi[Q
iα]dS(x) =

µ
∑

k=1

∫

Uk∩∂Ωt

ξkα · N∇Qi[Q
iα]dS(x)

=

µ
∑

k=1

n−1
∑

j=1

∫

Uk∩∂Ωt

ξkα · N
T i

k,j

|Tk,j |2
Sj [Qiα]dS(x)

≤

∥

∥

∥

∥

∥

ξkα · N
T i

k,j

|Tk,j |2

∥

∥

∥

∥

∥

H
1
2 (Uk∩∂Ωt)

‖Qiα‖
H

1
2 (Uk∩∂Ωt)

.

Using proposition A.0.1 we have

∥

∥

∥

∥

∥

ξkα · N
T i

k,j

|Tk,j |2

∥

∥

∥

∥

∥

H
1
2 (Uk∩∂Ωt)

≤
∥

∥

∥
(〈∂θ〉

1
2 α) · N

∥

∥

∥

L2(Uk∩∂Ωt)

∥

∥

∥

∥

∥

ξk

T i
k,j

|Tk,j |2

∥

∥

∥

∥

∥

L2(Uk∩∂Ωt)

+ ‖α‖L2(Uk∩∂Ωt)

∥

∥

∥

∥

∥

〈∂θ〉
2

[

Nξk

T i
k,j

|Tk,j|2

]
∥

∥

∥

∥

∥

L2(Uk∩∂Ωt)

and

‖Qiα‖
H

1
2 (Uk∩∂Ωt)

≤

n−1
∑

j=1

∥

∥

∥

∥

∥

T i
k,j

|Tk,j |2
α · Tk,j

∥

∥

∥

∥

∥

H
1
2 (Uk∩∂Ωt)

≤

n−1
∑

j=1

∥

∥

∥
(〈∂θ〉

1
2 α) · T i

k,j

∥

∥

∥

L2(Uk∩∂Ωt)

∥

∥

∥

∥

∥

T i
k,j

|Tk,j |2

∥

∥

∥

∥

∥

L2(Uk∩∂Ωt)

+
n−1
∑

j=1

‖α‖L2(Uk∩∂Ωt)

∥

∥

∥

∥

∥

〈∂θ〉
2

[

T i
k,j

|Tk,j |2

]∥

∥

∥

∥

∥

L2(Uk∩∂Ωt)

.
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By using the fact that ab ≤ εa2 + b2

ε
and the trace theorem we see that the fourth term in

(B.3.12) can be controlled appropriately. The fifth term in (B.3.12) can be controlled similarly.

This proves (B.3.1) and (B.3.3) for s = 1. Suppose now that s = 8 and that we have the result

for smaller s. Using lemma B.2.1, we have

‖α‖2
H8(Ωt)

= ‖α‖2
L2(Ωt)

+ ‖∇α‖2
H7(Ωt)

(B.3.18)

≤ P
[

‖x‖8

] [

‖α‖L2(Ωt) + ‖∇α‖L2(Ωt) + ‖curlα‖H7(Ωt) + ‖div α‖H7(Ωt)

]

(B.3.19)

+ P
[

‖x‖8

]

7
∑

j=1

‖〈∂θ〉
j∇α‖L2(Ωt). (B.3.20)

For j = 7 we have

〈∂θ〉
7∇α −∇〈∂θ〉

7α =
∑

(∇〈∂θ〉
j1x) . . . (∇〈∂θ〉

jk−1x)(∇〈∂θ〉
jkα) (B.3.21)

where the sum is over j1 + . . . + jk ≤ 7 such that jk ≤ 6. The commutator in (B.3.21) can be

controlled by ‖x‖8‖α‖H7(Ωt). Using computation for the case s = 1 we have

‖∇〈∂θ〉
7α‖L2(Ωt) ≤ P

[

‖x‖8

][

‖〈∂θ〉
7α‖L2(Ωt) + ‖div 〈∂θ〉

7α‖L2(Ωt) + ‖curl 〈∂θ〉
7α‖L2(Ωt)

]

(B.3.22)

+ P
[

‖x‖8

]

‖(〈∂θ〉
7α) · N‖

H
1
2 (∂Ωt)

(B.3.23)

≤ P
[

‖x‖8

][

‖α‖H7(Ωt) + ‖divα‖H7(Ωt) + ‖curlα‖H7(Ωt)

]

(B.3.24)

+ P
[

‖x‖8

]

‖(〈∂θ〉
7α) · N‖

H
1
2 (∂Ωt)

. (B.3.25)

We have, using corollary A.0.1,

‖(〈∂θ〉
6α) · N‖

H
1
2 (∂Ωt)

≤ ‖(〈∂θ〉
6 1

2 α) · N‖L2(∂Ωt)‖N‖L∞(∂Ωt) + ‖α‖H7(∂Ωt)‖〈∂θ〉
2N‖L2(∂Ωt).

By interpolation we now obtain the result for non-integer s. This concludes the proof.

B.4 The fourth one: For differences.

LEMMA B.4.1 Let x1 and x2 be coordinates on Ωt,1 = u1(t, Ω) and Ωt,2 = u2(t, Ω) respectively.

Let α1 and α2 be defined on Ωt,1 and Ωt,2 respectively. Define

(curl1α1)ij =
∂α1j

∂xi
1

−
∂α1i

∂xj
1

; (def1α1)ij =
∂α1j

∂xi
1

+
∂α1i

∂xj
1

and div1α1 = ∂α1i

∂xi
1

, where α1i is the ith component of α1. Let curl2α2, def2α2 and div2α2 be

defined similarly. Let N1(y) = N1 ◦ u1(y) be the exterior unit normal to ∂Ωt,1 and let N2 be

defined similarly. Also define

Qjk
1 (y) = Qjk

1 ◦ u1(y) = δjk − N j
1 (y)Nk

1 (y),
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the projection onto tangential vector-fields on ∂Ωt,1. Let Q2 be defined similarly. Then we have

the following pointwise estimate on Ω:

|(ζ∇1α1) ◦ u1 − (ζ∇2α2) ◦ u2| ≤ |(ζcurl1α1) ◦ u1 − (ζcurl2α2) ◦ u2| (B.4.1)

+ |(ζdiv1α1) ◦ u1 − (ζdiv2α2) ◦ u2| (B.4.2)

+ |(ζ∂θα1) ◦ u1 − (ζ∂θα2) ◦ u2| (B.4.3)

+ |Q1 − Q2||(ζ∇2α2) ◦ u2|, (B.4.4)

where | · | denotes the usual Euclidean distance.

PROOF: Let β1 = diag
((

∂α11

∂x1
1

)

◦ u1, . . . ,
(

∂α1n

∂xn
1

)

◦ u1

)

Define β2 similarly. Also, define γ1 =

(def1α1) ◦ u1 − β1 and define γ2 similarly. Then

(∇1α1) ◦ u1 − (∇2α2) ◦ u2 = [(curl 1α1) ◦ u1 − (curl 2α2) ◦ u2] + [(def1α1) ◦ u1 − (def2α2) ◦ u2]

(B.4.5)

= [(curl 1α1) ◦ u1 − (curl 2α2) ◦ u2] + [β1 ◦ u1 − β2 ◦ u2] (B.4.6)

+ [γ1 ◦ u1 − γ2 ◦ u2] . (B.4.7)

Let f = γ1 ◦ u1 − γ2 ◦ u2. Then

|f |2 = δijδklfikfjl

=
(

Qij
1 + N i

1N
j
1

)

(

Qkl
1 + Nk

1 N l
1

)

fikfjl

= Qij
1 Qkl

1 fikfjl + Qij
1 Nk

1 N l
1fikfjl + N i

1N
j
1Qkl

1 fikfjl

+ N i
1N

j
1Nk

1 N l
1fikfjl.

Since f is symmetric, N i
1N

j
1Qkl

1 fikfjl = Qij
1 Nk

1 N l
1fikfjl. Also,

N i
1N

j
1Nk

1 N l
1fikfjl = [N i

1N
k
1 fik]2 = [δikfik − Qik

1 fik]2 = [Qik
1 fik]2 ≤ Qij

1 Qkl
1 fikfjl, (B.4.8)

since for a symmetric matrix M we have [Tr(M)]2 ≤ cTr(M2). From (B.4.8),

Qij
1 Qkl

1 fikfjl + Qij
1 Nk

1 N l
1fikfjl + N i

1N
j
1Qkl

1 fikfjl + N i
1N

j
1Nk

1 N l
1fikfjl

≤ Qij
1 Qkl

1 fikfjl + 2Qij
1 Nk

1 N l
1fikfjl + cQij

1 Qkl
1 fikfjl

≤ 2cQij
1 (Qkl

1 + Nk
1 N l

1)fikfjl

= 2cQij
1 δklfikfjl.

Using the fact that f = γ1◦u1−γ2◦u2 = [(def1α1)◦u1−(def2α2)◦u2]+[β2◦u2−β1◦u1]

we have

Qij
1 δklfikfjl = Qij

1 δkl[(def1α1) ◦ u1 − (def2α2) ◦ u2]ik[(def1α1) ◦ u1 − (def2α2) ◦ u2]jl

+ Qij
1 δkl[(def1α1) ◦ u1 − (def2α2) ◦ u2]ik[β2 ◦ u2 − β1 ◦ u1]jl

+ Qij
1 δkl[β2 ◦ u2 − β1 ◦ u1]ik[(def1α1) ◦ u1 − (def2α2) ◦ u2]jl

+ Qij
1 δkl[β2 ◦ u2 − β1 ◦ u1]ik[β2 ◦ u2 − β1 ◦ u1]jl
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where the second and third term can be controlled by ε|(∇1α1) ◦u1 − (∇2α2) ◦u2|
2 + 1

ε
|β2 ◦u2−

β1 ◦ u1|
2 and the fourth term can be controlled by |β2 ◦ u2 − β1 ◦ u1|

2. The first term in (B.4.9)

can be controlled as follows: Since

[(def1α1) ◦ u1 − (def2α2) ◦ u2]ik =

[(

∂α1k

∂xi
1

)

◦ u1 −

(

∂α2k

∂xi
2

)

◦ u2

]

(B.4.9)

+

[(

∂α1i

∂xk
1

)

◦ u1 −

(

∂α2i

∂xk
2

)

◦ u2

]

(B.4.10)

we have

Qij
1 δkl[(def1α1) ◦ u1 − (def2α2) ◦ u2]ik[(def1α1) ◦ u1 − (def2α2) ◦ u2]jl (B.4.11)

= Qij
1 δkl

[[(

∂α1k

∂xi
1

)

◦ u1 −

(

∂α2k

∂xi
2

)

◦ u2

]

+

[(

∂α1i

∂xk
1

)

◦ u1 −

(

∂α2i

∂xk
2

)

◦ u2

]]

(B.4.12)

×

[[(

∂α1l

∂xj
1

)

◦ u1 −

(

∂α2l

∂xj
2

)

◦ u2

]

+

[(

∂α1j

∂xl
1

)

◦ u1 −

(

∂α2j

∂xl
2

)

◦ u2

]

]

(B.4.13)

= Qij
1 δkl

[(

∂α1k

∂xi
1

)

◦ u1 −

(

∂α2k

∂xi
2

)

◦ u2

]

[(

∂α1l

∂xj
1

)

◦ u1 −

(

∂α2l

∂xj
2

)

◦ u2

]

(B.4.14)

+ Qij
1 δkl

[(

∂α1k

∂xi
1

)

◦ u1 −

(

∂α2k

∂xi
2

)

◦ u2

] [(

∂α1j

∂xl
1

)

◦ u1 −

(

∂α2j

∂xl
2

)

◦ u2

]

(B.4.15)

+ Qij
1 δkl

[(

∂α1i

∂xk
1

)

◦ u1 −

(

∂α2i

∂xk
2

)

◦ u2

]

[(

∂α1l

∂xj
1

)

◦ u1 −

(

∂α2l

∂xj
2

)

◦ u2

]

(B.4.16)

+ Qij
1 δkl

[(

∂α1i

∂xk
1

)

◦ u1 −

(

∂α2i

∂xk
2

)

◦ u2

] [(

∂α1j

∂xl
1

)

◦ u1 −

(

∂α2j

∂xl
2

)

◦ u2

]

(B.4.17)

The first term in (B.4.14) is a product of two things of the form

Qim
1

[(

∂α1k

∂xi
1

)

◦ u1 −

(

∂α2k

∂xi
2

)

◦ u2

]

(B.4.18)

= Qim
1

(

∂α1k

∂xi
1

)

◦ u1 − Qim
2

(

∂α2k

∂xi
2

)

◦ u2 (B.4.19)

+ Qim
2

(

∂α2k

∂xi
2

)

◦ u2 − Qim
1

(

∂α2k

∂xi
2

)

◦ u2 (B.4.20)

= (Sα1k) ◦ u1 − (Sα2k) ◦ u2 + [Qim
2 − Qim

1 ]

(

∂α2k

∂xi
2

)

◦ u2. (B.4.21)
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The above can be controlled by |(S∇1α) ◦ u1 − (S∇2α) ◦ u1|+ |Q2 −Q1||(∇2α2) ◦ u2|. From the

fourth term in (B.4.14) we obtain a product of two things of the form

Qim
1

(

∂α1i

∂xk
1

)

◦ u1 − Qim
1

(

∂α2i

∂xk
2

)

◦ u2 = Qim
1

(

∂α1k

∂xi
1

)

◦ u1 − Qim
1

(

∂α2k

∂xi
2

)

◦ u2

+ Qim
1

(

∂α1i

∂xk
1

)

◦ u1 − Qim
1

(

∂α2i

∂xk
2

)

◦ u2

− Qim
1

(

∂α1k

∂xi
1

)

◦ u1 + Qim
1

(

∂α2k

∂xi
2

)

◦ u2

= (Sα1k) ◦ u1 − (Sα2k) ◦ u2

+ [Qim
2 − Qim

1 ]

(

∂α2k

∂xi
2

)

◦ u2

+ Qim
1 [(curl1α1)ki ◦ u1 − (curl2α2)ki ◦ u2]

by (B.4.21).

B.5 The fifth one: For the extended domain.

LEMMA B.5.1 Let α be a function on Ω̃t. Define (curlα)ij = ∂iαj − ∂jαi and div α = ∂iα
i.

Then

|ζ∇α| ≤ P
[

‖x‖8

]

[|ζcurlα| + |ζdiv α| + |ζ∂θα|] ,

on Ω̃t, where | · | denotes the usual Euclidean distance.

PROOF: This result follows similarly to lemma B.1.1.
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