Electronic Theses and Dissertations
UC San Diego

a

Peer Reviewed

Title:

Well-posedness for the equations of motion of an inviscid, incompressible, self-gravitating fluid
with free boundary

Author:
Nordgren, Karl Hakan

Acceptance Date:
2008

Series:
UC San Diego Electronic Theses and Dissertations

Degree:
Ph. D., MathematicsUC San Diego

Permalink:
http://escholarship.org/uc/item/99t4hOmc

Local Identifier:
b7025474

Abstract:

We prove that the equations of motion of an incompressible, inviscid, self-gravitating fluid with free
boundary are well-posed in Sobolev space. The methodology consists of a fixed-point argument
using a tangential smoothing operator, followed by energy estimates

Copyright Information:

All rights reserved unless otherwise indicated. Contact the author or original publisher for any
necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more
at http://www.escholarship.org/help_copyright.html#reuse

°_0
.:...:. ESChOIarShip eSchoIarship prO\./ides. open  access, schollarly puinshing
S o S o services to the University of California and delivers a dynamic
:o.. ee University of Califonia research platform to scholars worldwide.
[ ]


http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org/uc/ucsd_etd
http://escholarship.org/uc/ucsd
http://escholarship.org/uc/search?creator=Nordgren, Karl H�kan
http://escholarship.org/uc/ucsd_etd
http://escholarship.org/uc/search?department=Mathematics
http://escholarship.org/uc/search?affiliation=UC San Diego
http://escholarship.org/uc/item/99t4h0mc
http://www.escholarship.org/help_copyright.html#reuse

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Well-posedness for the equations of motion of an inviscid,
incompressible, self-gravitating fluid with free boundary.

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy
in
Mathematics
by

Karl Hakan Nordgren

Committee in charge:

Professor Hans Lindblad, Chair
Professor Thomas Bewley
Professor William Helton
Professor Michael Holst
Professor Miroslav Krstic

2008



Copyright
Karl Hakan Nordgren, 2008
All rights reserved.



The dissertation of Karl Hakan Nordgren is ap-
proved, and it is acceptable in quality and form

for publication on microfilm:

Chair

University of California, San Diego

2008

iii



Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

TABLE OF CONTENTS

Signature Page . . . . . . ... iii
Table of Contents . . . . . . . . . . . . . . . iv
Acknowledgements . . . . ... ..o vi
Vita . . . e vii
Abstract . . . . . . L. viii
Introduction. . . . . . . . ... 1
1.1 Background.. . . . . . . . ... 2
1.2 A conserved quantity. . . .. .. ... ... L 2
1.3 Summary of the argument. . . . . .. ... ... ... ......... 3
Preliminaries. . . . . . . . . .. 6
2.1 Coordinates and derivatives. . . . . . . . . .. ... ... ... 6

2.1.1 Tangential derivatives. . . . . . . . .. .. ... ... ... 6
2.2 NOImMS. . . . . . o o e e e 7

2.2.1 || . ||HS((_1)1)2><(_1)0)). ....................... 7

2.2.2 || . ”HS(Q)a || . ”s and || . ||HS((?Q) ................... 7

2.2.3 H : ||HS(Qt) and H : ||Hs(39t). .................... 8

2.2.4 Regularity of the domain. . . . . . ... ... ... .. .. ... 8
2.3 Smoothing. . . . .. . . 8
2.4 Cut off functions. . . . . . . . .. ... 9
2.5 Hodge-decomposition inequalities. . . . . . . ... ... ... ... .. 9
Elliptic estimates for p. . . . . . . . . .. ... 11
3.1 Estimates to show that A is invariant. . . . . ... .. ... .. .... 11

3.1.1 Interior estimates. . . . . . .. ... .. ... ... ... 12

3.1.2 Boundary estimates. . . . . . .. ... . oL 14
3.2 Estimates to show that A is a contraction. . . . . . . ... ... .. .. 16

3.2.1 Interior estimates. . . . . . . . ... ... .. 17

3.2.2 Boundary estimates. . . . .. .. ... Lo L oL 17
3.3 Estimates for chapter 5 and chapter 7. . . . . . .. ... ... ... .. 25
Elliptic estimates for ¢. . . . . . . . . ... ... 27
4.1 Estimates to show that A is invariant. . . . . ... .. .. ... .. .. 27

4.1.1 Imterior regularity. . . . . . . . . ... ..o 27

4.1.2 Boundary regularity. . . . .. ... .. oo 28
4.2 Estimates to show that A is a contraction. . . . . . . ... ... .. .. 33
4.3 Estimates for chapter 5 and chapter 7. . . . . . .. .. ... ... .. 34
A priori estimates for smoothed Euler. . . . . . .. ... ... ... ..... 35
5.1 Control of Er. . o v v oo 37
52 Control of Ba. . . . o oo 37
5.3 Control of Es. . . o o o oo 38
5.4 Control of Ey. . . o o oo 41
5.5 Control of Es. . . o o v v 43
5.6 Control of Eg. . . o o v v 43

iv



Chapter 6

Chapter 7

Appendix A

Appendix B

Bibliography

5.7 Control of Br. . . o . o o v 44

5.8 The constant co in (5.0.5). . . . . . ... Lo 44
A fixed point formulation. . . . . . .. ... 45
Optimal regularity and uniqueness. . . . . ... ... ... ... 49
71 Controlof Ey. . . . ... oo 49
7.2 Control of E2 ................................. 50
7.3 Controlof F3.. . . . . . . . . e 50
7.4 Controlling the third and fourth term in (7.0.1). . . ... ... .. .. 51
7.5 Uniqueness. . . . . . . o oo e e 51
Properties of (Jp). . . . . . . .. 52
Hodge-decomposition inequalities. . . . . . .. .. ... ... ... ... .. 55
B.1 Thefirstone. . . . . . . . . . 55
B.2 Thesecondone.. . . ... .. ... .. . ... ... . 56
B.3 Thethirdone. . .. ... .. .. ... 57
B.4 The fourth one: For differences. . . . . . . .. ... . ... ... .... 61
B.5 The fifth one: For the extended domain. . . . . . . . ... ... .. .. 64
........................................... 65



ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his advisor, Hans Lindblad, for turning him
into a mathematician; he wishes to thank his family, Anne-Charlotte, Mats, Karin, Bjorn and Asa,
for their support; he wishes to thank Amanda, for being awesome; and for help understanding
Fuler’s equation, he wishes to thank Steve Shkoller. He also wishes to thank his committee

Thomas Bewley, William Helton, Michael Holst and Miroslav Krstic.

vi



VITA

2002 M. Sci. Mathematics, University College, London.
2004 M. A. Mathematics, University of California, San Diego.

2008 Ph. D. Mathematics, University of California, San Diego.

vii



ABSTRACT OF THE DISSERTATION
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We prove that the equations of motion of an incompressible, inviscid, self-gravitating fluid with
free boundary are well-posed in Sobolev space. The methodology consists of a fixed-point argu-
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Chapter 1

Introduction.

Let ; C R? be the domain occupied by a fluid at time ¢ € [0, 7] and suppose that the
fluid has velocity v(¢,z) and pressure p(t,x) at a point x in ;. For an inviscid, self-gravitating

fluid these two quantities are related by Euler’s equation
(0 +v'0;)v; = —0;p — 90 (1.0.1)
in y, where 0; = % and v’ = §”v; and where ¢ is the Newtonian gravity-potential defined by
o(t, ) = —xaq, * () (1.0.2)

on {2, where xq, is a function which takes the value 1 on 2, and the value 0 on the complement
of 3y and where @ is the fundamental solution to the Laplacean. We can impose the condition

that the fluid be incompressible by requiring that the fluid-velocity be divergence-free:
dive = 9;v" = 0 in Q. (1.0.3)
The absence of surface-tension is imposed with the following boundary condition:
p =0 on O (1.0.4)
and to make the free-boundary move with the fluid-velocity, we have
9y +v'9; is in the tangent-space of Uyepo,r) [ x {t}]. (1.0.5)

The problem is, then, is to prove the existence of a triple (v, p, ;) satisfying (1.0.1) - (1.0.5) in

some interval [0, T, given the initial-conditions
v = vg on g, (1.0.6)

where vy and 2 = Qy are known. We will also assume that initially there is a constant ¢y such
that
Vp-N < —cy <0 on oQ (1.0.7)



where N is the exterior unit normal to 9f2.

The main theorem we will prove in this paper is the following:

THEOREM 1.0.1 Let the initial domain Q be in H® and let vy be in H™>(Q). Then there is a
unique solution (v,p, Q) satisfying (1.0.1), (1.0.8), (1.0.4) and (1.0.6), in some interval [0,T),
such that Q is in H® and v is in L2[[0, T], H™-5()].

1.1 Background.

Past progress has been made in three situations: The first progress was made on the
water-wave problem under the assumption that the fluid be irrotational — that is, the curl of
the fluid-velocity is zero —, incompressible and that the free-boundary not be subject to surface-
tension. Notable results in this area are Wu’s papers [11] and [12] where she uses Clifford
analysis to show well-posedness in two and then three dimensions in an infinitely deep fluid;
and also Lannes’ paper [4] where the Nash-Moser technique is used to prove well-posedness in
arbitrary space-dimesions for a fluid of finite depth.

In [2], Christodoulou and Lindblad proved a priori estimates for the incompressible
FEuler’s equation, without the assumption of irrotationality. They were not sufficient to obtain
the existence result, however, because no approximation-scheme was discovered which did not
destroy the structure in the equations on which the estimates relied. In [5] Lindblad proved
that the equations obtained by linearising Euler’s equation around a solution are well-posed.
Using the fact that the linearised operator was invertible, Lindblad then used the Nash-Moser
approximation scheme to obtain the full well-posedness in [6]. Well-posedness was also proved
by Coutand and Shkoller in [3], using a fixed-point argument which relies on smoothing the
fluid-velocity only — crucially — in the direction tangential to the boundary. This is followed
by energy estimates which we will discuss in detail in chapter 5. Also, in [10], Shatah and Zeng
prove a priori estimates under these conditions by considering Euler’s equation as the geodesic
equation on the group of volume-preserving diffeomorphisms. The latter two papers also consider

the case of positive surface-tension.

1.2 A conserved quantity.

Let us begin by defining Lagrangian coordinates and then noting a conserved quantity
for the flow: Suppose that v satisfies (1.0.1) and (1.0.3), and that x satisfies
dx
7 by) = vt a(ty)) and 2(0,y) =y (1.2.1)
for y in © and for ¢ in some time interval [0, T]. This means that x(¢,-) : Q@ — € is such that

O det (?) (t,y) = divvox(t,y) =0. (1.2.2)
Y



And since det (%) (0,y) = 1 we therefore have det (%) =11in €. Let
Y Y

E(t) :/Q v(t,z) - v(t, x)dx + ., o(t, x)dx (1.2.3)
— [ vttt ) oltate )y + [ ott.at.o)ay (1.2.4)
Q Q
Then
E(O):Lvo(x)-vo(x)d:c—/ﬂgb((),x)dx (1.2.5)

where the second integral in (1.2.5) converges. Using (1.0.1), the time derivative of the first term

in F is equal to

—2/(@p)(taw(t’y))vi(ﬁw(f,y))dy—2/(8i¢)(t,:v(t,y))vi(taév(t,y))dy- (1.2.6)
Q Q

The first integral in (1.2.6) can be shown to be zero using integration by parts. Now ¢(¢,z) =
th —®(|x — 2z|)dz. Thus

(0:)(t, 2(t,y)) = /Q[w(tvy) —a(t, 2)i® (|2 (t, y) — x(t, 2)|)dz.
And therefore the second integral in (1.2.6) is equal to

—2/Q/Q[x(t,y> —a(t, 2)] - v(t, 2(t, )@ (|x(t,y) — x(t, 2)|)dydz. (1.2.7)

The time derivative of the second term in E is equal to

/Q /Q (2t ) — 2(t, 2)] - [o(t, 2(t, ) — vt 2(t, )P (2(t,y) — 2(t, 2))dydz  (12.8)

= /Q/Q[w(t,y) —x(t,2)] vt z(t, )@ (|z(t,y) — z(t, 2)|)dydz (1.2.9)

+/Q/Q[:v(t,z) —a(t,y)] vt x(t, 2))® (Ja(t, 2) — x(t,y)|)dz=dy (1.2.10)

= 2/ /[w(t,y) —a(t,2)] - o(t, 2 (t, )@ (|z(t, y) — =(t, 2)])dydz. (1.2.11)
QJQ

Thus (1.2.7) cancels (1.2.11), which means that £ = 0. Since th o(t, z)dx < oo, this means that

lv]|L2(q,) is always finite. We will prove higher order versions of this in chapter 5.

1.3 Summary of the argument.

We show well-posedness for (1.0.1) - (1.0.5) under the initial conditions (1.0.6) and
(1.0.7), using the methodology developed by Coutand and Shkoller in [3]: We suppose to begin
with that we have been given Q in H? and vy in H8(2). We prove elliptic estimates for p and
¢ in chapter 3 and chapter 4. These are used subsequently, both to prove a prior: estimates in

chapter 5 and to prove the existence of a fixed point in chapter 6. In chapter 5, we smooth V in



the directions tangential to the boundary using a convolution-type operator, with the smoothing
controlled by the parameter k. Using this smoothing we can write down a version of Euler’s

equation where the transportation velocity is smoothed. Let the flow of V,; be defined by

re(t,y) =y + Vi(s,y)ds.
[0,]

We now define the energy
E,(t) Z?(}lrf[HVHer [ zls + £[[V][s] (1.3.1)
.t

and prove that there is 77 > 0, which does not depend on &, such that F,(T1) < Ey, where E
depends on the fact that Q is in H®, on ||vg||s and on E,(0). Now let V be a point in the space

C.(T) = {f € L*([0,T), H3()) : [sou% Iflls < 'Es+ 1} .

Thus we also control the flow = of V in H8(2). To find a solution to Euler’s equation with

smoothed transport-velocity, one seeks a fixed-point of the operator

Ai(V) = vé - / (8:i D) ds — / (8; o) ds.
[0,¢] [0,¢]

Here 0! = 6% 8% are derivatives with respect to the coordinates x,,. We define p,, as follows:

ovl o'
Ap, = — ( U"‘) ( v ) + 1 on £; with boundary condition p, = 0 on 0€2;.

i) \ o,
And we define ¢, by ¢.(t,x) = —xq, * ®(x). To show that A : C,(T) — C.(T) we use the

following elliptic-regularity theorem from chapter 3 and chapter 4:
THEOREM 1.3.1 We have
1(Vips) 0 zills < Plllzxlls, [[Ooxxlls, [V]]s] (1.3.2)
and
1(Vthe) 0 ulls < P [laclls 10 s (1.3.3)
were Oy is a derivative which is tangential to the boundary.

Theorem 1.3.1 makes clear the main difficulty with this problem; namely, that the ge-
ometry of the domain contributes terms of the highest order. The smoothing along the boundary
allows the order to be reduced, at the cost of powers of L: [|8pz,|ls = £ ||2xl|s which we can

control.

ReEMARK: The elliptic estimates for V¢, are new. Their proof uses a Hodge-decomposition

inequality introduced by Lindblad in [5] and also an extension of the coordinate system z,, to



avoid the fact that a priori ¢, may be ill-behaved along 9€2;. It should also be noted that the

estimates are in terms of V.p, and V¢, and not p, and ¢,, which saves commutators.

An application of theorem 1.3.1 proves that for T3 small enough, A is invariant on
Cy(T>). Similar estimates show that A is a contraction which provides a unique fixed point
V', which depends on k, defined on a time interval [0,T3]. Using the a priori estimates we now
extend this solution to the whole interval [0, T1] which does not depend on . Thus the fixed-point
solutions converge to a solution of Euler’s equation.

Finally, in chapter 7, we suppose that the initial domain € is in H® and that the initial
data vg is given in H™*(Q). We can smooth the initial data using a standard convolution to
obtain Q. in H? and v . in H3(Q). The previous argument then provides us with solutions v. to
Euler’s equation with initial data vo .. We prove that these solutions converge in H"-5(2) using

an energy-type argument.



Chapter 2

Preliminaries.

In this chapter we define the coordinates, the cut-off functions, the derivatives and the

norms which we will be using in this paper.

2.1 Coordinates and derivatives.

Let Uy,...,U, C R? be an open cover for 9§ such that for each U; with i = 1,...,
there is a change of variables U, : {z € R?: |z;] <1 for j = 1,2,3} — U; with

U, {zeR?:|z|<1forj=1,2and —1<23<0} -U;NQ

and,
U, {zcR?:|z] <1forj=1,2and 23 = do} — U; N 9Q%.

Here Q% = {y; +y2 € R3 : 41 € Q and d(y2) < do} where d(y) = dist(y, Q). Let Uyt1,...,U,
be an open cover for the rest of 2 such that for each U; with ¢ = p+ 1,..., v there is a change
of variables ¥; : {z € R? : |z;| < 1for j = 1,2,3} — U;. Let &,...,& be a partition of unity
subordinate to Uy ...,U,. We will let 2’ = (21, 2?) denote the tangential directions and we will
let 2% denote the final, normal, direction.

We will let  be coordinates on €, and 0;, 9, Ok, . . . be derivatives on §2; we will let y

be coordinates in a patch on 2 and 0,4, 0y, J, . . . will denote derivatives in such a patch; and we

lé)
0z

an arbitrary derivative on €; and 9 will denote an arbitrary derivative in a patch on €.

to denote the coordinates and derivatives on (—1,1)3. Moreover, V will denote

will let z and

2.1.1 Tangential derivatives.

In this paper we will use two types of tangential derivatives: The first class contains

the derivatives 1 + & (%—‘IZ’?) o \IJ,;l where £k = 1,...,u and ¢ = 1,2 which are tangential to

9
oy®



the boundary of 2. We will abuse notation and let dy denote this type of derivative both on €2
and on ;. We also define a fractional tangential derivative (9p)*® for a function f on € to be the

operator which sends

fj(a/7 Zg)eia,.ZldO/ to / <O/>Sfj(0/, Zg)eia,.Zlda/7

R2 R2

where o = (a1, a9);
fild 2y = [ fi(z' 2% 2%)et  des
R?2

1

where (/) = [1+4 |oq|? + |a2|?] ?; and where f; = (¢ f) o ;.

2.2 Norms.

In this section we define the norms on (—1,1)? x (—1,0), Q and €.

2.2.1 |- HHS((—1,1)2><(—170))'

Let f be a function compactly supported on (—1,1)% x (—1,0) then for an integer k > 0

we define

k
1 e (11920 (- 1,0)) = ZO IV? T2 10)2 0 (- 1,00
=
where V denotes (%, %, %). Now because f is compactly supported,
V7 F 12212 x—1,0p) = IV FllZ2(me) = /R3 |0 | f|?(cr) e
where f(a) = Jre f(2)e*#dz. Thus we define

10 ((=1,1)2x (=10 :/ (@)% f* (@)dax

R3

2.2.2 | - |lgs@, || - [ls and || - || =00

Let f be a function on Q. Then &; f is a function supported in a coordinate neighbour-

hood. For integer k > 0 we define

v k
£y = D D IVIELIP

j=1i=1

where V = (6%17 8%27 8%3) and || - || denotes the L?(Q2)-norm. We define the intermediate spaces
by interpolation, see for instance [8] and [1]. Define f; = (&;f)o¥;, which is compactly supported

in R? and .
2:5 )2 | 12 (a)doa.



LEMMA 2.2.1 |- ||gsq) and || - [|s are equivalent.

PROOF: Let f be defined on Q. Then || f[|%x g, = 227, S V(& N2 (- We have V[ f] =
GV + VGV 4.+ (VIO f and

1T D2y = / € [(0/0y)'f)* dy
Qnv;

- /mv. &(0/0y)' (0} [9y)/d2(f o W;1¢;(9/Dy) fy

< el ) o Yllmi-1nex-10pI1€ (Y )l 2.
|
Finally, for a function g on 9 we define ||g|| s+ (o) = [[(96)* (9]l
2.2.3 |- las@) and || - ||z @0,
Let f be a function on €. For integer k > 0 we define || fl|3 o, = IIfl72q,) +

ot ||ka||%2(ﬂt)7 where V = (52, 525, 52 ). We define the intermediate Sobolev spaces by

9z1> 922 923
interpolation. We also define |[(9)°[f]l|z2(0,) = [[{(08)°[f © 2] L2(q) and for a function g on 9€

S

we define | g||gs00,) = |lg © 2|/ msoq). For integral s the operator (0p)® is equivalent (in the

L?(Q)- and L?(9)-norm) to the application of multiples dp.

2.2.4 Regularity of the domain.

We will use the following norm to quantify the regularity of the domain: ||Qfs =

Yo 1l e ((=1,159)-

2.3 Smoothing.

Now we define the smoothing operator which we will be using. It is the main idea from
[3]: Let ¥ : R* — R be a smooth function which is compactly supported on {2’ € R?: |2/| < 1}
and such that [, 9(2')dz’ = 1. For x > 0, define

o) = 1o (2)

then 9, is compactly supported on {2z’ € R? : |2/| < k}. Let f be compactly supported in
{z’ € R?: |2/| <1} and let & be smaller than the distance from the support of f to the boundary
of {' € R?: |2/| < 1}. Define the tangential convolution of ¥,; and f by

O f(2) = . V(2 = 2"V f(2", 2%)d2".



It will be obvious from the context whether by * we mean the usual or the tangential convolution.
As can be seen, tangential convolution smooths in the tangential direction:
0

. 9 [0.](z — 2")f(2, 2%)dz" (2.3.1)

o [0n % foU; ] =0, s foli !+ Z/
R

7j=1,2

=[1+r" 0 * fol;h. (2.3.2)

Now suppose that f is a function defined on €2 and define the smoothed version of f to be

Pooa 1 -
fo=3 €00 x0 [(gf f) o \111} o0+ Y &f. (2.3.3)
i=1 i=p+1
Sometimes we will let f, denote the first term in (2.3.3) — the part which is supported near
the boundary of @ — and we will let f,,, denote the second term in (2.3.3) — the part which is
supported in the interior of Q. Finally, Lagrangian-flow associated with f is given by

Y+ f(y,s)ds.
[0,4]

2.4 Cut off functions.

Fix dyp such that the normal N to 0€2; can be extended into the image of the set
{y € Q :d(y) < do} under z. This fact is used in lemma 2.5.1 below. Let n; and ¢; be
radial functions which form a partition of unity subordinate to the sets {y € R® : & < d(y)}
and {y € R® : d(y) < %} respectively. This means that 7; takes the value 1 on the set
{y e R®: % < d(y)} and (; takes the value 1 on the set {y € R®: d(y) < 2}. We will also let

7; and (; denote the analogous functions in the Eulerian frame.

2.5 Hodge-decomposition inequalities.

In this section we present three divergence-curl estimates which are used throughout
this text. Their proofs can be found in appendix B. The first allows pointwise control on all
derivatives near the boundary of ; by the divergence, the curl and tangential derivatives. Letting

¢ = ¢; we have the following:

LEMMA 2.5.1 Let a be a vector-field on Q. Define (curla);i = djou, — Oparj and diva = ;a9 .

Then we have the following pointwise estimate on 2 :
[CVa| < |Ccurlal| + |Cdival + | Dpal, (2.5.1)
where | - | denotes the usual Euclidean distance.

Using lemma 2.5.1 and an induction argument we have the following lemma:



10

LEMmMA 2.5.2 For 0 < s <38,

ICallasa,y < Plllzlls] [ICallzzn + I¢curial ge1(a) + ICdival go-i(a,)] (2.5.2)
+ P[llz]ls] 1¢(36) all L2 () - (2.5.3)

We will also use the following estimates which allows H*(€);) control in terms of the

divergence, the curl and boundary derivatives:
LEMMA 2.5.3 Let diva and curla be defined as in lemma 2.5.1. Then, for 0 < s <8,

||Oz||Hs(Qt) < P[HIEHS] [HO‘HLQ(Qt) + ||diUC¥||Hs—1((2t) + ||CUTZOA||H371(Qt)} (254)
s—1
+ Pllz]ls][1((0e)* 2 ) - N L2(00,)» (2.5.5)

where N is the outward unit normal to 0. Also,

el sy < Pllllls] [llallzzq.) + ldivall g, + [lcurlal g=-1(q,)] (2.5.6)
s 1
+ P(llz]ls]11((0)° "2 ) - Qll L2 (00, (2.5.7)

where @Q is a unit vector which is tangent to 0.



Chapter 3

Elliptic estimates for p.

In this chapter x > 0 is fixed. As was mentioned in the introduction, we will prove a
priori estimates for a smoothed Euler’s equation. Existence will follow a fixed-point argument
applied to a map A (which we will define in chapter 6) defined on the space

C(T) = {f € LQ([O,T],Hg(Q)) csup [|f]ls(t) < VB + 1} (3.0.1)

te[0,T]

where Ey = Eo(||2]]9, ||volls), under the assumption that we control ||€2]|g and [|vg]|s. To prove
the a priori estimates and to apply the fixed point argument, elliptic estimates for p and ¢ are
required and in this chapter we prove the estimates for p. The result in section 3.1 will be used
to show that A is invariant on C(T). The result in section 3.2 will be used to show that A
is also a contraction. In section 3.3, we prove the estimates for p which will be used for the
energy estimates in chapter 5 and estimates for establishing optimal regularity in chapter 7. The

estimates for ¢ are in chapter 4.

3.1 Estimates to show that A is invariant.

Let U be a point in C(T') and let z,; be the flow of U, where U, is the smoothed version
of U. We have

sup |0z, — 1d||7 < sup/ 10U, |17 ds < T sup ||0U||7 < T sup ||U||s (3.1.1)
[0,T7] [0,7] J[0,t] [0,T7] [0,77

and therefore for small enough 7', B! = g;j;; is invertible and its inverse A = gzj is well-defined.

By choosing T' to be smaller if necessary, we can assume that % < <det(B) <ex < %
LEMMA 3.1.1 For 0 <i <7, we have ||Al|; < P|||z,|s]-

Proor: This follows an induction argument by applying derivatives to the relation 617 = AYBJ

and using interpolation. [ |

11
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Let V and W be points in C(T') and define v, = V,; ox;! and w = W oz 1. Define a
function f on Q; = x,,(Q,t) by

Af =—(Vu,)(Vw) +1 on Q, (3.1.2)
where V denotes derivatives with respect to the coordinates z,, with boundary condition
f=0o0n 0. (3.1.3)
In this section we prove the following theorem:

Trrorem 3.1.2 [V, < Pllaalls, & als, [vnlas@os ol where P is a poly-

nomial which is linear in k|| z.|s-

Using the cut off functions defined in chapter 2 we have |V f||gsq,) < [|mV fllms.) +
€1V |l 2 (2,)- We begin by proving interior estimates for f.

3.1.1 Interior estimates.
In this section we prove the following estimate:

ProprosiTioN 3.1.3 For all1 <4 and all 0 < s < & we have

IV iV flll 200y < Plllzslls, lvellms ), lwllms,)]- (3.1.4)

We prove proposition 3.1.3 by induction on s. For s = 0, we have [|[17;V f|12¢q,) <

il Loe ) IV fllL2(0,) and
IV F12300,, = /Q @@ N)ie = [ f(Tu) (Vs - [ fas (3.15)

By Poincaré’s inequality, the terms in (3.1.5) can be controlled by

P[H%H& ||’UHHH4(Qt)7 HwHH‘l(Qt)}va||L2(Qt)- (3.1.6)

This proves the case for s = 0. Now suppose that s = 8 and that we have proposition 3.1.3 for
smaller s. We have
VeV £l 22, = /Q (0jy - - Dy [mi05, [1)(O7 ... O [;0%° 1) dx. (3.1.7)

Now
OO0 f] = mi(07 ... f) + > (VE) (VR ) (3.1.8)

where the sum is over k1 + ko = 8 such that ko < 7. To control the second term in (3.1.8) we
use the following procedure: Let i; = i. Suppose that we have found i1, ...,4;. The support

of V¥n;, is contained in the image under x,, of the set {y € R3 : g—i‘)l < d(y) < ‘f—?} Pick 441
such that izdfl < Qd—l.“l. Then 7;,,, takes the value 1 on the set {y € R? : % < d(y)} and

{yeR?: 2d—i°L <d(y) < f—;’} C{yeR3:-% <((y)}. Thus we have lemma 3.1.4:

41
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LEMmMA 3.1.4 For ko > 1 we have

(VFmi ) (VR ) = D (VR (Vi) (V) (V1 [0,V f]) (3.1.9)

where the sum is over all lo + ... 4+ 1, = ko — 1; where for instance if lo = 0 the term Vl2771-2

is taken to not be present in the sum; and where if I, = 0 the term V'»[n; Vf] is taken to be

ni,Vf.

Proor: We prove this by induction on kg. For kg = 1 we have (V*10, )(Vf) = ni, (VF0:,)(V f),
which is of the correct form. Suppose that ks > 2 and that we have the result for smaller k.
Then

(VE0:,) (V52 F) = miy (VE3:,) (9 ) (3.1.10)
= (VP (V2" i, V 1]) (3.1.11)
= (Vo) > (V! i, ) (VL) (3.1.12)

li+la=ko—1,12<k2—2
applying the inductive hypothesis to the second term in (3.1.10) gives the result. ]
On Q;, we are considering 7; o x;! and therefore 9;[n; o z;!] = (Dami)A§. Thus Vi

has the same regularity as A and by lemma 3.1.4, we can therefore control the second term in

(3.1.8). Integrating the first term in (3.1.8) by parts twice we have

- / (D, -+ 03,0 [0 [ () .. O f)da (3.1.13)
Q¢

[ OBl @@ 0" )i (3.1.14)
Q¢

- / (D, .05 0% s, )i (P . .. 070, f)da (3.1.15)
Q4

+/ (BJ ...8j78j9[niajgf])(ajgm)(ajl...6j8f)d:v (3116)
Q

—/Q Dy - - 0y My [0 1) (971 ... 0 f)dux (3.1.17)

where we can control the second and third term in (3.1.15) using lemma 3.1.4. Also, 87 [1;0;, f] =

(0791;) (8o f) — mi(Vvi) (Vw) + m; and therefore the first term in (3.1.15) is equal to

e 05,107 m:) (D5 )i (07 ... 070, f)daw (3.1.18)

- / le .. .8j7 [m(VvN)(Vw)]ni (8j1 .. .8j88j8f)d:v (3119)
Q

+/ Bjy - 0y [mi]ni (07 ... 0720, f)dx (3.1.20)
Qy

The above terms in (3.1.18) can be controlled using lemma 3.1.4 and the inductive hypothesis.

This concludes the proof of proposition 3.1.3.
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3.1.2 Boundary estimates.

In this section we let ( = (3. For 0 < s < 8, we have

VeV = (VT ) + > (VF1Q)(VR2 L f). (3.1.21)

kitko=s,ko<s—1

Since V( is supported in the interior of ; and has the same regularity as A, we can control the
sum by proposition 3.1.3, using lemma 3.1.4. Therefore, in this section we prove the following

proposition:
ProprosiTioN 3.1.5 For all 1 < s < 8 we have
HCVSfHL%Qt) < P[H%H& H%||H8(Qt), ”wHHS(Qt)] (3-1-22)
and
||<v9f||L2(Qt) < P[H%H& 106 ls, lvellms (o), ”wHHS(Qt)] (3.1.23)
where P is a polynomial which is linear in ||Opx||s-
We will build regularity using the following lemma which is a corollary of lemma 2.5.1.

LEMMA 3.1.6 For1<s <8,

1CV* Fllzagan < Plleslls] |1+ locllmsolwlas@ + > 16V llzaan | - (31.24)
0<j<s
Proor: We prove this by induction on s. For s = 1 we have, according to lemma 2.5.1,

ICV2f| < |Vue||[Vw| + 14 |(8gV f| which is of the correct form for (3.1.24). Now suppose that
s = 8 and that we have (3.1.24) for 1 < s < 7. Again by lemma 2.5.1, we have [(V*T1f| <
(Ve Leurl V| +[¢VE~Ldiv V f| 4 |COy V? f|. Here we have divVf = Af = —(Vov,)(Vw) +1 and
therefore pointwise on Q; we have [(V*~1div Vf| = [(V*~}[(Vv,)(Vw)]|. We also have

(VY S = VT @) (VA = COVEF S (VRO )((VR ).

ki1+ko=s—1,ka<s—2
(3.1.25)

For 0 < k1 < 4, we have |[V¥ gz, | 1<, < |lzlls and [[(V*2T2f||12(q,) is controlled by the
inductive hypothesis since ko +2 < s = 8. For 5 < k; < 7, we have HV’“(%&:KHH(QQ < |lzxlls
and in this case 0 < kp < 2, and therefore [|[(V*2 72 f|| L (,) < [(VF2T2F3 f|12(q,), in addition
to terms which we control by proposition 3.1.3. We control [[(V*2T2F3 f|| 12, by the inductive
hypothesis because kg +2+3 < 7. Now [(V*719yV f| < [V 2curl gV f| + [(V*~2div IV f| +
|COaV*720pV f| and (V*~2div 9V f = (V*72[(Vgzs)(V2f) + OpAf]. We have

(VI (VOpee) (V2N = > (VE 1 0pm, )C(VF 12 ). (3.1.26)
ki+ko=s—2
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For 0 < k1 < 3, we have [V 0pz,| Lo (q,) < ll@xlls and [[C(V*T2f)| 12(q,) is controlled by
the inductive hypothesis. For 4 < ki < 6 we have |[V*™10x,|120,) < ||lzx|s and in this
case 0 < ky < 2 and we control [[((V¥22f)[| 1 (q,) < [[C(VFT2#2f)[|12(q,) using the inductive
hypothesis. Also, (V¥ 29gAf = (V*720y[(Vv,)(Vw)] which we control appropriately. This

concludes the proof. [ ]

By lemma 3.1.6, to prove proposition 3.1.5, it is enough to prove that we control

HC@ZVfHH(Qt) for 0 < j < 8 which is the content of the following proposition:
ProrosiTioN 3.1.7 For 0 <5 <7, we have
||43§Vf||L2(Qt) < P[H%Hs, ||Un||H8(Qt), ”wHHS(Qt)] (3-1-27)
and
||C<9§Vf”L2(Qt) < P[H%Hs, ||89517n||8a ||%||H8(Qt)7 ||w||H8(Qt)} (3-1-28)
where P is a polynomial which is linear in ||Opxy||s-

We prove this result by induction. We have already proved the base-case. Since the
case for j = 7 follows similarly to the case for j = 8 we will now prove the case for j = 8 and

suppose that we have (3.1.27) for 0 < j < 7. We have

1OV 20y = /Qt (COROLF)(CORO f)da (3.1.20)

-/ (CoROLF) (€05 )~ / (CORYITOCT N (3130

=3 [ €OIVHT ). (V0 ) OV S) (3.1.31)

where the sum is over ki +. .. —|—th = 8 such that kq,..., k; <7, which means that we can control

all the terms in the sum using the inductive hypothesis. The second term in (3.1.30) we control
appropriately as well. The first term in (3.1.30) we integrate by parts to obtain

- /Q (COYN )(VC) (05 f)de — / (CO'050,1) (¢ f)da (3.1.32)

Q
where we control the first term by proposition 3.1.3 because V( is supported in the interior of

;. The second term in (3.1.32) is equal to

/Q (V05,) (CV? £)(COR f)dar — / (COBAF)(CS f)dz (3.1.33)
-3 /Q (VOR z,.) ... (VO 2,.) (CVOF N £)(CO f)da (3.1.34)

where the sum is over k1 + ...+ k; = 8 such that kqi,...,k < 7. Using lemma 3.1.6 and the fact
that for 1 <k <9,

105 fllz2cn) < Plllexlls] > 105V £llLace.) (3.1.35)
0<I<k—1
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we control the first term in (3.1.33) appropriately. The second term in (3.1.33) we integrate by

parts to obtain

- /Q (CORT0) (V) 005 e = | CORTu)(Vu))(COR ) (3.1.36)

where no boundary terms arise because the components of Jy are orthogonal to N. The first
term in (3.1.36) vanishes because dg¢ = 0. We control the second term in (3.1.36) appropriately
by (3.1.35). This concludes the proof of proposition 3.1.7.

3.2 Estimates to show that A is a contraction.

To show that A is a contraction we need the following estimates: First, let U, V and
W be points in C(T). Let x, be the flow of U, where Uy is the smoothed version of U. Define
O = 2.(Qt), v =Vieox,! and w =W oz, !. Define a function f by

Af =—(Vu,)(Vw) on £, (3.2.1)
where V denotes differentiation with respect to the coordinates x,, with boundary condition
f=0o0n 9. (3.2.2)
Employing the same approach as in section 3.1, we can prove the following theorem:
THEOREM 3.2.1 For f defined by (3.2.1) and (3.2.2) we have
IV fllam @) < Pllzells] lvsll g @ llwl a7, (3.2.3)
and
IV llzzs oy < Plllels, 57 zwlls]llvxll s @ llwll s ) (3.2.4)
where P is linear in k™ {|xy]|s.

Second, let Uy, Us, V and W be in C(T). Smooth Uy, Us and V to obtain (U1),, (Uz2)x
and V. Let u; and us be the flows of (Uy), and (Us), respectively. Let x; and xo be the
coordinates on ;1 = u1(¢,Q) and Q2 = ua(t, Q) respectively. For k = 1,2, define

0 S 0 i
Afk = — <8I'IL€ [V'g O Uy 1]> <8—Ii[w O Uy 1]) +1on Qt_’k (325)
with boundary condition
p=0on 0Q k. (3.2.6)

The estimates to compare f; and fo must be performed in Lagrangian coordinates. We now

prove the following theorem:
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THEOREM 3.2.2

[(V1f1) our — (V2 fa) o uslls (3.2.7)
< [T+ w710 = UsllsP [[|Uls, |Uzlls, & MU llss &7 HIUsllss [V ]85 W]ls] (3.2.8)

where Vi, denotes derivatives with respect to the coordinates xj on Q.

3.2.1 Interior estimates.

In this case, as in section 3.1, the interior estimates follow more readily than the bound-

ary estimates. We therefore state the interior estimates and omit the proof:

ProposiTioN 3.2.3 For all 1 <, we have

[(7:V1f1) our — (7iVaf2) o uszlls (3.2.9)
< U1 — UsllsP [|Unlls, 1U2lls, &~ [ Uslls, &~ | Ualls, IV ]Is, [W][s] - (3.2.10)

3.2.2 Boundary estimates.

To obtain the boundary estimates we now build regularity in much the same way that

we did in section 3.1. Define

409200 = (255 () and 0L ) = (2 s

First we prove a lemma showing a relationship between A(1) and A(2), and U; and Us.
LEMmMA 3.2.4 For 0 < j <4 we have

107A(1) = & A@2)lloe < P[[|Uslls, [1U21s]1Uy = Uz|ls (3.2.11)
and for I with 0 < j <7 we have

167A(1) = &7 A@2)|| < P[l|Usls, 1U2]Is]IU1 — Ua]ls. (3.2.12)
Also, |07 B(1) — 97 B(2)|| < P[||U1lls, ||Uz]ls] |U1 — Us||s-

Proor: Since A(1) — A(2) = B(1)™! — B(2)~! and

- C(k)
1 _
Blk)™ = det(B(k))’

where C(k) is the cofactor matrix of B(k) we have ||A(1) — A(2)|| < ¢||Ur — Uzl|1 and [JA(1) —

A(2)||co < ¢||]Ur — Uz||l4. This proves the base-case of both (3.2.11) and (3.2.12). Now for j > 1,

P A(k) = =Y (07 A(K))(97 B) (07 A(k))
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where the sum is over j; + j2 + j3 = j and such that ja,j3 < j — 1. Thus

PAL) - P A@2) =) (97 A2))(9 B(2)(07 A(2)) = (9 A1) (87 B(1)) (9" A(1))

(3.2.13)
=Y (97 A(2))(2 B(2)) (0 A(2)) = > (7 A(1))(87 B(2))(9” A(2))

(3.2.14)
+ > (07 A(1))(07 B(2))(9 A(2)) — D (07 A(1))(07 B(1)) (97 A(2))

(3.2.15)
+ D (07 A(1))(07 B(1)) (92 A(2)) — D (97 A(1))(97 B(1)) (97 A(1))

( )
= (0" A2)) — (97 A(1))] (97 B(2))(97 A(2)) ( )
+ Z (671 A(1)) [(072B(2)) — (8”2 B(1))] (02 A(2)) (3.2.18)
+ > (07 A(1))(07 B(1)) [(97 A(2)) — (97 A(1))] - ( )

One infers (3.2.11) from (3.2.13). Now suppose that 1 < j < 7 and that we have (3.2.12) for
smaller j. In the first sum, if j; < 4 then we control ||§7* A(2) — 81 A(1)||o appropriately using
(3.2.11). If jo < 4 then we control ||972 B(2)|| by ||Uz||s. In this case, 0 < j3 < 6 and therefore
we can control ||972 A(2)|| by ||Uals. If 5 < j2 < 7 then we can control |02 B(2)|| by ||Uz||s; and
now 0 < ji,j3 < 2 so we can control ||§71 A(2) — 871 A(1)]|« using (3.2.11) and [|§72 A(2)||~ by
|Uzlls- If 5 < j1 < 6, then we control |07t A(2) — 871 A(1)|| appropriately using the inductive
hypothesis, since j; < j — 1. And 1 < j,j3 < 2 which means that we control |72 B(1)||« and
|072 A(2)|| o appropriately. The second and third sum follow similarly. [ |

Just as lemma 2.5.1 was central to the proof of lemma 3.1.6, so lemma B.4.1 from
appendix B is central to lemma 3.2.5 below. We let ( = (1, where the (; are cut off functions

defined in chapter 2.

LEMmmaA 3.2.5 For0< 53 < 7,

1(CV1d7 V1 f1) o ur — (V207 V2 f2) 0 us| (3.2.20)
< UL = UalsP [[IULls, [|Uzls, & ULlls, &~ [ Uzlls, [V ]]s, [1W]ls] (3.2.21)
+[[(C060’ V1 f1) 0 ur — (€09 Va2 fo) 0 uall, (3.2.22)

and for 0 < j <4 we have

||(§V183V1f1) ouy — (CVQ@jVQfQ) ] u2||00 (3223)
< U1 = UsllsP [||Unlls; 1U2lls, &~ [Unlls, &~ | Ualls, 1V [Is, [W]s] (3.2.24)
+ |\(C898j+3V1f1) ouyp — (§898j+3v2f2) ] u2|| (3225)
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Proor: Let j = 0. Then according to lemma B.4.1 we have,

[(CVIf) 0 ur — (V3 f2) 0 ug| < [(CALf1) 0 ur — ((Azfacrz) 0 g (3.2.26)
+ (€89 V1 f1) 0 ur — (CBpVaf2) 0 uz| + Q1 — Q2||(CV3 f2) 0 ual.
(3.2.27)
Now

(A1fr) o — (Aafa) o us = —A(1) (V) A(L) (W) + A(2)(AVi) A(2)(OW) (3.2.28)
— A1)OV) AL (OW) + A2)(9V,) A(1)(0W) (3.2.29)
—A@Q)(OV)A(L)(OW) + A(2)(0V.) A(2)(0W) (3.2.30)

— [A(2) — ADI@V)AN)@W) + AQ)@VL)AER) — AL)@W)
(3.2.31)

and this can be controlled by ||[Uy —Us||sP[||U1][s, | U2]ls] ||V [|s||W||s. The second term in (3.2.26)
can be controlled by || (09V1f1) o us — (0gVaf2) o uz|| and the third term can be controlled by

|Ur = UalsP[||Uzlls, [V ]I, [W]s].

Now suppose that 1 < j < 4, and that we have (3.2.20) for smaller j. For a function 6 defined

o1 Qt,la
0 B ‘ |
] 1 o
(9.%‘1 (9.%‘1 Z(a A(l))B(l)(Vla 9)

where the sum is over j; + jo = j and jo < 7 — 1 we see that

(curl; 07V, fl) ouy — (CurlgajVQ f2) 0 uo (3.2.32)
= (0" A(1))B(1)(V10* V1 1) o uy (3.2.33)
=) (071 A(2)) B(2)(V2072 V2 f2) 0 us (3.2.34)
=3 [(07A(1)) — (07 A(2)|B(1)(V10* V1 f1) 0wy (3.2.35)
+) (07 A(2))[B B(2)](V1072 V1 f1) o uy (3.2.36)
+ 3 (07 A(2))B(2)[(V107” Vi fi) 0 uy — (V2072 Va fa) o ug). (3.2.37)

We can control the above by the inductive hypothesis since jo < j — 1. In addition, to control

(divi37V1 f1) o up — (dived?Vafa) o us we must also control
(TALf1) our — (7 Asfa) oup = [(07* A(2)) — (871 A(1))](0072 V., ) (972 A(1)) (007 W) (3.2.38)
+ (871 A(2)) (0072 V) [((072 A(2)) — (972 A(1))] (007 W). (3.2.39)
where the sum is over j; + j2 + js + ja = j. As we have seen, we can control the above terms by
[Ur = UsllsP[|Urlls, [[Uzlls, [V ]ls, [[Wls] for 0 < j < 7. Now we prove (3.2.23) for 0 < j <1,

and using this result we can prove (3.2.20) for j = 5. Using that result we can prove (3.2.23) for
7 =2, etc. |
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Suppose now that we control ||(§8§V1f1) ou — (C@gvgfg) o uz|| appropriately for 0 <
j < 8. Then (3.2.20) says that we can control ||(CV18)V1f1) 0 u1 — ((V2d)Vafa) o us]| for
0 < j < 7. That is, we control [|(C8}0V 1 f1) o us — (COV 2 f2) ousl| for 0 < j < 7. Using (3.2.20)
again, this means that we can control |\(<vlaagv1f1) ouy — (CVgaagVQfg) owusl| for 0 < j <6.
Inductively, then, we can control ||((V1f1) ous — ((Vafz2) o uslls. It remains, therefore, to bound

1(COVLf1) 0 ur = (CBjVafa) 0 ug| for 0 < j < 8:
ProposiTiON 3.2.6 For 0 < j <8,

1COV1f1) 0 ur — (¢85 Vafe) o us (3.2.40)

< &MU = Uslls, P[IUlls; 1Ualls, &~ Uslls, &M IUzlls, [V ]Is, [1W]]s]- (3.2.41)
We prove this proposition by induction on j. We have

(Vifi)our — (Vafa) ous = A(1)¢ [(0aF1) — (0. F2)] + [A(1)F — A(2)§] (0uF2), (3.2.42)

3

where Fy, = fi, o up. We control the second term in (3.2.42) by lemma 3.2.4. Also,

/Q VAW [(9aFr) = (0aF2)] AT [(B6F1) — (9 F2)] dy (3.2.43)
=- /Q By [09 A(1)F AL [(0aF1) — (0uF2)]] [F1 — Faldy (3.2.44)
<119y [57 AT AL [(OaFr) = (GuF)]] [[I1F7 = P2l (3.2.45)

Using the Poincaré inequality we have ||F} — Fy|| < c||0F; — OF3||.

Oy [67A)F AL [(0aF1) — (0aF2)]] = 06 [67 A1) AL)2(0aF1)] — 0 [67 A(1)F A1)} (00 F2)]
(3.2.46)

and

Dy [67 A(1)FA(1)Y(0aF1)] = 67 (0pA(1)F) A1) S (8aFr) + 6T A1) (0 A(1))(0aF1)  (3.2.47)
+ 67 A1)F A1) (0a0n FY). (3.2.48)

We have (Af1)(u1(t,y)) = 69A(1)2(0A1){)(0aFr) + 6 A(1)2 A(1)¢(Da0pF1) and we therefore
see that

B [67 AMDF A0 F)] = —A(1)F 0V A H W) +1+67 A1) (0 A(1)5) (D Fr). (3.2.49)
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We also have,

By [57 A1) A1) (0aFo)] = 69 (0hA(1)8) A1) (0uF2) + 69 A(1)H (D A(1)") (0uF2)  (3.2.50)
+ 09 A(1)F A5 (0a05 F) (3.2.51)

=" [(c%A( )i) — (OpA(2 ) )] A(1)5(0aF) (3.2.52)

+ 07 (D A2)7) [A(1)) — A(2)}] (DaF2) (3.2.53)

+0Y [A(1 ) A(2){] A1)} (8a0s F2) (3.2.54)

+ 09 A@2)¢ [A(1); — A(2)5] (.05 F2) (3.2.55)
+67(9pA2)7)A(2)5(0a F2) (3.2.56)

+ 01 A(2)2 A(2)L (0a0y o) + 67 A()HBA()D) (0uF2).  (3.2.57)

We control the first four terms in (3.2.52) by P[||Ui|s, |Uz]ls, [|Vills, [[W||s]|Ur—Uz||s. Similarly
t0 (3.2.49), 09(0pA(2)§) A(2)](0aF2) + 0 A(2)7 A(2)§(0a0s ) = —A(2){ (0aVi]) A(2)5 (0 W) + 1.
Combining this with the first two terms from (3.2.49), we have

— A (0. V)AL @W) + A2)§(0a V) A2)F(0W) (3.2.58)
— A} 0.V AML (W) + A(2)§(0.VIAL) (0 W) (3.2.59)
AR)H (B VHAL(OW?) + A2)§ (8. V) A(2); (0, W) (3.2.60)

= [A(2 ) — A(1){] (0a VJ) EVHEALS (3.2.61)

+ A(2)7(0.V]) [A(2)F — A(1)Y] (9,W7) (3.2.62)

which can be controlled by P[||Ui[s, ||Uz|ls, [|Vills, [[Wls][Ur — Uzl|s. Finally, combining last
term from (3.2.49) and the last term from (3.2.52) we have, [|6 A(1)# (9 A(1)%)(0a Fy — 0aF2)|| <
||U1||8||8bA(1)§||Oo||8aF1 04 F||. The following lemma shows that 9, A(1 ) is small.

LEMMA 3.2.7

19542 loc < 1| det(4) oo sup P[lla]ls] exp | T sup P[]
[0,7] [0,7

Proor: Using the formula
V det (M) = det(M)tr [M*WM} (3.2.63)

we have
d; det(B) = det(B)A%(9; B) ( )
= —det(B)(9;A})B,, ( )
= —det(B)(0;A9) B}, (3.2.66)
= —det(B)(9.A%). ( )
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Thus [|0,A(1)fllec < [[det(A)[|oc]|V det(B)[loo. Again, using (3.2.63) we have 9y det(B) =
det(B)A%(0;0,7,) = det(B)A%(9,V}). Since det(B)(0,y) = 1 we have

det(B)(t,y) = exp A9, VH)ds

0,¢]

and

V det(B)(t,y) = exp A4(9,VH)ds

0,¢]

V{ | [(VA)(0.Vi) + A(V?V,)] ds
0,t

Thus
|V det(B)||s0 < T[sup] P(llzxlls] exp
0,T

T sup P[||V,<H1}
[0,7]

This concludes the base case. Now suppose that j = 8 and that we have proposition
3.2.6 for smaller j. Then

|| 89V1f1) ouyp — ((%ngg) ¢] UQH2 (3268)
/6” (D5 A (DaFr) — (B3 A2)]) (0 F2) (95015 f1) © ur — (9525 f2) © uz)dy (3.2.69)
- /Q 3 AT (1)(0a05 1) — A7 (2)(0a05 F2))[(05015 11) 0 ur — (95025 f2) 0 us]dy (3.2.70)

+) 57((07 AL (1)) (0.0 Fr) — (951 A% (2))(0a03 F2)][(95 015 f1) 0 ur — (95 2; f2) © ua]dy
Q
(3.2.71)

where the sum is over all j; and jo such that j; + jo = 8 and ji,j2 < 7. The first factor in the
third term in (3.2.69) is equal to

(05 AL (1)) (0a03? 1) — (05" AL (2))(0a03? F2) = (95" A (1)) — (95 A7 (2)))(0a05° F1)  (3.2.72)
(8 AL (2)[(0a002 F1) — (8,00 F2))  (3.2.73)

thus the third term in (3.2.69) can be controlled appropriately. The first term in (3.2.69) gives

/61] (D5 A (D Fr) — (95 A2)7)(0aF2) (95015 f1) © ur — (9502 f2) 0 uz)dy (3.2.74)
; 5 [AF(1)(0:05ut ) (D11 f1) 0 ur — AF(2)(DeDgus ) (Do f2) 0 ua (3.2.75)
X [(0501; f1) 0 uy — (902 f2) © ug]dy (3.2.76)

A 571(05" A5 (1))(992 BE(1))(95° A7 (1)) (0aFy) — (05" AS(2))(95 B (2))(95° Af(2)) (0u F)]
(3.2.77)

* [(9501; 1) 0 ur — (952 f2) © uz]dy. (3.2.78)
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The first factor in the the second integral in (3.2.75) is equal to

(03" A (1))(09 BE(1)) (93 (1)) (0a F1) — (95 A5(2))(99 B (2))(05° AR(2))(0aF2)  (3.2.79)
= (97" A5(1)) — (93" A5(2))](93 BE(1))(95° A (1)) (Da 1) (3.2.80)
+ (95 A5(2))[(97* BE(1)) — (97 BE(2)))(95" AL (1)) (9 FY) (3.2.81)
+ (09" 47(2))(97° BE(2))[(95° AR (1)) — (95> AL (2))(0u F) (3.2.82)
+ (07" A5 (2))(09 BE(2))(9) AL(2)[(0aFr) — (9aF)] (3.2.83)

and therefore we can control the second integral in (3.2.75) appropriately. Because of the tan-

gential smoothing, the first integral in (3.2.75) is equal to

_“_1/Q S AS(1)(0:05u) (O1x f1) 0w — AL (2)(0.05ub) (Don f2) © ua] (3.2.84)
X [(agaljfl) ouy — (8562]]“2) o u2]dy (3285)

which we control appropriately. Integrating the first half of the second term from (3.2.69) by

parts gives

/Q 89 A7 (1)(0a03 F1)[(05015 1) 0 ur — (95025 f2) 0 us]dy (3.2.86)
— [ @A G050 1) 0 w1 = (@30, 12) © waldy (3.2.87)
- /Q 87(05 F1)[(01:0501; 1) 0 w1 — AF (1) (95025 f2) © uz]dy (3.2.88)

Integrating the second half of the second term from (3.2.69) by parts gives

- /Q 8 A7 (2)(0a05 F2)[(95015. 1) © w1 — (9502 f2) 0 uz)dy (3.2.89)
= [ 89 0. A @ R [0500 1) 0w — (350, ) 0 sl (3.2.90)
+ /Q 5 (OF F2)[A%(2)04 (0501, f1) 0 U1 — (D2;050a; f2) © usdy. (3.2.91)

The first two factors in the first term in (3.2.87) combines with the first two factors in the first
term in (3.2.90) to give

= 6(8a A7 (1))(95 F1)[(95015 f1) 0 ur — (9502; f2) 0 ua] (3.2.92)
+ 67 (0, AL(2)) (05 F2) (05015 f1) 0 uy — (85025 f2) © )] (3.2.93)
= —0[(0. A7 (1)) — (9 AT (2))(05 F1) (05015 f1) 0 w1 — (8502 f2) © us] (3.2.94)
— 070, AL (2))[(5 F1) — (95 F2)[(95015.f1) 0 ur — (952 f2) © uz]. (3.2.95)

The first term in (3.2.94) we control. The second term in (3.2.94) will be controlled using the

following lemmas:
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LEMmMA 3.2.8 For1 <53 <9,

|03 Fy — 0) || < ||U1 — Ua|lsP[|Ulss |Uz]lss [V ]l W8] (3.2.96)
+P{|Urlls, [1U2lls] D 105Vaf) our — (95 Vaf) o ual. (3.2.97)
0<k<j—1

Proor: We have

Py = 0 0puk (811 f) 0 ua] (3.2.98)
= (0 ) (02 01k f1) 0 ur + (Duf) (&7 011 f1) 0 ua (3.2.99)

where the sum is over j; + jo = j — 1 and j2 < j — 2, and similarly for 8§F2. Thus

OjF — O)Fy = (99 M k) (0200 f1) 0 un — > (051 ub) (02 Dar f2) © (3.2.100)
(89u’f)(8“+181kf1) ouy — (Bpub) (9] Do fo) 0 uz (3.2.101)
=> (05 uf) — (97 b)) (992 0wk f1) 0w (3.2.102)
+) 3§1+1u§)[(8§281k f1) 0wy — (97 Aon f2) 0 us)] (3.2.103)
+ [(Bpuk) — (Dpub)|(DF2 D1 f1) 0 wa (3.2.104)
+ (Dgub) (D 01k 1) 0 ur — (83 T D1k f2) © wal. (3.2.105)
|

The second term in (3.2.87) gives
— &4 (8§Fl)(6118988”f1) ouy + 54 (8§F1)Af(1)6a(8gagjf2) O U2 (32106)
- —5”(8§F1)[(8118381Jfl) ouyp — (821'838%']02) o UQ] (32107)
— 679 F1)[AF(2) — AP (1)]0a(952; f2) © us. (3.2.108)

and the second term in (3.2.90) gives

59 (05 F2) A%(2)04 (0501 f1) 0 ur — 6 (9 Fy)(02:050a; f2) 0 us (3.2.109)
= 005 F2)[A%(2) — AY(1)]0a(9501; 1) 0 ua (3.2.110)
+ 67 (05F2)[(01505015.f1) © ur — (82:0502; f2) © ua]. (3.2.111)

The second term from (3.2.107) combines with the first term from (3.2.110) to give
= 0 (O F1)[AF (2) — AT (1)]0a (0502 f2) 0 uz + 67 (05 F2)[Af (2) — AF (1)]0a(0501;.f1) 0 ua
(3.2.112)
= =67 [(05 1) — (05 F2)][Af(2) — AP (1)]00(0502 f2) © u (3.2.113)
— U (D5 F) [A(2) — A(1)][0a(D501; 1) 0 us — 0u(950s; f2) o us). (3.2.114)
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Here we control the first of the above terms by lemma 3.2.8. The first term from (3.2.107)
combines with the second term from (3.2.110) to give
— | G905 F1) — (9 F2)][(01:0501; f1) © ur — (D2:0303; f2) 0 ua)dy. (3.2.115)
Q

Here we commute 0y; through the dy. This generates commutators which we can control because

of the tangential smoothing. We also obtain the following term
- /Q 5 (05 Fr) — (O3 F2)[(05 Avf1) o ur — (95 Aafa) o usldy (3.2.116)
= /95”[(83F1) — (09 F)][(95 A1 f1) o ur — (95 Aafa) 0 us]dy (3.2.117)
where we control the first factor by lemma 3.2.8. Again, we use the fact that
59 AL (1), [AY(1)(0uF1)] = —AL(1) (0. V)AL (1) (9,W*) + 1 (3.2.118)

which shows that we can control the second factor in (3.2.116) appropriately. ]

3.3 Estimates for chapter 5 and chapter 7.

In this section we record the results which will be used to prove the energy estimates in
chapter 5 and the optimal regularity result in chapter 7. Let U and V be points in C(T") and let
x, be the flow of U,. Define v, = Vyoz !, v =Vox ! and Q = z.(t,€). We define a function
f on Q4 by

Af =—(Vu,)(Vv) + 1 on (3.3.1)
with boundary condition
f =0 on 0. (3.3.2)
Similarly to theorem 3.1.2 we have the following:
THEOREM 3.3.1 For f defined by (3.3.1) and (3.3.2) we have
IV fllars@n < Plllzalls, £ Nzlls, lvallars@ys 10llams@,)] (3.3.3)
where P is a polynomial which is linear in k~°5||x.||s and also
va||H7(Qt) < P[H%H& ||%|\H7(Qt), HUHH?(Qt)] (3.3.4)

We will also need estimates for 9,V f to establish the energy estimates. Thus we have
the following theorem which follows similarly to theorem 3.1.2 and theorem 3.3.1. Note that to

derive this estimate we need the estimates from chapter 4.
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THEOREM 3.3.2 For f defined by (3.5.1) and (3.3.2) we have

10:V fll 7 () < Plllzells, 1oxllzsn), 0]l as@n)]- (3.3.5)

To establish optimal regularity in chapter 7 we also need the following theorem which

follows similarly to theorem 3.3.2

THEOREM 3.3.3 For f defined by (3.5.1) and (3.3.2) we have

nO7V fll o) < Plllxllz.s, lvellmes s 0]l #es@,)] (3.3.6)

where n =1 is the cut off function defined in chapter 2. We also have

1029 flls-scuy < Pllewllzs, lvellmosny, lollmesn)]. (3.3.7)



Chapter 4

Elliptic estimates for ¢.

In this chapter x > 0 is fixed. Now we prove the estimates for ¢: In section 4.1 we
prove estimates to show that A is invariant on C(7T') (defined in (3.0.1); in section 4.2 we prove
results needed to show that A is a contraction; and in section 4.3 we prove the results needed for
the energy estimates in chapter 5 and the optimal regularity result in chapter 7.

Let U be a point in C(T'), which was defined in (3.0.1), and let z,, be the smoothed
flow associated with U. Define Q; = x, (¢, Q) and define the function ¢ by

P(t,z) = —xa, * 2(x), (4.0.1)

where xq, (z) takes the value 1 when z is a point in §; and the value 0 otherwise and where ®

is the fundamental solution to the Laplacean.

4.1 Estimates to show that A is invariant.

In this section we prove the following theorem:

THEOREM 4.1.1 We have |V¢| g7, < P[llzxlls] and [|[Vollms,) < Pllleclls, £7%5|zxls]

where P is a polynomial which is linear in k~°5||x,||s.
Using the cut off functions defined in chapter 2, we have ||[Vo| gs(q,) < [[m V| asq,) +

1C1V | a3 (q2,)- We begin by proving the interior regularity.

4.1.1 Interior regularity.

In this section we prove the following result:
ProposiTioN 4.1.2 Forany 1 <i and 0 <s <8

IV [V 6l 20y < P[l1zicls] (4.1.1)

27
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where P is a polynomial.

We prove that (4.1.1) holds by induction on s. Suppose that s = 0. We have
17V ollrz,) < il IVElL2(0,) and

IVelZ2,) = /Q (0;¢)(¢V ¢)dx = Ni(9;0) pdz — | A pda. (4.1.2)

o0 Q4

Since we have ||¢[|r=(q,) < P[llzxlls] and V@[ =, < P[llz«|l3], we control both terms in
(4.1.2) appropriately. This proves (4.1.1) for s = 1. Now suppose that s = 8 and that we have

the result for smaller s. Then

VeI, = /m (Djy - - 0js M0y ) (97" ... 07 [1;07° ) )dx. (4.1.3)
Now as we saw in (3.1.8),

O Lm0 g = mi(07 .. 0P G) + > (VE) (VR Tg) (4.1.4)

where the sum is over kj + ko = 8 such that ko < 7. We control the second term in (4.1.4) using
lemma 3.1.4. Integrating the first term in (4.1.4) by parts twice we have

- /Q (D, - 03,07 (1303, 0] )i () .. O ) (4.1.5)

_ /Q D, -+ 0 1050 f1) (D) (D .. ) (4.1.6)

- /Q (D, -0, 0 135, &) i (.. 5740, 8)d (4.1.7)

b [ (003,07 005, 0)(@r,) 07 ... %) (1.1.8)
Q

_ /Q D, -0, (103, 0)) () (1 ... o) (4.1.9)

where we can control the second and third term in (4.1.7) using lemma 3.1.4. Also, 879 [1;0;,¢] =

(07°1;)(9j, @) + m; and therefore the first term in (4.1.7) is equal to

‘/Q a]l . J7 (9 771)( ]9¢)]nz (ajl ajsa]8¢ d,T +/ aj1 s a]'7 [ni]ni(ajl s ajsaj8¢)d‘r
(4.1.10)

The above terms in (4.1.10) can be controlled using lemma 3.1.4 and the inductive hypothesis.

This concludes the proof of proposition 4.1.2.

4.1.2 Boundary regularity.

Let ¢ denote ¢;. We have V[(V¢] = (V()(V¢) + ¢ (V?¢) and V( is supported in the
interior of €;. Thus we control the first term by theorem 4.1.2 and we need only be concerned

with terms of the form (V*¢, for 1 < s < 9. In this section we prove the following result:
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THEOREM 4.1.3 For1 <s<9

16V b2y < P [llzells, 577 lls] (4.1.11)
where P is a polynomial which is linear in k=°5||x,||s.

Since integration by parts on €2; will yield a boundary term which is difficult to deal
with because 0€2; is the complement of the singular support of ¢, we now extend the region
of integration: There is dg > 0 such that Q% C U;_,U;, where Qdo = {y1+y2 € R3 1 9y €
Q and d(y2) < do} and therefore the norms || - || =gy are well-defined. Now we define the
extended flow Z, = E(z,) where E is the extension operator on  — see, for instance, [7] —

and define V,, = d;#,. Then we have 1Zll = 0y < cll@sl s () and similarly for V.. Define

E}l = gig Then since % < det(B) < % on 2, possibly by picking a smaller dy, Z, is a change
of variables on © = Q% and such that the normal N to 9§ can be extended into the region
between 0); and the boundary of O = 7y (t, Q) Let A be the inverse of B. We now define (;3 as
follows:

b(t,z) = —xaq, * ®(x) for z in Qy (4.1.12)

where again ® is the fundamental solution for the Laplacean. This means that on £2;, we have
(;3 = ¢ and therefore that gz~5 and ¢ have the same regularity on €2;. It also means that gz~5 is smooth
on 89;. Finally, let the norms on the extended domains Q) and Q, be defined analogously to the
norms on 2 and ;.

Having extended the domain we now approximate gi;: Let x, denote a smooth radial
function compactly supported in {y € Q\ Q : d(y) < L}, which takes the value 1 on the set
{ye Q: % < d(y)}. This means that dgx,, = 0. By an abuse of notation we will also let x,,
denote the analogous function in the Eulerian frame. Define ¢, (t,z) = —xm * ®(z) for z in Q.

We now show that the approximations converge to ¢.
LEMMA 4.1.4 |V, — Vé||L2(Qt) < cllxm — xaullp2@,)-

PROOF: From (4.1.12) it is clear that ¢ is in H(£);) so integration by parts is justified. Similarly,
for ¢y,,. Now,

IVon = Vol = | Oidn =00 b~ P (11.13)

= [ NI(030m — 0;8)(m — $)dS(z) / (xtm — x9) (G — B)de.

o, 0

(4.1.14)

To control the first term in (4.1.14) we note that there is § > 0 such that dist(9y, Q) > 9.

This means that for all z on 9Q; and for all z in §; we have |z — 2| > 6. Hence for x on 8Qt,

IV (x) — V()| < /Q Ixm(2) = X0, (2)|®" (|2 = 2])dz < [Xm = x|l 262,
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Also for z in 99y and for z in Qy, |¢m(x) — &) < |Xm — Xl 2@ 120z — Dl 2@, <

cl|Xm — xa. ||L2((zt), so we can control the first and second term in (4.1.14) appropriately. ]

Let Gmn = dm — dn and let Xmm = Xm — Xn. We will now show that (gvag Vo) is a
Cauchy sequence in L2(Q;).

ProrosiTioN 4.1.5 For 0 <5 <7, we have

Hcvaévém,nHLQ(Qt) S P[H'IRH& /570'5”1711“8] ||Xm,7lHL6(Qt)7 (4115)
where P is linear in k=52, ||s.

We begin by proving a lemma which says that we need only be concerned with tangential

derivatives:

LEMMA 4.1.6 Let f satisfy Af = g in Q where 899 = 0. For 0 < j <6,
) j+1
ICVV £l 12,y < Plllwslls] D NICOEVF Il 2@,y + 19l o) (4.1.16)
k=0

and
j+1
1CVOF9S oy < Plllealls, 5 lwls]) 3 ICOEY Flaay + lolzo@y  (A117)
k=0

where P is linear in k= 95||x.||s. Also for 0 < j <4,
) j+3
1KV fll Loy < Plllslls] D N6V F Il 2,y + 191l Loy (4.1.18)
k=0

Proor: We prove this result by induction. For j = 0 we have ||CV2fHL2(Qt) < 1€Afllz2a,) +
HC(?@VfHB(Qt), by lemma B.5.1, which can be found in appendix B. Now suppose that 1 <
j <5 and that we have (4.1.16) for smaller j. Then [[(VO)V [l 2,y < ICdivOIV f]l 2q,) +
1Ccurl OV £l 2@,y + 16O V fll 2,y Now (divaVf = COIAS + S (IFA)((VIEV f) where
the sum is over k + 1 = j such that { < j—1 < 1. Since 9JAf = 0, we have ||Cdiv8§VfHL2(Qt) <
P|lzxlls] ||CV8éVf||L2(Qt) which we control by induction. Similarly, we also control
[Ccurl 05V £ 12(5,)- Now we prove (4.1.18) for j = 0:

1SV Fll Loy < Nall o) + 1606V Fll Loy < Ngllzo@ny + 1€V 6V fll L2,y (4.1.19)

using Sobolev’s inequality and proposition 4.1.2. Also, for 1 < j < 4 we have

1CVO,V fll oy < D 1OFAN VY F)ll oy + 16057V fll o (4.1.20)
<D @AV o,y + 1KV V2, (4.1.21)
which we control appropriately. Now we can prove (4.1.16) for 6 < j < 7. ]

Using lemma 4.1.6, we see that it is enough to control HQ(?ZV&WWHLQ(Q” appropriately

for 0 < j < 8 which is the content of the following proposition:
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ProposiTiON 4.1.7 For 0 < j < 6 we have

1605V Gl 2y < Pllalls] Xl o (4.1.22)

and for 7 < j < 8 we have
1685V bl L2y < Plllaells, 57 Naxlls] Ixm.nll oer,)- (4.1.23)
where P is linear in k79 ||z,s.

Proor: We prove that (4.1.22) and (4.1.23) hold by induction on the order. The start of the
induction is similar to lemma 4.1.4. Since the proof of (4.1.22) is similar to the proof of (4.1.23)
we now suppose that we have j = 8 and suppose that we have already have appropriate control

of the lower order cases. We have

1COV mnlFaa,, = /Q (CO50ibm,n)(CO3D Gy )da (4.1.24)
= [ (€050 )(c0' O (1.1.25)
—/Q (COGDi D) (D' D), ) (COPrm, ) (4.1.26)

S /Q (COBY D) (VO ) . (VO ) (CO V)d  (4.1.27)

where I + ...+l = 8 and I1,...,ls < 7. For ly,...,ls_1 < 5 we control the third term
in (4.1.25) by P[Hxﬁﬂg]||C('“)98Vq~5m7n||L2(Qt)HC(?ijém,nHLz(Qt), which we control by induction.
Suppose that 6 < [y < 7. Then ||V8é1:vn||L3(Qt < £795||my||s; and la, . .., ls—1 < 2, S0 we control
the other terms containing x. We also have 0 < I, < 2 and therefore ||C8(lngi~)m1n||L6(Qt) <
||CV8éSVqu7n||L2(Qt), which we control appropriately by lemma 4.1.6. Thus we control the third
term in (4.1.25). Integrating the first two terms in (4.1.25) by parts gives

/{ (CO50ibmn) (05 2L ) (CO Oumn)dx = > [ (CO'O50iPmn) (05! ) (COP V) (4.1.28)

2t Q

+ /g (N 030 hm,n) (03 ) (05 V G, ) dS () (4.1.29)

2
where the sums are over all j; 4+ jo = 8 such that ji,j2 < 7. Here we are ignoring the terms
which arise from the derivative falling on ¢ because in this case we can use proposition 4.1.2. We

control the first term in (4.1.28). Also,
O B3 0i0mn = (VO ) (V2 hmm) + D (VO ai) ... (VO 24) (CVOy Vomn)  (4.1.30)

where I1 + ...+ 1, =8 and ly,...,l; < 7, since 898Aq~5m7n = 0. For ly,...,ls_1 < 5 we control
the second term in (4.1.30) appropriately by lemma 4.1.6. If 6 < l; < 7 then we control Vaélxﬁ
as before and 0 < l3,...,ls_1 < 2 so we can control the other terms containing x, in L°°(Qt).

We also have 0 < I; < 2 so we can control ||CV5(I,SV¢Zm,n||L6(Qt) by lemma 4.1.6. We therefore
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control the second term in (4.1.30). Let us now consider the first term in (4.1.30): Commute one

Op to the outside to obtain, in addition to a lower order term,

/Qt<6eva5xn><<v%3m,n><aglxﬁ><<ag;2wsm,n)m (1.1.31)
- (02 QO ) 05 2.0 GO V) (4.1.32)
- /Qt<vazxn><<v%3m,n><agl+lxﬁ><<agfwsm,n)dx (4.1.33)
- /ﬁt(Vagsvn)(<V203m,n)(8£1wn)(<6§2+1vém,n)dx (4.1.34)

where no boundary terms arise because the components of Jy are orthogonal to the normal on
9. In all of the terms in (4.1.32) we control the first two factors in each integrand using lemma
4.1.6. In the second term in (4.1.32) we also have, for j; < 5, ||(851“3:,{)@8;‘2Vgi;m_’n)HN(Qt) <
HxﬁHg||(8§2v¢m,n|\m@t) which we control. For 6 < j; < 7 we have 1 < jy < 2 and therefore we
control the second term in (4.1.32) in this case also. The third term in (4.1.32) follows similarly.

Now we control the boundary term in (4.1.28):

> /afzf (0 ) - (0 ) (BiBky - - O, i )N (85 ) .. (0 ) (D - . O, i, )dS ()
(4.1.35)
where the sum is over k1 + ...+ ks = 8 and I; + ...+ [;, = 8 such that I1,...,l; < 7. As was
mentioned above, there is § > 0 such that for all # on 99 and z in Q; we have |z — z| > 4.

Therefore |V5dy, ()| < [Xm.nllr2q,)- The highest order term of the above terms is
/ (052,) (Vmn )N (9524) (0024 ) (VP ) S () (4.1.36)
o

which is controlled by P|||z||s, £7°?||z||s] using the trace theorem. This concludes the proof.

By lemma 4.1.6, therefore, we have proposition 4.1.5. By the dominated convergence
theorem, (CV@ZV&m);’szl is therefore a Cauchy sequence in L2(Q;), for 0 < j < 7. This
means that CV&g Vb — CV&ngZ; in L2(€,). From lemma 4.1.6 and proposition 4.1.7 we have
1KV OV bl 2,y < Plllzells, 577 xls], for 0 < j < 7 and therefore have (VI V| 12q,, <

P[H%Hs, H_O'5||x,§||8} and hence
IV V20 < Plllznlls, 57 |2xls], (4.1.37)

for 0 < j < 7, where P is a polynomial which is linear in x~%||z,||s. From now on we no longer
consider the extended domain and all norms are now the usual, non-extended, norms. Now we

build some more regularity for ¢.

LEMmMA 4.1.8 For1 <s <38,

1KV Bl 20 < Plllzalls] + Y 1605V Fln2a)- (4.1.38)
0<j<s
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Proor: We prove this by induction on s. For s = 1 we have, according to lemma 2.5.1,
|CV2¢| < 1+ |CDsV¢| which is of the correct form for (4.1.38). Now suppose that s = 8 and that
we have (4.1.38) for 1 < s < 7. Again by lemma 2.5.1, we have |(VT1¢| < [(V*~lcurl V| +
|CV*~Ldiv V| + |[CpV3¢|. Here we have divVep = A¢ = 1 and therefore pointwise on ; we
have [(V*71div V| = 0. We also have

(V' 105V6 = (VT [(D0m)(V20)] = COVO+ Y (VB (VF2).

ki1+ko=s—1,ka<s—2
(4.1.39)

For 0 < k1 < 4, we have |[VF gz, po,) < |lzclls and [[(V*2T2¢[12(q,) is controlled by the
inductive hypothesis since ko +2 < s = 8. For 5 < k; < 7, we have Hvklagx,{HLz(Qt) < |lzslls
and in this case 0 < ko < 2, and therefore ||[(V*212¢|| L (q,) < (V272130 12(q,), in addition
to terms which we control by proposition 4.1.2. We control ||CV’“2+2+3¢||L2(Qt) by the inductive
hypothesis because ko +2 +3 < 7. Now |[(V*719yV¢| < |(V*2curl 95V o| + [(V*~2div 0s V| +
|CaV* 7209V ¢| and (V*~2divdyV e = (V*72[(Vyz,)(VZ0) + DgA¢]. We have

(V2 [(Vooms)(VP9) = Y (VE 0w, )(VF2 ). (4.1.40)

kitke=s—2
For 0 < k1 < 3, we have [V 0pz,| L (q,) < [@xlls and [[((V*T2¢)| 12(q,) is controlled by
the inductive hypothesis. For 4 < ki < 6 we have |[VFT 0| 12q,) < ||lzx]ls and in this
case 0 < ky < 2 and we control [[((V¥22¢)| 1~ (q,) < [[((V*¥29)||12(q,) using the inductive
hypothesis. Also, (V*7209yA¢ = 0. This concludes the proof. [ |

Using lemma 4.1.8, we control [|[(V*¢[|12(q,) for 0 < s < 8 and hence we obtain theorem
4.1.1.

4.2 Estimates to show that A is a contraction.

To show that A is a contraction, fix Uy and Uy in C(T). Smooth U; and Us to obtain

(U1), and (Uz)x. Let 21 and xo be the flows of (Uy), and (Usz), respectively. Let Qp , = xx (¢, Q)
for £ = 1,2 and define

o(t,x) = —xq,, * (x). (4.2.1)

Just as the results in section 3.2 followed the methods similar to those employed in section 3.1,
S0 too do the estimates in this section follow the methods employed in section 4.1. Thus we have

the following theorem:
THEOREM 4.2.1

[(V1g1) our — (Vago) o usls < 702U — Uz||sP[|ULlls, |U2]ls, 57 %(|ULlls, £~ %%||Uz]|s]-
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4.3 Estimates for chapter 5 and chapter 7.

Let ¢ be defined as in (4.0.1). To prove the energy estimates in chapter 5 we need the

following theorem which follows similarly to theorem 4.1.1.
THEOREM 4.3.1 ||v¢||H7-5(Qt) < P[meHS}

To obtain the optimal regularity results in chapter 7 we also need the following estimate.

Note that this estimate requires estimates from chapter 3.
THEOREM 4.3.2 We have

107V || 65020y < Plllwellzs, [[vll6.5] (4.3.1)
and

10Vl o502y < Plllzwllzs, [[vlles]- (4.3.2)



Chapter 5

A priori estimates for smoothed

Euler.

In this chapter x > 0 is fixed. Using the smoothing defined in chapter 2 we can write
down the following smoothed version of the equations (1.0.1), (1.0.3) and (1.0.4):

(6,5 + U,iai)’l}j = —0;p — 6j¢ in Qt (501)
dive =0 in (5.0.2)
p =0 on 0O (5.0.3)

together with smoothed versions of the conditions (1.0.5), (1.0.7) and (1.0.6):

9y +vL.0; is in the tangent-space of Ujepo 7y [ % {t}] (5.0.4)
Vp-N < —cp <0 on 00 (5.0.5)
v =1 on (5.0.6)

where ) = Q, the initial domain. Suppose that v satisfies (5.0.1) - (5.0.6) and define
Ex(t) =?31;]>[|\V|\7,5+ lzwlls + £lIVIs] (5.0.7)
t
where V(t,y) = v(t,z(t,y)) and z is the flow of v defined by the differential equation (1.2.1).

Here, x, is the smoothed flow of V. In this chapter we prove the following theorem:

THEOREM 5.0.3 There is Ty > 0 independent of k such that E,,(Ty) < Ey, where Ey =
Eo(E.(0), 2o, [[volls)-

As a result of theorem 5.0.3, we have supy ) [[V][s < Kk~ 1Ey. We will prove this
theorem by proving that there is 7} > 0 such that

E(T1) < P[E.(0), |9Qlls, [lvolls] + T1P [Ex(T1)]. (5.0.8)

35
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To control ||V]|7.5 we use lemma 2.5.2 and lemma 2.5.3 together with,
Ey = |[curl [v][| go.5(q,) and Ex(t) = H<<89>7.5'U||L2(Qt). (5.0.9)

To control ||z,||s we use

2

(=Vp-N) 19 * §%<89)7'5:v oWy oW ot - N| det(A)ox, dS(x),
o9 g g

(5.0.10)

where N is the external unit normal to 9Q;. In the term in (5.0.10), we will suppress det (4)oz*

when it does not play an important role, since it will not produce any terms of higher order and

its inclusion produces more cumbersome computations. To control ||z ||s we will also use

Ea( Z Hdw {19 x [(gk 6;10) o wk} o Uy ox_l} ’ oo (5.0.11)
3 I
+ ,; chrl [19,./” * [(flj 8:10) o \I!k} oW, oz, ] ‘ - (5.0.12)
We have
. 3 1 _
H (<89>6 59, * [(gk (39>J:) o qu] oWl o 1) . N’ . (5.0.13)
L 2
- / [19,1 x [(gk ((99>7'5x> o \yk] oW log!. N} dS(z) (5.0.14)
GleR
1 319,75 -1, -1 ?
<= aﬂt(—Vp-N) [19“ * [(gk (Do) 3:) 0 \1/4 oW oa; -N} dS(z) (5.0.15)
<L (5.0.16)
CoC1
From lemma 2.5.3, we have, by (5.0.13)
1 _1 N2 FEs
‘ [(g,j <69)x) o \Ifk} oW log ! ’m(m) < P[|lz.7] {ELL + E} . (5.0.17)
This means that we similarly control
1 B 2
‘ 0,0 * [(gk 8(39}3:) o \pk] oWt o ‘Hﬁ(m) (5.0.18)
and therefore
3 S —
‘ Dy * [({gax) o \I/k} oV, "oz, fo5(00s) (5.0.19)
Using E, and (5.0.19) we therefore control
1 B B 2
[0+ [(F02) o wi] 0 w3t o ’Hm) (5.0.20)
and therefore
2 2
‘ U, [({éax) o \I/k} o \111;1H7 * [({éx) o \Ilk} oV, 1H8. (5.0.21)
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In addition we will use

v

By(t) = . ldividlga] oo lmeoy + 3 lewlPfgea] oo Ylamgay.  (5.0.22)
k=p+1 k=p+1

as well as
(5.0.23)

which together with lemma 2.5.3 gives control of ||z,||s. To build regularity for x||V||s we use

Do [(F0n) 0 W] 0wt 0!

L2(Sx)

lemma 2.5.3 and the following asymptotic energy components:

[(6h00™v) o Tii] as(a)

where Tj,; = 255288 0 ¥ o 21 and Er(t) = k2|div[[0V] o 2 o,y + K2 lleurl [[0V] o

T Mo )

5.1 Control of El.

We have [0y, 0;]xl = —(0;v)

K

) and therefore d;curl [v] = (Vo )(Vv). Since H%(Q;) is

an algebra we can control ||curl [v]|| gs.5(q,)-

5.2 Control of Eg.

The time derivative of E5 is equal to

2/Q(C<39>7'5Vi)(C<3e>7'53tVi)dy = —2/(C<39>7'5Vi)(C<3e>7'53ip)dy (5.2.1)

Q

—2/(C<3e>7'5Vi)(C<89>7'581¢)dy. (5.2.2)
Q

We control the second term in (5.2.1) using theorem 4.3.1. In the first term in (5.2.1) we commute

the 0; through the (Jyp) and obtain

—2/(C<39>7'5Vi)(<3i<39>7'5p)dy—l— 2/ (C(B9) P V) (€0:(Dp)"*22)(0;p)dy + lower order terms
Q Q
(5.2.3)

The first term in (5.2.3) we integrate by parts to obtain, in addition to lower order terms,

—2/Q(<<5e><9i<3e>6'5Vi)(<<5e>7'5p)dy < [1(96) = div [(99)* ]| (00) (5.2.4)

using proposition A.0.3. We control the first factor in (5.2.4) because div [v] = 0 and the second
by theorem 3.3.1. We leave the second term in (5.2.3) until later.
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5.3 Control of Eg.

Let z, = x,; o ¥g. The time derivative of F3 is equal to

vl [0+ [(gk (00)7%x) 0 W] o N}st@ 551)
! 2/@9, V9l # [ (6 00)772) 0 Wi o - (0N [0+ (& (00)x) 0 Wi o0 - NaS(a)
(5.3.2)
o /a e [(S0077V) o] a0 (6 0070 0] o - NaS
(5.3.3)

We control the first two terms in (5.3.1). Because N; = Tva;'f‘”, the third term in (5.3.1) is equal

to

-2 20, * [(g,; <89>7~5vi) o \pk} oz Ny, * [(gk <39>7'5xl) o \pk} o 2.1 (yp)dS(z)

(5.3.4)

-2/ 20,9, + [(gk <89>7-5vi) o \1/4 o 71, * [(gk <39>7'5xl) o \pk} oz (gp)dz (5.3.5)

) /Q 20, * [(gk <89>7-5Vi) ° \Ifk] oz 10,0, + ng <50>7.5$z) . \I,k} o Opde (5.36)

3 ' 1 3 ! 1
2 9.« [(5,3 <(99>7'5V1) o \Ifk} oz 0, * [(5,3 (99) 752 ) o \I/k} ox ' (B:0p)dr  (5.3.7)
Q
using the divergence theorem. We control the third term in (5.3.5). In the first term in (5.3.5) we
commute one of the (Jy) out. By proposition A.0.3 the first term in (5.3.5) is therefore controlled

by

We control the second factor in (5.3.8). To deal with the first factor we have lemma 5.3.1.

0wt (&6 00)7V") o wi oy |

9,0 % [(gé <ag>8;d) o \I/k} o x,;l(alp)H . (5.3.8)

LeMmMA 5.3.1 For a function f on Q) we have

0;U,, * [(féf) o \I!k} o x,:l — 0, * {fé oULd[fox oz, o \I!k} o :v,:l‘ (5.3.9)

< sl Allall £l (5.3.10)

Proor: We have

o0ne[(ghr) o] outont = a(G) goee[(6r)ow]
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Now for g and h defined on (0, 1)?,

|90k [h] — D+ [gh]] =

/ (") [g(z" = 2") — g(Z")| h(z' = 2")d2"| (5.3.11)
(0,1)2

< xllgls / (2 R|(! — 2)de" (5.3.12)
2

< &llgllaln]- (5.3.13)

||

Therefore
0;U,. * [(55 (39>7Vi) o \I/k} o 3:,;1 =9, % [(55 o \Ilk[aiagvi] ox, 0 \I/k)] o 3:,;1 +R (5.3.14)

where the remainder is controlled by | All4||V]|s, according to lemma 5.3.1. Since div [v] = 0,
0 = (9p)7div [v] = D ((09)?A)((9p)i+1v) + div (9p)"v where the sum is over i +j = 7 and j < 6.
Thus we can control the first factor in (5.3.8). Let S = (0,1)? x (—1,0]. Changing variables in
the second term in (5.3.5), using the fact that the integral contains the term det (A) oz !, which

had been suppressed, gives
- /542 [amn x [(g,; <ag>7-5:cl) o wk} o U oart] o, 0 Updyy 0, % [(g,; <ag>7-5vi) o \pk]
(5.3.15)

ov
x det (a—zk) o Urdz. (5.3.16)

where @, = (9;p) o . Let us again suppress the Jacobian. For the above term we have the

following lemma:

LeMMA 5.3.2 (apavda) Let f and g be functions defined on S. Then

/Sm*[g]dzz/sm[f]gdz.

o

~
>

5

*
g’
QL
&

I

/( 1,0] /(0 1)2 /(0 1)2 f(ZI’ 23) 19“(2/ - Z”)g(zﬂv ZB)dZHdZ/dzs
/19“ «[f]gdz,
S

because 9,; is even. [ |
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Using lemma 5.3.2 the term in (5.3.15) is equal to
- /sc%l” * Hamn . [(g,; <ag>7-5:cl) o xyk] oW to x;l} 0y 0 \Ifk@lk] (g,; <ag>7-5vi) o Uydz
(5.3.17)
= — /5 szl)lkﬁ,{ * H&-ﬂ,{ * [({é <39>7'5Il) o \Ilk} o \I/I;I o x;l} ox, O \Ilk} ({é <89>7'5Vi) oWrdz
(5.3.18)

+/SC2‘I’lk19n * Haim * Kg,f (89>7'5xl) ) \IJ;C} o \Illzl oxgl} ox, 0 \Ifk} (ﬁé (89>7'5Vi) oWdz

(5.3.19)
— / 2, * {fblk [81-1% * Kg,f (89>7'5:1cl) o \IJ;C} ) \Iflzl o x;l} ox, 0 \Ifk} (ﬁé (89>7'5Vi) oWdz.
S
(5.3.20)
Using (5.3.11) we see that the last two integrals in (5.3.18) can be estimated by
K[1(06) PV VD]l al| V0, 5 [C 3 (09) 2] | (5.3.21)

which we can control since ¥, * [(9g)h] = (9p)0 * [h] = k=19, * [h]. The first term in (5.3.18) is

equal to
— /SC2<I>lk [81-1% * U, * [({é <89)7'5xl> ) \Ifk} o \Illzl o x;l} ox, oW (fé <89)7'5Vi> oW.dz
(5.3.22)
+ /5 <2‘I)lk [81-19,1 * 1, % [({é <39>7'533l> o \I/k} o \Ilgl o 3:;1} oz, oWy ({é <39>7'5Vi> oW.dz
(5.3.23)
— /SCQ(I)lkﬂn * H:ai’ﬂ,{ * [({é <39>7'5:El) o \Ilk} o \I/]:1 o x;l} oI, 0 \I/k} ({% <39>7'5Vi) oWrdz
(5.3.24)
Using lemma 5.3.1 we can control the two last terms in (5.3.22) by
ooe[(eH0752) o] |
oor (e om]

using, again, the smoothing properties of the convolution. Thus from (5.3.22) we obtain, in

A1)V I Vpl4]l All |

< 1100) >V 1 9plallAlls |

addition to a collection of lower order terms
s 1 1
- Z/ ¢ (01p) o x4 {81-<89>7'5 [55 ox My Uy % K ,fa:l) o \I/k} o¥, o a:;lﬂ ox, (5.3.25)
k=17
X ((9g) "5V dy (5.3.26)
= —/ C2 (A1) 0 2,(8;(0p) Pl ) 0 (D) PV dy (5.3.27)
Q

+/ (Orp) © 2, (03 (D) TPl ) 0 2, (D) OV dly. (5.3.28)
Q
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Here we control the second term in (5.3.27) by integrating by parts and using proposition A.0.3.
The first term in (5.3.27) combines with the second term in (5.2.3) to give us

-, ¢*((00)"20") ((99) " Oip) det(A) oz da (5.3.29)
A C*((90)"%0") (05() "}, ) (O1p) det(A) o ) dae (5.3.30)
= ([V, (95))(36)"2,:) (Vp) (5.3.31)
+ Z N C2((99) 2 0").5racl2[(V{9) 2 . .. (V{9p)*12,,) ({0p)* Vp)]dz: (5.3.32)
where the sum is over j + -+ js = 7 and ji,...,Js < 6. We control the terms above using

proposition A.0.1.

5.4 Control of E4.

1
First we deal with the divergence term. Let aj = 9 * [({,3 81:) o \Ilk} o \Ilgl o x;l. ‘We

have

Odiv ag, = (Vug)(Vag) + div O, (5.4.1)
= (Vo) (Vag) + J, [(gé(vaxn)(vv)) o \1/4 oWl o gL (5.4.2)

+ divd,, = {(5561}) o \I!k} oW toxt — 0, x [(ﬁédivav) o \I!k} oW toxt (5.4.3)

Therefore we have an equation of the form d;f = g which we can integrate with respect to time
to obtain f(t) = f(0) +f[0,t] g(s)ds. Since H5(£);) is a Banach algebra for Q; C R? we control the
first and second terms in (5.4.2) can be controlled by ||[V||7]|ak|l7 and ||z, ||s]|V]|7 respectively.
The last two terms in (5.4.2) can, according to lemma 5.3.1, be controlled by k|| ||7||V]|s. Now
we deal with the curl term. Let aj be defined as above. We now consider the two time derivatives

on curl a:

8fcur1 ar = 0 [(Vg)(Vag) + curl Oray] (5.4.4)
=0, [(Vue)(Var)] + [(Ve ) (Voraw)] + curl 92ay (5.4.5)
= 0; [(Ve) (V)] — [(VOrv)(Vag,)] + curl 92ay,. (5.4.6)
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Now

(curl@fozk)ij = 0;9, * [(g,faatvj) ) \I/k} o \Ilgl o 3:;1 — Dy * [(gfaiaatvj) ) \I/k} o \Ilgl o 3:,:1
(5.4.7)
— 09, * Kfé@@tvi) o \I!k} o \11]:1 ) :C,:l + 9, * [(géajaatui) o \I!k} o \11]:1 o :C,Zl

(5.4.8)

H [(gfaiaatvj) o Wk| oWt out — 0, x [(gfajaatui) o] 0wt oy !
(5.4.9)
= (V) Vi, * [(g,fav) o \I/k} oW oz ! (5.4.10)
0 [ (& (Fo) (VO0)) 0 Wy] 0 W 0yt (5.4.11)
+ 0, [0+ [(€F005) 0 We] 0 Wit 0wt — ik [ (€0 0i00;) 0 W] 0w o]
(5.4.12)

+0u [0+ [(&000) o wi] 0 Wit 0wt — vk [(€£05005) 0 W] 0w o]
(5.4.13)
0, % [(g,; (VOz,) (Vo)) o 0] o Wt o, (5.4.14)

using (6.0.27). The first term in (5.4.10) is equal to

O [(Ve) Vi, * [({éax) o \I!k} oWt ox ] — (VOw,) VI, * [({éax) o \Ifk} oW ot
(5.4.15)

and the second term in (5.4.10) is equal to

Oy, * [<§$(VUK)(V<9$)) o \Ilk} oW toat — 1, x [({%(V@tvn)(vax)) o \I/k} ol tox .
(5.4.16)

Together (5.4.6), (5.4.10), (5.4.15) and (5.4.16) give an equation which is of the form
[0t f + g] = h. Integrating with respect to time once yields d;f = (9:f1)(0) — g(t) + g(0) +

f[o, 1 h(u)du. Another integration with respect to time again gives

10 = £0) + @.0)0) - [

g(u)du + tg(0) + / / h(u1)duydus.
[0,¢] [0,¢] /[0, uz]

In HY(£) we control f(0) by E(0) and (9,f)(0) by |lvo|ls. We have already seen that we can
control the first term in (5.4.6). The second term in (5.4.6) and the first and second term in
(5.4.15) can all be controlled using the fact that H®(Q;) is a Banach algebra. Applying six
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derivatives to the first term in (5.4.16) we have

859, % [(g,%(vvn)(vax)) o \pk} oWl o gt (5.4.17)
=3 . [( €2 (97 )((9j+2x)) o \Ifk} oW oz ! (5.4.18)
+ Dy * {({é(Vvﬁ)(asx)) olllk} ol o !

(5.4.19)

where the sum is over all ¢ and j such that ¢ +7 = 6 and j < 5. We can control the first of these

terms. We also have

«[(& (Vo)@0) o wi] 0wt 0wt = (Tuu)dex [(€F(0%0)) 0 Wi] 0 W o 31.20)
b [(gé(wﬁ)( )) oqu} oWl o g3 4.21)
(V)0 * [(gk (&% )) 0 \yk} oWt o 51.22)

Here we control the first term in (5.4.20) by ||V ||4]|a]|7. Also, using (5.3.11) from lemma 5.3.1
we control the last two terms in (5.4.20) by &||V||5]|V||s. Similarly, we control the second term
n (5.4.16). Terms three and four, and five and six in (5.4.10) can be controlled by x|z ||7||V]|s-
The last term in (5.4.10) can be controlled.

5.5 Control of E5.

This follows similarly to the result in section 5.4.

5.6 Control of Eg.
The time derivative of Ejg is equal to

— 22 /{m (gk% <69>7.5V) ox, ! 'Tk,i: (55 <89>7.5[Vp] ) :vn) ozt 'Tk,i:| ds(z) (5.6.1)

—2K? /89, _(f

+2k? /m (gk <69>7-5V) o7l Tk (§k <89>7~5V) ozl (atTk,i)} ds(z). (5.6.3)

T ol

007V ) 02 Tid] [ (8005 1V] 0 25) 02 - Tii] dS)  (5:62)

We control the second term in (5.6.1) by theorem 4.1.1. We also control the third term in (5.6.1).
Now Vp T}, =0 for all k and ¢ = 1,2. Thus

0= (36)"" [Vp - Th,i] (5.6.4)
= [(96)"°[Vpl o ] 0wt - Thy + ()2 [[(96)[Vip) 0 3] 0 2" - Thi] (5.6.5)
— [(96) " [Vpl o zx] 0t - Thi + (9p) 2 [Z(@gy‘l Vp) - (<ae>j2Tk,i)] (5.6.6)
+ (90) (VD) ((90) " T.)] (5.6.7)
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where the sum is over j; + jo = 7 and ji1,j2 < 6. The second and third term in (5.6.5) can
be controlled by | Tiill 2000 I06)[VP] © 2] 0 @ 12000, < |2 l3Il[(06)? Vo] © @x]l7 using
the trace theorem. According to theorem 3.3.1, we can control «||[(9)2 Vp] o z,||7. We control
the fourth term in (5.6.5) by ||[Vp] o zk||7||zx|ls.- The last term in (5.6.5) can be controlled by
IIVplowsllall Thill 75 o, + 1VP] 0 2alls [l Th ill 27 (902,)- We have &[Tkl a5 00.) < [1Qlollzxlls,

which we control.

5.7 Control of F;.

This follows similarly to 5.1.

5.8 The constant ¢ in (5.0.5).

Using elliptic estimates for 0;Vp from theorem 3.3.2, we can show that assuming that
we have NO;p < —cg < 0 on 0, then we also have that estimate for a smaller ¢y on some

time-interval [0, T7].



Chapter 6

A fixed point formulation.

Fix £ > 0 and suppose that we control |9 and |vgl/s. As was mentioned in the
introduction, in this chapter we give a fixed point formulation of the smoothed version of Euler’s
equation (5.0.1) - (5.0.6), defined in chapter 5. We will look for the fixed point solution in the

space
C.(T) = {f € LQ([O,T],Hg(Q)) :osup ||f]ls(t) < wTTEp + 1} (6.0.1)
te[0,T]

where Eq = Eo(E.(0), |29, |lvolls), obtained in theorem 5.0.3 is such that ||vg|ls < k™1 Ep. Let
U, V and W be points in C(T'). Smooth U and V to obtain U,; and V,,. Let z, be the flow of
U, and let Q; = z4(t,Q2). We now define a function p which because it depends on U, V', and
W will sometimes be denoted by p[U, V, W]:

Ap = — (8i[VI oz 1]) (9;W' oz M]) +1 on (6.0.2)

where 9; = ai with boundary condition

p =0 on 9. (6.0.3)
We also define a function ¢ which depends on U, and will therefore sometimes be denoted ¢[U]:
P(t,z) = —xa, * 2(x). (6.0.4)

Define, for y in €,

NV t) = iblo) ~ [

[0,t]

(aip) (s,zx(s,y))ds — / (8%) (s,zx(s,y)) ds.

[0,t]

Using results from chapter 3 and chapter 4 we now prove that A is invariant and contractive on

o(T).

LeMMA 6.0.1 Fiz U and V in C(T). Then A(U)(V): C(T) — C(T) has a unique fized-point.
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Proor: By theorem 3.1.2 and theorem 4.1.1 we have estimates for p and ¢ and thus

[AD)(V)W)ls < [lvolls +/[0 ]P[HUH& U s, IV [Is, (W8] ds (6.0.5)
it

T / PlIUs, 5% U] ds (6.0.6)
[0,¢]
and therefore

sup [|[A(D)(V)(W)|ls < & "By + Tsup P[x 'Eg+ 1, k [k "Eo + 1], k[ Ep + 1]].
[0,77 [0,77

(6.0.7)
For T small enough, therefore, A(U)(V) maps C(T') into C(T'). Let Wy and W5 be two points
in C(T). Then

A O)(V)(W1)(ty) = A U)V)(Wa)(ty) = o 9" (p2 = p1) (s, wx(s,y)) ds

where py, = p[U, V, Wy]. Let ¢ = pa — p1. Then ¢ satisfies
Aq = — (0i[V] oz ") (0;[[Ws — W{]ox,.']) on & (6.0.8)

with boundary condition ¢ = 0 on 9€);. Using theorem 3.2.1 we have

[sou% [A@)(V)(Wz) = AU)(V) (W)l (6.0.9)
< Tsup P[||U|ls, s H|U|ls] 1|V [|s sup [[W2 — Wil (6.0.10)
[0,77 [0,7]
<TP[[r'Eo+1], k7' [~ Ey + 1]] sup [|[W2 — Wi][s. (6.0.11)
[0,7]

Since it is possible to pick T" small enough that
o(T) =TP[[r"Eg+ 1], s ' [ Eo +1]] <1, (6.0.12)

A(U)(V) is a contraction mapping. C(T') is a non-empty Banach-space so by the Banach con-
traction mapping theorem, A(U)(V') has therefore a unique fixed-point. ]

Let A1(U)(V) denote the unique fixed-point obtained in lemma 6.0.1.
LeMMA 6.0.2 Fiz U in C(T). Then A1(U) : C(T) — C(T) has a unique fized-point.

Proo¥F: By lemma 6.0.1, A;(U) : C(T) — C(T) is a well-defined map. Let V; and V4 be two
points in C(T"). Then

sup [1AL(U)(V2) = M (U) (V1) (6.0.13)
= sup [AO)(V2) (A1 (U)(V2) = AU) (V1) (A (U) (V1)) (6.0.14)
= sup IA@)(V2) (A (U)(V2) = AU)(V2) (A (U) (V1)) I (6.0.15)
+ sup [[AU)(V2) (A (U) (V1)) = AU) (Vi) (A (U) (V1)) - (6.0.16)

(0,77
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Let W = A1(U)(V1) and let px = p[U, Vi, W]. Define ¢ = p1 — po, then ¢ satisfies
Agq = — (8;[[(V1)L — (V2)i] o z;1]) (0;[W? 0 2 1]) on €, with boundary condition ¢ = 0 on 9.

Theorem 3.2.1 provides the following estimate of the second term in (6.0.13):

T sup P[[|U]|s, 5~ [[U[ls] sup [[Va — Vils sup [|A1(U)(V1)[ls. (6.0.17)
0,71 0,71 0,71

Thus the estimate from (6.0.11) of the first term in (6.0.13) gives

sup [A1(U)(Va) = A1 (U)(Vi)ls < a(T') sup [|A1(U)(V2) — A1(U)(V1)l|s + a(T) sup ||V — Vi[s
[0,7] [0,7] [0,7]

and therefore
T
sup [ A4 (U)(V2) = Aa(0) (V) s < —2)

Vo — Vills. 6.0.18
sup a(T)H > —Vills ( )

We can pick T" small enough that «(T) is small enough that 13‘(()7(;) < 1 and therefore A;(U)
is a contraction mapping. By the Banach contraction mapping theorem, A;(U) has therefore a

unique fixed-point. [ |

Let A9(U) denote the unique fixed-point obtained in lemma 6.0.2,.
LEMMA 6.0.3 Ay : C(T) — C(T) has a unique fized-point.

Proor: We deduce by lemma 6.0.2, that Az : C(T) — C(T) is a well-defined map. Let Uy, Us
and V be points in C(T'). By the definition of A, Ay and Az we have A2(U) = A1(U)(A2(U))
and A1 (U)(V) = AU)(V)(Ay(U)(V). Thus

A2 (U) = A(U) (A2(1)) = AW) (A2(0)) (M) (A1) (6.0.19)
and

sup ||A2(U2) — Ao(Uh)]|s (6.0.20)
(0,71
= sup [[4(02) (42(02)) (41(U2) (A2(U2) ) = A0 (A2(01)) (A1) (A0 ) (6020
< [SOU%)] HA(Uz)(Az(Uz)) (Al(Uz)(Az(Uz))) - A(Uz)(Az(Uz)) (Al(Ul)(Az(Ul))) Hg (6.0.22)
+sup [|A(U) (A2(U)) (02(U) (A2(00)) = AU (A=00) (@D (Ae(00) ) (6:0.29)
+sup [[AU) (A2(00)) (A0 (A2(0)) = A0 (A200)) (110 (a2 @) - (6:0:20

The first of the above terms can be controlled by

a(T) sup [[A1(Uz)(A2(Uz)) — Ar(Ur) (A2 (Uh))]ls = e(T) sup [|A2(Uz) — Aa(Un)|ls
[0,7] 0,T]

according to (6.0.11). The second of the above terms can be controlled by

a(T) sup [|[A2(Uz) — A2(U1)ls
[0,T]
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according to (6.0.17). The third term can, according to theorem 3.2.2 and theorem 4.2.1, be
controlled by a(T') supjg 4 [|[U2 — Uils. Thus we have

a(T)
sup |[A2(Us) — Ao(U < ——2—sup [|[As(Us) — Ax(U .

This shows that As is a contraction and hence it has a unique fixed-point. [ |

Thus we have a unique fixed point solution V in C(T%), where T5 > 0 depends on Ej

and k, which on [0, Tb] satisfies
Vi(t,y) =AV)(V)(V)(E,y) (6.0.25)

=vo(y) — (Vp) (s,24(s,y)) ds — / (Vo) (s, 24(s,y)) ds. (6.0.26)
[0,¢] [0,¢]
Therefore we have

0V =—(Vp)oz, — (Vo) ox, (6.0.27)

in Q where z,; is the flow of Vj;. Let Q; = x,(¢,Q2) then p above is defined on Q; by

Ap = — (0v1) (0v") + 1 on Q, (6.0.28)
where v, = V,, o x;l, v=Vo x;l and 0; = 82@7 with boundary condition
p =0 on OO (6.0.29)
and ¢ is defined by
o(t,x) = —xaq, * D(z). (6.0.30)

Also, we have div v = —Ap — A¢ = (9;v7)(0;v") and div v = 9;9pv" = (9;v))(9;v") + Bpdiv v.
Thus d;dive = 0. And div [A(V,V, V)] oz 1(0,7) = diveg = 0. Thus dive = 0. This means that
v satisfies (5.0.1) - (5.0.6) and therefore we have estimates for v in L°°[[0, T}], H®(Q2)] via theorem
5.0.3. Suppose now that the time interval for existence, [0, T»], is shorter than the time interval
on which we have a priori estimates, [0,T1] and that T5 is the largest such T5. By theorem 5.0.3,
we have supjy 7,1 [|Vls < x7'Eo and in particular, [V (T%,-)|ls < k™" Ey. Now define

Co(T) = {f e 1?(I, T HY®)) : sup [[7]s(t) < 5o+ 1} (6.0.31)
te[Ts,T)
and a map
Al(U)(V)(W)(tv y) = Vi(T% y) - / (61}9) (Sa xﬁ(87 y)) ds — / (al¢) (Su "En(sv y)) ds.
[T2,t] [T2,t]

(6.0.32)

Using the above argument we can show that we also have existence on [T, 275] which contradicts
the fact that T5 was the largest such 75. This must mean that 75 = T} and therefore we have
existence on [0,77], an interval independent of k. Existence for Euler’s equation then follows a

standard compactness argument which can be found, for example, in [9)].



Chapter 7

Optimal regularity and

uniqueness.

In previous chapters we have supposed that we controlled ||€2||o and ||vg||s. We now relax
those assumptions and suppose instead that we control ||Q||s and |Jvg||7.5. We can regularise
this initial data using a standard convolution to obtain €. in H® and vo,e in H 8(QE). From
the previous sections we obtain a sequence of solutions 0;x. with flows . under such initial

conditions. Let us suppress the € and define the following energy:

E(t) = sup [1072ll6.5 + 107 /l7 + 10ez]l7.5 + [ Nl o5 002, (7.0.1)
where N is the outward unit normal to 9€2;. The theorem we prove in this section is the following:
THEOREM 7.0.4 There is T such that E(T) < P[E(0)].

To build regularity for the first term in (7.0.1) we define E; = ||n(9)%°07z||*> and
Es = [|¢(9)%5032||?, where n = 1, and ¢ = (5 are cut off functions defined in chapter 2. And to
build regularity for the second term in (7.0.1) we define

By(1) = /6 (=T N)(00)50%0) - (00} 0}a)dS o) (7.0.2)

Establishing control of the third and fourth term in (7.0.1) follows once we have control the first

and second. Now we control the time derivatives of F;, Fs and FEs.

7.1 Control of F;.
The time derivative of E; is

= /Q (1 (06)°5032) (1 (09)°> 02 0up) dir — 2 /Q (0 (06)°5032)(n (06)°50200)dx  (7.1.1)
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where the first term in (7.1.1) can be controlled using theorem 3.3.3 and the second term in

(7.1.1) can be controlled using theorem 4.3.2.

7.2 Control of Eg.

We have

Balt) = -2 / (C{00)550%°) (C(B0) O D20p)dr — 2 / (C{09)55 0% (C(00) O 20,0) . (7.2.1)

Qy

The second term in (7.2.1) is controlled using theorem 4.3.2. Commuting 9; to the outside in the

first term in (7.2.1) gives

2 / (C{00)5037) (s (09)° 502 p)dar + 2 / (C(09)5057) (CO:{0) O 2 Dup)dar (7.2.2)
+ lower order terms (7.2.3)

We integrate the first term in (7.2.2) by parts — the result can be controlled using half integration
by parts and the fact that div[0;2] = 0. We leave the second term from (7.2.2) until section 7.3.

7.3 Control of Eg.

The time derivative of E3 is

5 [ aITRl(@)**07) - (@) 7S () (73.1)
o,

+/ (=Vp - N)((9)503x) - ((0)°°0%x)dS (). (7.3.2)
0

We can control the first term in (7.3.1). We apply the divergence theorem to the second term in

(7.3.1) to obtain
- [ @m0 ot (00 o nds — [ (0@ @00 (00) ke (733)
= [ @m0 258a")(0{00)** G (13.4)
Q

We control the first term in (7.3.3). Since curl [97z] = 0 we have

D7(09)8 P03 x; = (99)5°0,07 022 — (07 (Dp)020,2%) (0, 0% x;) + lower order terms (7.3.5)
= (99)%50,0;02 27 — (07(99)%50,2") (902 ;) + lower order terms (7.3.6)
= 0;(09)5 P03 27 + (0;(09) %50, 2" ) (0,027 ) + lower order terms (7.3.7)
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and, of course, similarly for 97(9y)%°92z,;. This means that the second term in (7.3.3) is, in

addition to lower order terms, equal to

= [ @)@ @010 (00)" i) (738)
Q4
:/ p(ajai(89>6'585’Ij)(<89>6'58t2x1-)d17—|—/ p (01(09)%°0727)(0;(09)*° 02 ;) dx (7.3.9)
Q Q4
—— [ (@'9)(0,(00)° %07 (00)**FFwi)dx — | (0,(00)° %08 ) (@' (00)° D)o (7310
Q Q

= [ @000 550,000 G wiydz — [ p((00)° %0 xT) (00 (00)° 0w} (7.3.11)
Q4

Qy

The first term in (7.3.10) we control using half integration by parts and the fact that div [0;x] = 0.
The second term in (7.3.10) we integrate by parts to obtain

/ (00) (00) 5537 (0 (09)°50Paz: )t + / P (00)550329) (0,00 (09)°°0Px)dx  (7.3.12)
Q4 Q

and where we control the first term in (7.3.12) using the fact that div[d;z] = 0 and the second
term in (7.3.12) cancels the fourth term in (7.3.10). We will shortly deal with the third term in
(7.3.10). First we use (7.3.7) on the third term in (7.3.3) which is therefore equal to a collection

of lower order terms as well as
—/ (050)((09)* 07 ") (05(09)*° O} ! ) d (7.3.13)
Q.

which in addition to the third term in (7.3.10) cancels the second term from (7.2.2).

7.4 Controlling the third and fourth term in (7.0.1).

Now we have (Vp) ox = 92z — (V¢) o z which means that Vp and therefore

Vp

= o (7.4.1)

are controlled in H%5(9€);), using the sign condition. Finally, to control ||0;z||7.5 we use the

relation 9?x; = —9;p — 0;¢. Thus we have dz; = (0;0;2"%)(Oxp) — O;p — 0:0;¢ which we can

dot with a vector T} ; = W tangential to 9€;. Since p = 0 on 0Q; we have T ; - Vp =
0 and therefore (T,iyjaiatxk) - N|Vp| = —T,iﬁjaf’xi + T,iﬁj(?t(?igb. This means that we control

[ (990s2") - N | g6 (o0, which together with lemma 2.5.3 provides control of ||9;x|7.5.

7.5 Uniqueness.

Suppose that two solutions v; and vy arise from the same initial data. The above

estimates then show that their difference is zero in some time interval.



Appendix A

Properties of (0p).

ProprosiTioN A.0.1 Let f and g be functions on ). Then

1(06)% [ £g] — (@a)2 [Flgl1* < el £ 19113

Proor: Let h; = ((;f) o ¥;. We have

2) :/ fj(a’l,zg)em,l'zldall and g;(z) :/ g}(aé,zg)emé"z,da’z.
R2 R2

From now on we will suppress the 22 in the above expressions. Therefore
(o) = [ [ Flahitap)es e dajdas,
R
Substitute o = o + a4. Then of = o’ — o) and
fig; =/ [ fila - Oflz)éf.j(a'z)da'z] ¢ dal,
R? |/R?
Hence, a half derivative of the above is equal to
/ (o) [ fila - Oéz)g}(alz)da'z} e da.
R? R?
And half derivative of f; is equal to
| e et ao

Therefore the product of a half derivative of f;, and g; is equal to

/ / o) fg a})g;(ah)e’t* ¢ % daf oty

rR2 JR?2

= [ e - e - abpiitayyany | o
rR? L/R?

The difference between (A.0.2) and (A.0.4) is

[N

L L Tt = = a] Fite’ = ap)gs (e )dage™ < e

To control the above we have the following lemma.
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(A.0.2)

(A.0.3)

(A.0.4)

(A.0.5)
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LEMMA A.0.2 Let n; and n2 be points in R™. Then

=

‘(771 F)E — ()% | < cln)?.

Proor: Suppose that 71 and 7y are such that 0 < |n;| < |n2|. Then

=

|+ m2) ¥ = )| < Clm)

Now suppose that n; and 79 are such that 0 < |n2| < |11|. Then

1
() (Lt (m +m)  (m+m)t — ) (1+n1-n1+2n1-n2+n2-n2>4_1
(I+m-m)7 L4m-m
(A.0.6)
1
= (m)? <1+2771'772+772-772>4_1, A0.7
() [— (A.0.7)

Define ¢(z) = (1+ #)% — 1. And there is a constant C' which bounds C‘(;‘), for all x in (—4,4).

Therefore,

1 2771'772+772'772)i 12m -2 + 72 12
2|1+ ——— -1 <C 72— A.0.8
m) ( e < Ot (A.0.8)
1 + 2
< Clm)? —<m><"<j7>1>2 12} (A.0.9)
< <:72>>1 (A.0.10)
1 2
Since |n2| < |m|, {85 > 1, from where the result follows. [ |
And from lemma A.0.2 we see that (A.0.5) is controlled by
. 2
L L i = aplss(agaas | ao (A011)
1 2
AT R A TN .
<o [ /. %vj(a'—ag)ngj(aandag] do! (A0.12)
£l 1|2
< C/RQ {/Rz<o¢’2>2(%+a)|g}(a’2)|2da’2} [/R %daé] do/ (A.0.13)
1)) ~ 1 X
<e| [ s lgapian| | [ i [ - appada ] o)
2 2 2 2

For a such that 2a > 2 the last integral converges in three dimensions. Therefore (A.0.14) is
controlled by |(99)*[g][l]|fl2- u

A similar result holds on 9.

PrOPOSITION A.0.3 Let f and g be functions on Q2. Let ( , ) be the L?(Q)-innerproduct. Then
|, Dalg))| < cll(6) = [£1]111(D6) 2 [g]]]-
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Proor: We have

/ / fx(091/027)dz'dz?
(=1,0) J(—1,1)2

(A.0.15)

/ fk CY; ai do’dz?
(-1, 2

1,00 /R
1. 1
- of frof gida'dz® (A.0.16)
(-1,00Jr2 7 J

= /(—1 0) {/m <al>|fk|2da/} 2 {/m <0‘I>|§i|2d0/} e
| (A.0.17)
< cll(@) *[1111(00) (9] (A.0.18)



Appendix B

Hodge-decomposition inequalities.

In this section we prove the Hodge-decomposition inequalities which were stated in

chapter 2 and is used throughout this paper.

B.1 The first one.

The first controls all derivatives in terms of the curl, the divergence and derivatives

which act near the boundary, and which are tangential to the boundary.

LEMMA B.1.1 Let o be a vector-field on Q. Define (curla);, = djay — Opa; and diva = 9.

Then we have the following pointwise estimate on 2 :
[CVa| < |Ccurlal| + |Cdival + | dpal, (B.1.1)
where | - | denotes the usual Euclidean distance.

Proor: Here we will suppress the index on (, letting it be denoted simply by (. Define
(defa)jr = 9jai + Oga;. Thus 2Va = curla + defa. Let § = diag(draa,...,0ha,) and
define v = ¢defae — (3. Then |(Va| < |Ccurla| + |¢div | + |7y|. It remains to control v. Also
define

Q% = §7F — NINK, (B.1.2)

the projection onto tangential vector-fields. Hence
WP = 896 My
= (@7 +N'N’) (Q" + N*N') yirvju
Q7 QM yirvj1 + QY N N'yipvji + N NTQM iy
+ N'NINF*Nlyv.
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Since v is symmetric, N*N7QF~;pv; = QY Nk Ny, Also,
N'NIN*N'yipvji = [N'N*yie]® = [6%vik — Q" vae]® = Q" yir]? < Q9QM iy, (B.1.3)
since for a symmetric matrix M we have [Tr(M)]? < ¢Tr(M?). From (B.1.3),
Q7 QM1 + QUN N'yirvii + NN/ Q¥ iy + N' N N* Ny
Q7 Q" iy + 2Q7 N* N'yievju 4+ Q7 Q¥ yirvji
2¢Q7(QM + N* Ny
2¢Q7 6"y vi1.

IN A

Using the fact that v = (defa — (3 we have
QY% kv = QM (¢def a)ix (Cdef @) j1 + QU 6% (Cdef )i (B + QM (Bir(Cdefa)y; (B.1.4)
+ QUM (BB (B.1.5)

where the second and third term can be controlled by e|¢(Va|? + L|¢diva|? and the fourth term
can be controlled by |(diva|?. The first term in (B.1.4) can be controlled as follows:

QUM (¢def )y (Cdefa) ;i = QUM (CO;u, + COkas)(COjou + (D) (B.1.6)
= QUM (COiar)(COjaq) + QUM (CO ) (COeyy) (B.1.7)
+ QYSH (€O ) (COj ) + QUM (COkay) (COj). (B.1.8)

Let Vi, = Q%9;. Since Q% = 6,,, Q" Q’™, the first term in (B.1.7) can be bounded by (Vg [a]|?.
The second and third term in (B.1.7) can be bounded by £[¢Va|? + 2|¢Vg[a]|?. The fourth term
we manipulate as follows: Q%% ((Ora;)(COa;) = Fmn@Q@™ (COri)Q™ (CO* ;) and

QM ((Okari) = Q™ (CBiar) + Q™ [¢Oa; — (Diauk] (B.1.9)
= (VG o] + Q™ (Ccurl ). (B.1.10)

Thus the fourth term in (B.1.7) can be controlled by (14 1)[¢(Vg[a]? + [¢curla)? + €[¢(Val?.
This concludes the proof. [ |

B.2 The second one.
From the lemma B.1.1 we prove the following corollary:
LEmMmA B.2.1 For1<s<8,

¢l ms(y < Plllzlls] 1<z, + el -1, + ICcurlal| gs-1(q,) + [I[¢divel gs-1q,)]
(B.2.1)

+ Pll[ls] [[¢(0)°all L2(02,)- (B.2.2)
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Proor: The base case is when s = 1 we have on €, according to lemma 2.5.1, ||(Va| <
|Ccurl | 20,y + |¢div a p2(q,) + [[{sc|| 12(q,), Which means that (B.2.1) holds. Now suppose
that 2 < s < 5 and that we have the result for smaller s. Then, by lemma 2.5.1 we see that

HCVSCY”LZ(Qt) < ||CCU1“104HH571(Qt) + ||CdiVCM||H571(Qt) + ||C(99V571a||[‘2(9t) + H??CYHHs—l(Qt).
(B.2.3)

To manipulate the second to last term in (B.2.3) we write

Ve lpa — 9y VLo = > (VIdpz)(VFH ). (B.2.4)
Jtk=s—1,k<s—2

We have [|VI9yx|| L= (0,) < |lz|ls and we control || V¥ | 12(q,) by induction. Now

1CV " dpal| L2(a,) < [[Ceurl VE—20pal| 12 (a,) + [[Cdiv Vo2 dpal 12(q,) + 1€80V* 2 Bpc 120

(B.2.5)
< [I6V2(VOp) (V)] L2 () + IV *Opeurl o 12 (q,) (B.2.6)
+ ||<Vs_289diVOAHL2(Qt) + ||<89VS_28904HL2(90. (B27)
The first term in (B.2.6) is controlled by
D IV 062) (CVF ) [ L2 (B.2.8)

where the sums is over j + k = s — 2. This term can be controlled by [|z[s[|(Va| gs-1(q,). We

control the second term in (B.2.6) by

> 1(VI0z) ((VF curl @) || 22 (q,) (B.2.9)

where the sum is over j + k = s — 2. We control this term by ||z||s||/(curl & gs-1(q,). Similarly
for the third term in (B.2.6).

Now suppose that s = 8 and that we have the result for smaller s. For 0 < j < 4 we
control the commutator term in (B.2.4) as above. For 4 < j < 7 we have ||V/0pz||12(0,) < [|z]s
and [[(V*al[pe(q,) < [[¢all#r(o,) which we control by induction. We control the term in
(B.2.8) as follows: For 0 < j < 3 we have ||[VI™ gz L (o, [ICV* T al 120, < 2]sll¢allar@,)-
For 4 < j < 6 we have ||VIT gz || 12(0,) [ICVF ™ al Lo (a,) < [|2[s]|¢al| go(q,). The term in (B.2.9)
we control by ||z||s||Ccurl a| g7 (q,) and similarly for the third term in (B.2.6).

B.3 The third one.

The third Hodge-decomposition inequality controls all derivatives in terms of the curl,

the divergence and boundary derivatives which are tangential to the boundary.
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ProprosiTiON B.3.1 Let o be a 1-form on ;. Let diva and curla be defined as in lemma
2.5.1. Then
ledlzr= ey < Plll=lls] [lellza@) + ldival g1, + lcurlal -1 (o,)] (B.3.1)
_1
+ P[llzlls]1((90)* 2a) - Nl 2(00.), (B.3.2)

where N is the outward unit normal to 0Q; and where p(s) is a polynomial which depends on s.

Also,

el me o) < Plllzlls] [lledl Lz, + ldivall ge-iq,) + [lcurlal| ga—1(q,)] (B.3.3)
n n—1

+Plllzlls] YD 1006) 2 @) - Tl o winon,)- (B.3.4)
k=1 l=1

Proor: First we prove (B.3.1) and (B.3.3) for s = 1, then we will use lemma B.2.1 to obtain

the higher order results. Finally, we will use interpolation to obtain the result for real s. Now
IVallrz@,) :/ 5j0<i5jaidfc=/ a;iN;a'dS(z) — (a, Aa)e,
Q 0
where we define (o, Aa)o, = [ @;9;07a’dx. And

—(o, Aa)g, = —/ o; [0 aj+ 0;0°a" — "0 oy da
Q4

/ a; [—8idiva + &7 (curl 04);} dz
Q¢

_ NiadivadS(z) + / [diva)® da

0N Q
+ / a; N7 (curla); ds(z) — M a (curl a); dz.
[Ie Q
Also,
— [ ¥ (curl a); de = — / (curl Q)g (curl oz); dx — d;0 (curl oz); dx
) oh S
and
— | 8 (curla); de = — N;od (curla); ds(z) + / o’ 9; (CUﬂOé); dx.
Q o o
Moreover,

/ a?9; (curl a); dz = / o7 9; [0'a; — 0ja"] da
Q¢ Q
= (a,AO()Qt —/ ajaiajaidx
Q4

= (a,Aa)q, —/ aijaiaidS(x)—i-/ [div a]® da.
00 Q

From the above we see that
—2(a,Aa)g, = 2/ [div o) do — / (Curloz)z (curl oz); dz
) Qy Q4

— 2/ a - NdivadS(x) + / (a; N7 — N;a?) (curla)é dsS(z).
0 a0
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The boundary terms are
/ a;N;&a'dS(x) — / a - NdivadS(z) + l/ (o;N7 — N;o?) (curl a); dS(x). (B.3.5)
o o o
The second term in (B.3.5) can be manipulated using @: On 99, « = a- NN 4+ Qa and therefore
—a- Ndiva = —(0;N)[a- N> —a-NVy[a-N] —a- NN;Vy[Q'a] — a- NV;[Q'a] (B.3.6)
where V = N%0;. In the above,
—a - NN;Vy[Q'a] = —[a- N?)N;VN[QYIN; — a- NN;VN[QY]Q;cx. (B.3.7)
And the third term from (B.3.5) we manipulate as follows:
% (o; N7 — N;a) (curl a); = % (a;N7 — Njod (9'er; — 9;0')) (B.3.8)
= % [aiNjaiozj — aiNjajozi — Niajaiaj + Niajajai} (B.3.9)
= a;N9'a; — a;N79;a’. (B.3.10)

The second term in (B.3.10) cancels the first term in (B.3.5). The first term in (B.3.10) we deal

with as follows:
a;N'9'aj = a;0'[a- N]— a;o; (0'N7) = - NV y [+ N| 4+ QiaV - N] — aa; (9'N7). (B.3.11)
The first term in (B.3.11) cancels the second term in (B.3.6). The remaining terms therefore are
/m [—(; N[ N> = [a- N’N;VN[QYIN; — a- NN;VN[Q7]Q;a] dS(z) (B.3.12)
+ /69 [~a NViQa] + QiaV[a - N] — aja;(9'N9)] dS (). (B.3.13)

To get the lower order terms into the form we want we use the fact that we can trade normal

and tangential boundary components: Define 7;; = 2a;a; — 6;;(a®) (). Then

/ [N'NToe; — Q7 o] dS ()
o0,

}Ha . NH%z(aQt) - HQa”%ﬁ(E)Qt)

/ [2N'N7 — 6Y] [o;e;]dS ()
o9

m

< ENNIT:dS(x
]; /Ukﬁc?Qt ! ( )
H . . (ol ..
< Z / §k(81NJ)Tijd:v + Z / &NJ@ZTijd:v .
k=1 UrNQy k=1 UrNQy
Now
8iTij = 2diVO¢OZj + 20@((%0@‘) — (8j0&k)(04k) — (ak)(ajak)

= 2divao; +20;(0;05) + (—(8jak)(ak) + (8kaj)(ak)) - (8kaj)(ak)
(— () (950") + (F)(Oka?)) — (a*) (D).

_|_
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Thus,

o NlZacon,) = 1Qal2 (00, | < N2l [lal3aa,) + Idivallza, + lewlal s, - (B3.14)

Hence all the lower order terms in (B.3.12) can be controlled by
fla- N”QL?(BQt) + ||a||2L2(Qt) + HdiVO‘H%?(Qt) + ||CUf1a||2Lz(Qt)
or
1Qall7200,) + lalliz@,) + Idivalliaq,) + llcurlalZzq,)- (B.3.15)

n (B.3.15) above, we have

© l1 l2 Tml Mo

k] k,j k,j
Qa7 1€k Nl oo / Stym o m,dS(z)  (B.3.16)
Lo kz_: Z veroee Tkl Tl 2|Tkg||Tka| :

<> Z lloc- T sl 22 w,no0,)- (B.3.17)
k=1 j=1

ES

Also, [[a- Nl[z2(00,) < (D)2 ) - N||z2(a0,) and similarly (o - T ;|| L2(v,no0,)- To control the
fourth term in (B.3.12) we have

I
/aszt a-NVgilQaldS(e) = Z /Umam Sher NV il relds(z)

n—1 Tz
= Z /U rox - N|T P S;|Qic]dS ()

k=1 j=1 " UrNO

T;
. _
= % Vmoe| 19l % 100,
U B2 (Uno)
Using proposition A.0.1 we have
T} TP
ko - N| kj|2 < H(@eﬁa)']v’m 504) |Tkj|2
Th.s H? (Usn09:) (Uknos) Ra U L2 naay)
Ti
+ ”O‘HL?(UkﬂaQt) (06)* [N§k| . |21
J L2(UNOQ)
and
n—1 i
Ty
o
||Q104||H2 (Upn8) < Z |Tkj|204 Tk,] .
Jj=1 ’ Hz2 (U,NOQ)
n—1 . T]Z; )
< X |wonte)-mi,
i L2U,na0) || | Tk 5 L2(Upno)
-1
T
+ Z"O"'L?(Ukmaﬂt) (06)* T 32
j= 1T 51 L2(UxNoQ
k t)
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By using the fact that ab < ca? + g and the trace theorem we see that the fourth term in
(B.3.12) can be controlled appropriately. The fifth term in (B.3.12) can be controlled similarly.
This proves (B.3.1) and (B.3.3) for s = 1. Suppose now that s = 8 and that we have the result

for smaller s. Using lemma B.2.1, we have

||0<|\12r{8(9t) = ”O‘H%Q(Qt) + HVO‘H%V(QQ (B.3.18)
< P[llzlls] [lallzz, + IVallLz,) + ewlal g7,y + [divelgr@,)]  (B.3.19)

7
+ P||zls] Z 1(96)’ Vel L2(q,)- (B.3.20)

j=1

For j = 7 we have
(09)"Va — V{(9g) o = Z(V(@g}jlx) o (V{(Dg)E1 ) (V (D) ) (B.3.21)

where the sum is over j; + ...+ ji < 7 such that jr < 6. The commutator in (B.3.21) can be

controlled by [|z[sla||#7(q,). Using computation for the case s = 1 we have

V(Do) allL2(a,) < Plllls] [1(80) L2,y + |div (99) el L2 () + llcur] (o) | L2(qy)]

(B.3.22)
+ P[llz]ls] 1((99) cx) - NHH%(BQt) (B.3.23)
< Plllzlls] [llell a7 (o) + divall g7 (q,) + lcurl el g7 q,)] (B.3.24)
+ Pl (@) - N3 (8.3.25)

We have, using corollary A.0.1,

1
[1((06)°a) Nyt 0, < 1((96)°% @) - Nl z2(000) [ N [l o< (0020) + lltll 57 002,) 1(D0)* N 22002, -

By interpolation we now obtain the result for non-integer s. This concludes the proof. [ ]

B.4 The fourth one: For differences.

LEMMA B.4.1 Let 21 and x2 be coordinates on Q1 = ui(t,Q) and Qi o = ua(t, Q) respectively.

Let oy and ap be defined on Q1 and € o respectively. Define

(9041]‘ 8a1i

o 8a1j 6041i
81711 6(3-{ ’

(curlloq)ij

(defloq)ij

and divioq = %O;IJ, where au; is the ith component of ai. Let curbas, defyas and divacs be
1

defined similarly. Let N1(y) = Ny oui(y) be the exterior unit normal to 981 and let No be
defined similarly. Also define

QF (y) = @} oui(y) = 67 — N{(y)Nf(y),
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the projection onto tangential vector-fields on 0 1. Let Q2 be defined similarly. Then we have

the following pointwise estimate on €):

I(CV1a1) o uy — (CVaas) o us| < |(Ceurlian) o uy — (Ceurbyas) o us) (B.4.1)
+|(Cdivay) o uy — (Cdivaas) o us| (B.4.2)
+ |(€pen1) 0 ur — (COpar2) © us| (B.4.3)
+1Q1 — Q2[|(CVaaz) o ua|, (B.4.4)

where | - | denotes the usual Euclidean distance.

Proor: Let 3; = diag ((80‘111) ouL,..., (%‘;1{3) o u1> Define 35 similarly. Also, define v; =
1
(defic1) o ug — (1 and define o similarly. Then

(Viag) oug — (Vaas) oug = [(curl ) o ug — (curl san) o ug] + [(defiay) o ug — (defan) o ug]
(B.4.5)
= [(curlyay) o ug — (curl ga) o ug] + [B1 0 up — B2 0 us] (B.4.6)
+[y10ur —y2 0ug]. (B.4.7)

Let f =1 0u; — 2 0 ug. Then
1P = 696" fufi
- ( “+N;'Nﬂ‘)< {4 NEND) fiaf
= Mt i+ QY NENL fur f1 + NiNJ Q¥ fur
+ NfoNl N firfi-

Since f is symmetric, NliNfQ’flfikfjl = QiijN{fikfjl. Also,
NiN{N{Nificfn = [NINY fi]? = (0% fin = QY fur]? = [QF fu® < QY QY firfjn,  (B4S)
since for a symmetric matrix M we have [Tr(M)]? < ¢Tr(M?). From (B.4.8),

Mtk + QYNEN! funfu + NliNleflfikfjl+N1iNijfoiksz

< fzkf]l+2Q Nllelkf]l+ch Ql flk?f]l
< 2cQ7(QY + NFN) fun fir
= 2eQYVM fufii.
Using the fact that f = 3 0u; —y20us = [(defiar) oug — (defaay) oug) 4+ [Ba0ug — B ous]
we have
QY firfi = QY ¥ [(defran) ouy — (defarz) o uglik[(defran) o uy — (defarz) o ug;y

+ QY oM[(defrar) o ug — (defaaz) o ua)ik[B2 0 uz — B1 o ualji

+ Q”(gkl [62 O Uy — 61 @) ul]ik[(defloq) ou; — (defgag) @) UQ]jl

+ QY [By 0 us — B o ur]ik]Ba o ug — Broulj
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where the second and third term can be controlled by &|(Viay)ous — (Vaas) o ug|? + %|52 oug —
B1 0 u|? and the fourth term can be controlled by |32 o uz — 31 o u1|?. The first term in (B.4.9)

can be controlled as follows: Since

0 0
[(deflal) oUuy — (defgag) o u2]ik = |:( 66;1;) oUuUyp — ( ao;zk) o ’u,2:| (B49)
O Oay;
(S
we have
Qijékl[(deflal) ouy — (defgag) o Ug]ik[(deflal) oUp — (def2042) o U2]jl (B'4'11)

= Q" H(aa1k> oup — <%C;2ék) ou2:| + K%Z}) ouy — (ZZ?) ou2” (B.4.12)
H<2a$11l> (%i?) e <%o;zj> ° UzH (B.4.13)
|

Q”W [(%) ouy (%azzk) Us l(%a;l> ouy — (%a§l> o 'LL2‘| (B.4.14)
Il I2 ;[;1 .’II2
+QUsH (%alf) ouy — (%O‘ik) ou2] [(‘?jy‘) oy — (fﬁj) ow} (BA.15)
L L1 Lo L3 Lo
i | O Oavg; Oauy Oag;
+ QYoM ( > — ( ) ] : - : B.4.16
Q7 _ 3fo ouy 317’5 o Us (9:5]1 ouy (9:5; o Usg ( )
ii [ 8a1i 8a2i 6041 1 Q9
QI ( Oxk ) s (6:6’5 ) OU2] Kﬁ) s ( :clgj) ouz} (B.417)

The first term in (B.4.14) is a product of two things of the form

im 8a1k 8a2k
e |(F) - (5 o) (D419
Oany, im [ 002k
=Qim ( . ) our — QY™ ( - ) 0 Ug (B.4.19)
ox} 2 Oxh
im {02k
+ Qi ( 2k> oug — Q" (—1) 0 Ug (B.4.20)
0x}, ! oz},
imy [ Ok
= (Salk) oUuUy — (SOLQk) o U + [ Q ] 87 o Us. (B421)
2
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— (SVaa)out| 4+ |Q2 — Q1]|(Vaaz) o ug|. From the

fourth term in (B.4.14) we obtain a product of two things of the form

im [ O0ai im [ Oai
o (G ) om - (5 o

by (B.4.21).

B.5 The fifth one: For the

m (90419 im aak
- ar(G)on-ar(G) on

) daq; im Oag;
; QT( 1>om—Q1< 2)ow

Ox¥ oxk
im 8ak im 8ak
- o () emrar (G ) o

= (SOélk) ocuy — (SOéQk) O U2

m m 80&2k
+ Q" — Q7 ]<8x§>ou2

+ QY™ [(curlyay )k o ug — (curlaaa)g; o ug]

extended domain.

LEMMA B.5.1 Let o be a function on Q. Define (curla);; = dia; — 00 and diva = d;a’.

Then

[CVal < P[Hng} [|Ceurlal + [Cdival + |CDyal],

on Qy, where |- | denotes the usual Euclidean distance.

Proor: This result follows similarly to lemma B.1.1. [ |
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