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Abstract

In this paper, we prove a priori estimates in Lagrangian coordinates for the equations of motion of an
incompressible, inviscid, self-gravitating fluid with free boundary. The estimates show that on a finite time
interval we control five derivatives of the fluid velocity and five and a half derivatives of the coordinates of
the moving domain.

1 Introduction.

Let ; C R" be the domain occupied by a fluid at time ¢ € [0, 7] and suppose that the fluid has velocity v(t, x)
and pressure p(t,z) at a point x in ;. For an inviscid, self-gravitating fluid these two quantities are related by
Euler’s equation

(1.1) (0 +v'0i)v; = —0;p — ;¢

in €, where ; = 52 and v' = §%v; and where ¢ is the Newtonian gravity-potential defined by

(1.2) o(t, ) = —xq, * ()
on {2, where xq, is a function which takes the value 1 on 2; and the value 0 on the complement of €}, and where
® is the fundamental solution to the Laplacean. Thus ¢ satisfies A¢p = —1 on ;. We can impose the condition

that the fluid be incompressible by requiring that the fluid-velocity be divergence-free:
(1.3) dive = 9;v° = 0 in Q.

The absence of surface-tension is imposed with the following boundary condition:
(1.4) p =0 on 09

and to make the free-boundary move with the fluid-velocity, we have

(1.5) d; +v'9; is in the tangent-space of Uo7y [ x {t}].

The problem is, then, to prove a priori estimates for v satisfying (1.1) - (1.5) in some interval [0,T], given the
initial-conditions

(1.6) v =g on Qp,
where vg and ¢ are known. We will also assume that initially there is a constant ¢y such that

(1.7) Vp-N < —co <0 on 9
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where N is the exterior unit normal to 99, (1.7) is a natural physical condition since the pressure of a fluid
has to be positive and the problem is ill-posed if this is not satisfied, see Ebin [1]. This condition is related to
Rayleigh-Taylor instability.

We will assume for simplicity that n, the number of space-dimensions, is 2. We will also assume that there is
a volume-preserving diffeomorphism zo : Q — Qp, where Q@ = {y € R? : |y| < 1}, which will allow us describe the
derivatives which are tangential to {2; in a particularly simple way, and it will also allow fractional derivatives
to be defined by using Fourier series without recourse to partitions of unity. That part of the argument can be
used, with minor modifications, in the case of arbitrary space dimension. The dimension will also allow simpler
energy estimates because the curl of the velocity is conserved.

Suppose now that v satisfies (1.3). We define Lagrangian coordinates as follows: Define x by

dr

(1.8) E(t,y) = ou(t,z(t,y)) and z(0,y) = xo(y)

for y in Q and for ¢ in some time interval [0,T]. Since v satisfies (1.3) and this means that
Ox .

(1.9) O det % (t,y) =divvox(t,y) =0.

And since det (g—z) (0,y) = 1 we therefore have det (g—;) =11in . We will prove the following theorem:

THEOREM 1.1 Let v satisfy (1.1) and (1.3) and let p satisfy (1.4) and (1.7). Let the flow x of v be defined by
(1.8) and define V (t,y) = v(t,z(t,y)). Define

E(t) = =up [IVIls + ll=lls.5 + lleurt (v)l| 755 (0, -
i
Then there is T > 0 such that E(T) < P[E(0)] where P is a polynomial.

1.1 Background.

Past progress has been made in three situations: The first progress was made on the water-wave problem under
the assumption that the fluid be irrotational — that is, the curl of the fluid-velocity is zero —, incompressible and
that the free-boundary not be subject to surface-tension. Notable results in this area are Wu'’s papers [2] and [3]
where she uses Clifford analysis to show well-posedness in two and then three dimensions in an infinitely deep
fluid; and also Lannes’ paper [4] where the Nash-Moser technique is used to prove well-posedness in arbitrary
space-dimesions for a fluid of finite depth.

In [5], Christodoulou and Lindblad proved a priori estimates for the incompressible Euler’s equation, without
the assumption of irrotationality. They were not sufficient to obtain the existence result, however, because
no approximation-schemes was discovered which did not destroy the structure in the equations on which the
estimates relied. In [6] Lindblad proved that the linearized equations are well-posed. In [7] Lindblad then used
the Nash-Moser approximation scheme to obtain the full well-posedness. Well-posedness was also proved by
Coutand and Shkoller in [8], using a fixed-point argument which relies on smoothing the fluid-velocity only —
crucially — in the direction tangential to the boundary. This is followed by energy estimates which we will
discuss in detail in section 4. Also, in [9], Shatah and Zeng prove a priori estimates under these conditions by
considering Euler’s equation as the geodesic equation on the group of volume-preserving diffeomorphisms. The
latter two papers also consider the case of positive surface-tension.

2 Preliminaries.

We will let & be coordinates on €2; defined by (1.8) and let 0;,9;, Ok, . .. be derivatives on €;; and we will let y
be coordinates on 2 and let 0,, Oy, O, . . . be derivatives on 2. Also, we will let V denote an arbitrary derivative
on €; and 9 be an arbitrary derivative on ).
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2.1 Change of variables.

Let A¢(t,y) = g—i ox(t,y) and let Bi(t,y) = gZ; (t,y). By (1.9) we see that det(B) = 1 and hence det(A) =1

as well in a time interval [0,T]. This means that x(¢,-) :  — €, is a change of variables.

2.2 Norms.
Let f:Q — R2. Define ||f||* = [, 0:;f*(y)f?(y)dy and for an integer k > 0 we define

k
IR =D IV AN
=0

where V = (aiylv 6%2 . We define the intermediate spaces by interpolation, see for instance [10] and [11]. For a

function g : Q¢ — R?, define ||g||72q,) = Jq, 9ij9'(2)¢’ (x)dz and for an integer k > 0 define

k
||g||?{k(gt) = Z ||vl[g]||%2(ﬂt)
=0

where V = (8%1’ %) Again, we define the intermediate spaces by interpolation. For a function h : 0 — R2,
define ||h||2L2(891,) = Joq, 0ih' (x)W (2)dS(x)

2.3 Special derivatives.

In this paper, we will make use of two special derivatives. First we have derivatives which are tangential to the
boundary:
Y0y — y°0, for a,b=1,2

where the summation convention is not employed. We will abuse notation and denote these derivatives and their
push-forwards on €; with dy. The second type of special derivative is defined as follows: Let f : Q — R? and
let’s abuse notation and write f(p,f) to mean the polar representation of f. Let > fx(p)e?* be the tangential
Fourier expansion of f(p,6). We now define a tangential Sobolev-type-derivative (Jy)® to be an operator which

sends _ _
> felp)e™ to > (k) frl(p)e™,

where (k) = [1+ |k|?] % For a function g on , define [[(9g)*[g]l|L2(0,) = 11(D8)°[g © 2]|| 2 () For integral s the
operator (9)*® is equivalent (in the L?(2)- and L?(99Q)-norm) to the application of a collection of dy. Finally,
for a function h : 9 — R?, define

IRl1Z+ o0,) = 106)* Al 72 00,

for a real number s.

2.4 Cut-off functions.

Fix dy such that the normal N to 9€); can be extended into the image of the set {y € R?: 1 —dy < |y|} under
x. This fact is used in lemma 2.1 which is presented in section 2.5. Let 7; and (; be radial functions which form
a partition of unity subordinate to the sets {y € R? : [y] < 1 — £} and {y € R?: 1 — % < [y|} respectively.
This means that 7; takes the value 1 on the set {y € R? : |y| < 1 — dTO} and (; takes the value 1 on the set
{yeR?:1— % < |y|}. We will also let n; and ¢; denote the analogous functions in the Eulerian frame.
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2.5 Hodge-decomposition inequalities.

In this section we present two divergence-curl estimates which are used throughout this text. The first allows
point-wise control on all derivatives near the boundary of €2; by the divergence, the curl and tangential derivatives.
Letting ¢ = (; we have the following;:

LEMMA 2.1 Let o be a vector-field on Q. Define (curla)j, = 0j0u, — Opay; and diva = 8jozj. Then we have
the following point-wise estimate on € :

(2.1) |CVa| < |Ccurla| + |Cdival + | Dgal,
where | - | denotes the usual Euclidean distance.
Using lemma 2.1 and an induction argument we have the following lemma:
LEMMA 2.2 Forl1 <s <5,
22)  allae(an < Plllzls] {lICallzzi + ICeurtallms-1(a,) + I¢dival me-1,) + D 1Kl 2@,
j=1

We will also use the following estimates which allows H*(£2;) control in terms of the divergence, the curl and
boundary derivatives:

LEmMMA 2.3 Let diva and curla be defined as in lemma B.1. Then, for s <5,

(2.3) lall =0, < Plllz|s] [”O‘HLQ(Qt) +lldival g1, + [curlal|gs—(q,) + 1((36)* %) - NHL‘Z(aﬂt)} ,
where N is the outward unit normal to 0. Also, for s <5,

(2.4) lall =0, < P[ll=|s] |:||O‘HL2(Qt) +[[diva| g1, + [[curlal| gs—1(q,) + 1((96)* "2 a) - Q||L2(8Qt):|

where Q is a unit vector which is tangent to 0€);.

3 Elliptic estimates.

In section 4, we will prove energy estimates for (1.1) - (1.7) and to prepare for this, we need the elliptic estimates
for p and ¢ contained in this section.

3.1 Estimates for ¢.

In this section we prove the following theorem:
THEOREM 3.1 ||V gs(q,) < Pll|z||s], where P is a polynomial.

Using the cut-off functions defined in section 2.4, we have [|Vo| gsq,) < [mVollms@,) +11¢1 VPl a5 q,). This
allows us to consider interior and boundary regularity separately.
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3.1.1 Interior regularity.

In this section we prove the following result:

THEOREM 3.2 Foranyl<iand1<s<5

(3.1) IV* 90l 2y < P [llll]
where P s a polynomial.

We prove that (3.1) holds by induction on s. Suppose that s = 0. We have |7,V 12(q,) < |7 L= (a,)
x V|l L2(a,) and

(3.2) V61220, = / 0,0) @ ¢yl = | Ni(@;0)pdr— [ A

o0, Q

Since we have |||« (q,) < P|||lzll2] and ||V~ (q,) < P[[|zx|2], we control both terms in (3.2) appropriately.
This proves (3.1) for s = 1. Now suppose that s = 5 and that we have the result for smaller s. Then

3.3) V20V ol @) = /Q (D - s D3 (D" .. 0P (i ] ).
Now,
(34) Fo LA o [niajﬁqﬂ = T]i(ajl L 8j58j6¢) 4 Z(vklni)(vk2+1¢)

where the sum is over ki + ko = 5 such that ko < 4. To control the second term in (3.4) we use the following

procedure: Let i; = i. Suppose that we have found i1, ...,4;. The support of V¥5;, is contained in the image

under = of the set {y € R?: 1— % < |y| <1— 20}, Pick ij¢ such that 1 — 90 <1 — o Then ,,,, takes the
1 1] 7 it

value 1 on the set {y € R?: |y| < 1 — - }and{y€R2:17%<|y\<1f§l—ft}§{y€R2:|y|§17d—°}.

il+1 iH»l

LEMmMA 3.3 For ke > 1 we have
(3.5) (VF0i)(VF26) = > (VR0 ) (V20i,) - (V5 i, (V' i, V)

where the sum is over all lo + ...+ 1, = ko — 1; where for instance if lo = 0 the term Vl277i2 is taken to mot be
present in the sum; and where if I, = 0 the term V= [n; V¢| is taken to be n;, V.

ProoF: We prove this by induction on ks. For k2 = 1 we have (V¥i5; ) (V) = n;,(VF¥10;,)(V¢), which is of
the correct form. Suppose that ks > 2 and that we have the result for smaller k3. Then
(3:6) (VM) (V™20) = miy (VV0i,)(VF29)

(37> = (Vkl nil)(ka_l[ni2v¢]) - (Vklﬁil) Z (Vllniz)(vlz+1¢)
li+lo=ko—1,12<ko—2

(3.8) = (VM0 ) (V™ i, Vo))
(3.9) - (V*n,) > > (V) (Vi) - (VT ) (VT i, V@)

li+lo=ko—1,12<kz—2

which again is of the correct form. [ ]
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Integrating the first term in (3.4) by parts twice we have

(3.10) - /Q Dy, - 05,07 [y ) (D . .. 09 §) s — / D, - 052 1300 F) (o) (D ... O §)da

t

(3.11) :/Q (ajl...aj4aﬂ‘6[niaj6¢])m(ajl...aisaj5¢)dx+/ (0jy + . 04,07 004, 0])(0sm:) (07" ... 07 ¢)dw

Q

(312) - / (O, - 0y 005, 81) (@) (0% . 077 )

where we can control the second and third term in (3.11) using lemma 3.3. Also, 89¢[;0;,¢] = (879n;)(0j,}) +n;
and therefore the first term in (3.11) is equal to

(3.13) /Qajl. 0, [(071;)(0js @) i (07 ... D720 ¢dx+/ Qjy - 0j, nilmi (071 ... 0750;, ¢)dx

The above terms in (3.13) can be controlled using lemma 3.3 and the inductive hypothesis. This concludes the
proof of proposition 3.2.

3.1.2 Boundary regularity revised

Let ¢ denote ;. We have V2[(¢] = (V? () o+ (VC)(ng)) + ¢ (V2%¢) and V( is supported in {y € R?: 1 —dy <
ly| < 1—9%}. We can find i such that 1 — % < 1— % and therefore {y e R?:1—dy < Jy| <1—- %} C {y e R?:

ly| < 1 — 9} where 5, takes the value 1. Thus (VC)(Vqﬁ) =n:(VQ) (Vo) = (VO (Vo)) — (V) (Vn;) ¢, which
we control by theorem 3.2. Thus we need only be concerned with (V*®¢. In this section we prove the following
result:

THEOREM 3.4 Forl1<s<6

(3.14) 1KV @llL2 () < Pllz]s.5]
where P is a polynomial.

Since integration by parts on €2; will yield a boundary term which is difficult to deal with because 9 is
the complement of the singular support of ¢, we begin by expanding the region of integration: Suppose that
x(0,y) = y and define & = E(x — y) + y where F is the extension operator on 2 — see, for instance, [10] — and
define V = ;. Then both V and & are defined in all of R? and such that 12| s (r2) < ¢l s (o) and similarly

for V. Define B = gj; Then since det(B) = 1 on 2, we can choose dy (possibly smaller than the one used

before) so that Z is a change of variables on Q = {y € R? : |y| < 14 do} and such that dj is small enough that
the normal N to 9); can be extended into the region between 0€2; and the boundary of QO = Z(t, Q) This
means that for every i, N can be extended into the support of ¢ on both sides of 9€2;. Let A be the inverse of
B. We now define ¢ as follows:

(3.15) b(t,z) = —xaq, * ®(x) for z in Q,

where again ® is the fundamental solution for the Laplacean. This means that on ;, we have ¢ = ¢ and
therefore that ¢ and ¢ have the same regularity on (2. It also means that ¢ is smooth on 8. Finally, let the
norms on the extended domains  and € be defined analogously to the norms on Q and €.

LEMMA 3.5 If Af = g where g(z) = 0 when dist(z, Q) > dy > 0, then |V*f(z)| < Csllgll 1 (a,)s for € oy
and |0y x| < Cq, forz € 0.
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Proor: We have
V* f(a)] < / 918 (2 — 2])ld= < C5~lgll 11 g

| ]
Lemma 3.6 We have ||V f|2q,) < cllgllq
Proor: We have
(3.16) IViaay = [ @D@de = [ Ni@nfas(a) - [ grda.
o a0, Q
| ]

ProrosiTioN 3.7 For 0 < j <4, we have

(3.17) 1CV939 fll (@) < Pllls] (Znaegnm +Z||agg||m(g)+5J4ngmm)

where the sum of L* norms is only there if j > 2 and the L> norm is only there if j = 4.
We begin by proving a lemma which says that we need only be concerned with tangential derivatives:
LEMMA 3.8 Let f satisfy Af =g in Q. Then for 0 < j < 4,

Jj+1

(3.18) ||<Vagvf||L2(Qt lel (Z Hgae vf||L2(Q, + Z ||aog||L2(Q, + Z ||899||L4(Q, + 5J4||9||Loo(nf )
k=0

where the sum of L* norms is only there if j > 2 and the L> norm is only there if j = 4. Moreover, for
0 <j <2 we have

Jjt2
(3.19) 169039 1l ey < PllIalls] (32 1605V Fll o, +Z||599||L4 ))-
k=0
Furthermore
1
(3.20) 1SV e @) S 19l ey + D N0 -

=0

Proor: We prove this result by induction. For j = 0 we have ||CV2f||L2(Qt) S NCAS N 22 1606V fllp2(a,), PY
Lemma 2.1, which is of the right form. Now suppose that 1 < j < 2 and that we have (3.18) for smaller j. Then
1V 2y < GV O fll o, + ICCurl 4V e, + GOV o, ) Now CdivaVf = CORAS +
S (9F A)(¢VILV f) where the sum is over k+1 = j such that [ < j—1 < 1. We have ||¢(div %Vf'—aéAf)HLQ(Qt) <
P[Hx||5]||CV8§VfHL2(Qt) which we control by induction. Similarly, we also control ||(curl 8§Vf||L2(Qt). This

proves (3.18) for j < 2.
For j = 0,1 we have by Lemma 2.1

J J+1 J j+1
(321) IKVOV Fll e,y S D05l e + D NCOEV Fll e,y S D N05l 1o, + D ICOEV F Il o,
k=0 k=0 k=0 k=0
j j+2

J J
S Plllzlls) | D 105gll Laq,) + D ICOEV Il 12y
k=0

k=0 k=0
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using Sobolev’s inequality, (3.18) for j = 1,2 and Theorem 3.2. Thus we have (3.19) for j =0, 1.
Now suppose that j = 3. Then for 0 < k < 2 we have H(@;?A)(CV%VJ”)HLZ(@) < Hm||5||(VﬁéVf||L2(Qt) and

for k = 3 we have | = 0 and H((?gﬁ)(CV%Vf)HLQ(Qt) < ”agAHL‘*(Qt)||Cv2f||L4(Qt)’ both of which we control

appropriately. This proves (3.18) for j = 3 and using this we get (3.19) for j = 2 as well.
It remains to prove (3.18) for j = 4. We would need to control ||(8§A)(CV3éVf)||L2(Qt) for k+1=j=4.

If k£ < 3 this is controlled as above. It hence reain to control ||(8§/~1)(CVVf)||L2(Qt), but by Lemma 2.1 and
Sobolev’s lemma

1

(3.22) IEVV fll oy S NCAF I ooy + 1€V Fll oo () S 19l oo @,y + Z 1CV7 06V fl paa,y-
=0

Using lemma 3.8, we see that it is enough to control ||§8giHL2(Qt) appropriately for 0 < 7 < 5 which is the
content of the following proposition:

ProrosiTiON 3.9 For 0 < j <5 we have

j—1 j—4
(3:23) 1€V fll 2@, < Plllzlls.5] (||<59>5'59HL2(Q,,) +> 10691 225,y + > 19 91l 14, + 6j5||g||L°°(S~2t))'
k=0 k=0

Proor: We prove that (3.23) holds by induction on the order. To start the induction we have the analogue of
Lemma 3.6. Now we suppose that we have 7 = 5 and suppose that we have already have appropriate control of
the lower order cases of (3.23). We have

(3:24) 1B o,y = (CORoLF) (50" ) = (oo codinas— | (COR0LF) OO €01 ) + 1.0,

o

where the lower order terms are easily controlled by induction and the previous estimates
_ 5 15 ls—1 ls
(3.25) LO.=Y /Q CORVI(TOw) (V" 2) (0 9 )

In fact, for Iy,...,l,—1 < 2 we control (3.25) by P{||z|s5] ||C83Vf|\L2(Qt)HC@éSVfHLz(Qt), which we control by
induction. Suppose that 3 <l; < 4. Then ||V6é1x||L4(Qt) < |lz|ls; and la,...,ls—1 < 2, so we control the other
terms containing x. We also have 0 < [; < 2 and therefore HC@é‘SVfH“(Qt) < HCVBéSVfHLZ(QW which we
control appropriately by lemma 3.8. Integrating the first two terms in (3.24) by parts ignoring boundary terms

and interior terms when the derivative fall on the cutoff (, that are easy to control with Lemma 3.5 respectively
Theorem 3.2, gives

(3.26) - / (CO'030,1)(COR f)dx + / (CO'050: ) (03 (COLf ) + / (CO50, F)(B52) (OO f)d

Q f_Zt Qt

We control the last term in (3.29). Also,
(3.27) Ooif = AT + 0y (Vidha )(ViVif)) + D (VO x) .. (VO 2)(VOy V)

where l1 +...+1ls=5and l4,...,ls <4. For l1,...,ls_1 <2 we control the last term in (3.27) appropriately by
lemma 3.8. If 3 < I; < 4 then we control V@élx as before and 0 < Is,...,ls_1 < 2 so we can control the other

terms containing x in L>(£);). We also have 0 < I, < 2 so we can control ||CV8§SVf||L4(Qt) by lemma 3.8. We
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therefore control the last term in (3.27). Let us now consider the first two term in (3.27) substituted into the
first term in (3.29) and integrate by parts in 6 to get modulo lower order terms

(3.28) + [ copg(cogs)dx - / (Va0 ) (VI ) (COL f)da,

Q

which is of the form we control. Let us now finally consider the first two term in (3.27) substituted into the
second term in (3.29) we get modulo lower order terms

(329) - [ cORg(@R) cas)dn + | (@0V04aR) TV @) GO,
Q Q,
This can now be estimated as in appendix A. [ |

From now on we will restrict the result to Q; C Qt. By Propositions above

CoROLLARY 3.10 If Af = g where g(x) = 0 when x & Q then, for 0 < j < 4 we have

J Jj—3
(3:30)  ICVOV Fllacen) S Pllallss] (16009l aq@, + D 1959l 2 + D 1959l aien) + diallglli=(an)
k=0 k=0

LemMaA 3.11 Let f satisfy Af = g in Qp. Writing O to denote both 0y and 0, we have

J J
(3.31) IV Y fllz20 < Plllzlls] D 16060"V fllz20) + D 10" gll 20

k=0 k=0

for 0 < j <4; and for 0 < j <2 we have

j+1 J
(3.32) ICVIV fllp ) < Plllzlls] D 1030V Fliz2(,) + Y 10"l (an)-
k=0 k=0

Proor: We prove this result by induction. For j = 0 we have ||(V? f||2(0,) < ICAfllz2(0,) + 1€V fllL2(02,), by
lemma 2.1, which is of the right form. Now suppose that 1 < j < 2 and that we have (3.31) for smaller j. Then
ICVOIVF| < [¢divIV f| + |Ccurl PV f| 4 [€0pdV f|. Now (divdV f = COIAF + > (0FA)(CVI'V f) where the
sum is over k + [ = j such that [ < j —1 < 1. We have |[((divdIV f — DIAS)||r2(0,) < P[l2|5][ICVO'V fll 200
which we control by induction. Similarly, we also control ||Ccurl @V f||2(q,). For j =0 we have

(3.33) ICVOV fll o) < gl (an) + €06V £l Lo r)
(3.34) < lgllzee @,y + 11V fll 1202,
(3.35) < P[ll=ll5] [Ngllpes (. + 1OV fllL20)]

using Sobolev’s inequality and lemma 3.8. Thus we have (3.32) for j = 0. Now suppose that j = 3. Then
for 0 < k < 2 we have [[(0FA)CVI'V )12, < 2l51CVOV fll12(q,) and for k = 3 we have | = 0 and
(0% A)(CVI'V )2 < 10°A]lL2(00)l[CV? fl L (0,), both of which we control appropriately. Now we can
prove (3.32) for j = 1 and using that result we can prove (3.31) for j = 4. And using that result we prove (3.32)
for j = 2. [ |

Using lemma 3.11 and an induction argument we control [[(V*¢||2(q,) for 0 < s < 5 and hence we obtain
theorem 3.1. u
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3.2 Estimates for p.

Taking the divergence of (1.1) we see that p satisfies Ap = —(9;v7)(9;v%) + 1 on ©; and p = 0 on 9. Thus we
have the following:

ProrosiTioN 3.12 For alli > 1 we have

(3.36) 17:Vpll s,y < Pllllls, [V ]]s]
and
(3.37) VDl < Plllzls, (V4]

for 0 < j < 4. Moreover, we have

(3.38) VPl s, < Pllllls.s, |Vas)
and

(3.39) VDl a3, < Plllzls.s, V5]
where p = Op.

Proor: The estimate (3.36) follows similarly to theorem 3.2. The estimates (3.37) and (3.38) follow similarly
to theorem 3.1. The estimate (3.39) follows similarly to theorem 3.1 using theorem 3.1 and (3.37) above. For a
detailed explanation of these proofs, see [12]. |

4 Energy estimates.

Finally, we are ready to prove the energy estimate in theorem 1.1. We control |V ||5 using lemma 2.2 and lemma
2.3, together with F; and Fs below: Let

(4.1) E(t) = |[cofv

2 2
}LQ(Qt) + ”anH«‘(Qt)

and Es(t) = |lcurl (v)| ga.5(q,), where ¢ = (1 is the cut-off function supported near the boundary of €2; and
1 = 1 is the cut-off function supported in the interior of {2;, as defined in section 2.4. Note that we will ignore
terms which arise from the derivative falling on the cut-off function because these terms will be of lower order.
To build regularity for ||z|/5.5 we use lemma 2.3 together with F5 and Ej4 below: Let

(42) B0 = [ (~Vp-N) [(0) - N]* dSo),

where N is the external unit normal to 9€;. Note that the term in (4.2) should read faﬂt (=Vp:N) [(95z) oz~ - N] ?
dS(z), but in the interest of creating tidy computations we will hereinafter omit some terms — such as the ‘ox =1

above — which are not crucial to understanding the argument. And let
. 2 2
Ey(t) = ||div [02]||5a.5(q,) + llcurl [02][[ 5250,

where div[0z] = 9;[(0z') o #71] and O is an arbitrary derivative in the Lagrangian frame. We now explain
how Ej3 and E, will be used to bound ||z|[55. Let > 4e™*? be the tangential Fourier expansion of z. Then
((0p)°x) - N = >_(k)°xx - Ne®® and (85x) - N = > (ik) zy - Ne'k?. Therefore

(4.3) 1((00)°) - N3 2000, < D (&) ae - N2 <D ok - NP+ Y Ko - N2+ Y 6Oz, - NJ?
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and

(4.4) Y k- NP < (852) - Nl2(o0,)-

Using the trace theorem and the fact that z(¢,y) =y + f[(),t] V (s, y)ds we control the terms with 0 < j < 4. For

the highest order term we have

(45)  [(85) - N2ain, = /a [(@30) - N dS(a) < E /a (VW) [(05a) - N dS(a) < 2.

€o
Using E4 we control ||div [0z] \@13.5(90 and |lcurl [Oz] stﬁ(m), and therefore, from lemma 2.3, we have, by (4.5),

E
(46) I03nelyese,y < Pllelis) |24+ 22].

This means that we similarly control ||898x||§{35(9t) and therefore ||3x||§{4(69t). Hence we control ||8:43||i5 and
therefore ||x5.5.

4.1 Almost E;.

The time derivative of E; is equal to

(@1) -2 [ @O ORI 2 | (GO cORO)dr —2 [ (ndfu')(OfomIds —2 [ (n0fe')(CO0r0)da
Q Q Q Q

using (1.1). Using proposition 3.2 and (3.36) from proposition 3.12 we control the third and fourth term in (4.7).
The second term in (4.7) can be controlled using theorem 3.4. It now remains to control the first term in (4.7).
We will deal with this term in section 4.3.1.

4.2 F,.
We have [0, ;]2 = —(d;v7) and therefore

(4.8) dreurl (v) = 91042 — O20yv1 — (0107)(Djv2) + (9207 (Bgur)

(4.9) = —(01v1)(01v2)(O1v2)(O2v2) + (02v1)(01v1) + (O2v2)(F2v1)
(4.10) = —(01v2)[(01v1) + (D2v2)] + (D2v1)[(D1v1) + (O2v2)]

(4.11) = —curl (v)div (v)

(4.12) =0.

Thus curl (v)(t) = curl (v)(0) and therefore |[curl (v)(t)|g4.5(q,) = |lcurl (v)(0)[| g5 (0,)-

4.3 E.

The time derivative of E3 is equal to

(4.13) O |Vp| [(95) ~N]2dS(:1:)+2/ IVp| [(85z) - (8:N)] [(95z) - N] dS(x)
0N 00

(4.14) +2/8Q IVp| [(8:952) - N] [(05z) - N| dS(z).
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In (4.13) we control the first and second term. Using the fact that <22 = N; on the third term in (4.13) we

[Vpl —
have
(@15) -2 [ (@) Op)dS(w) = -2 | (O3 OF ) Osp)de —2 [ (05 @idf)(@rp)da
00 Q¢ Q
(4.16) ~2 [ (0305 @r0,)da
Q4

using the divergence theorem. We control the third term in (4.15). In the first term in (4.15) we commute a Oy
outside the 0; this generates a lower order term and also

(4.17) *2/9 (000:05v")(9527) (D;p)dax < |[(D) % 3050|100} 2 [(952) (Vp)]|

using lemma A.4. By lemma A.1 and the fact that div[v] = 0, we can control the above. The second term in
(4.15) remains. We deal with this term in the next section.

4.3.1 The rest.

Combining the first term from (4.7) and the second term from (4.15) gives

(4.18) =2 /Q (COpv")(COp)dx +2 " | CR(B5v)(VOR x)... (VO™ x) (94 Vp)

Q

where k1 + ...+ ks =5 and kq,..., ks <4. In the first term in (4.18) we integrate by parts to obtain
(4.19) / (C0,05v") (COgp) da
Q

Again, we integrate half of one of the dp from divOjv to the other side. The result can be controlled by
(3.38) from proposition 3.12 and an argument from above. We can control the sum in (4.18) using (3.37) from
proposition 3.12.

4.4 FE,.

First we deal with the divergence term. We have

(4.20) Opdiv [0x] = (Vo) (0*x) + div [0;0z] = (Vv)(9%z) + Vdivw.

Therefore we have an equation of the form 9, f = g. Since H3-5(Q;) is an algebra, we control the first term in
(4.20) by ||V ||l4.5/|x|l5.5- We now consider two time derivatives on curl [0z]:

(4.21) dcurl[0z] = 9, [(Vv)(8°x) + curl §,[0x]]
(4.22) = 9, [(Vv)(0°z)] + (Vv)(V?v) + curl §; [0z]
(4.23) = 9, [(Vv)(8°z)] — (VOw)(d°z) + (0x)(90; x)
since curl 97z = 0. Equation (4 23) is of the form 0;[(0;f) — g] = h. Integrating with respect to time once yields
(Ouf)(t) = (8,.£)(0) 4+ g(t) — g(0) + f[o 9 uw)du. Another integration with respect to time again gives
(4.24) F(&) = £(0) + £8,1)(0) + / g(u)du — tg(0 / / h(uun ) duis .
(0,4 (0,¢] J[0,uz]

Here f = curl [9z] so we control f(0) and (9;f)(0). We have already seen that we can control the first term
n (4.23). The second term in (4.23) can be controlled using the fact that H>?®(Q;) is an algebra, (3.38) from
proposition 3.12 and theorem 3.1.
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A Properties of (0y).

In this section we prove a result concerning how <69>% acts on a product and also an integration by parts type
result.

LEMMA A.1 Let f and g be functions on Q. Then ||[(9)2[fg] — (3a)2[flgl|? < c|l fII211(0) 2|12 for a > 3
Proor: Let Y fr(p)e?*® and 3 gi(p)e? be tangential Fourier expansions of f(p,0) and g(p,6) respectively.

Then
F9=> fege™t0 =" [ > fkgl} e’
koL

m  Lk+l=m

and therefore

(A1) (Do) (fg] = D _{m)* [ > fkgl] e

m k+l=m

where (m) = [1 + |m|?]2. Also (9p)2[f] = Zk<k>%f;€eik9 and therefore

(A2) (0)?[flg = > [ > <k>éfkgz] e,
m  Lk+l=m
The difference between (A.1) and (A.2) is
(A.3) S0 [0 - 0E] fge.
m k+l=m

We can control this using the following lemma.

LEMMA A.2 Let k and [ be points in Z. Then

Nl=
N

|k + 0% = (k)

<clyz,
where ¢ is a constant.

ProorF: Suppose that k and ! are such that 0 < |k| < |I|. Then

e+ 0} = ] < e
Now suppose that k and [ are such that 0 < |I| < |k|. Then
E: 2 2\ 1
yd (AR EEDEEE ) (LR 2R YY)
(1+Kk2)a 1+ k2

Nl=

Uil + 12\ 1
1 —1].
(k) < + 1+k2>

Define f(z) = (1 +2)% — 1. Then there is a constant ¢ which bounds &) for all z in (—4,4). Therefore,

[2]
1
2kl + 12\ * (kY1) + (1)?
1 —1
( + 1+k2)

)
(ERTE

N

(A.4) (k)
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[N

Since || < |k|, &2

m > 1, from where the result follows. [ ]

[N

And from lemma A.2 we see that (A.3) can be estimated in L?(f2) by

2
(A.5) DY <l>%<§§a|fk||gl|] szl > <1>2<%+a>|gl|2] [ > <Z>2a|fk|2].

m k+l=m m k+l=m k+l=m

—~

Since Y (I)~2* is convergent for 2a > 1 we must have a > 3. This proves lemma A.1. [ |
From this proof we also have the following result:

CoROLLARY A.3 Let f and g be functions on 02. Then

(A.6) 1€06)* 9] = (00)* [£l9 122 00) < cllfZ2(o0) 1400+ gl 22 o)

fora > %

LEMMA A.4 Let f and g be functions on Q. and let ( , ) be the L*(Q)-inner product, then
|(f,909)| < cll{06) 2 F1I11(D0)2 g

Proor: Let Y fr(p)e?*? and 3 gi(p)e? be tangential Fourier expansions of f(p,6) and g(p,0) respectively.
Then

(A7) (F.90g)| = ‘ / 1 / %f(p,e)g(p,e)pdpde‘

(A.8) <

/0 ST filp) )2 gu(p)pdp
l

(A.9) < 11(36) % £1I11{90) % g]I.

B Hodge-decomposition inequalities.

In this section we prove the results whose proofs were omitted in the body of the text. We begin with a lemma
which says that in the support of { we can control all derivatives by the curl the divergence and a tangential
derivative.

LeEMmMA B.1 Let a be a vector-field on Q. Define (curla)r = 0jou, — Opay; and diva = 8jaj. Then we have
the following pointwise estimate on §:

(B.1) |CVal < |Ccurla| + |Cdival + | Dgal,
where | - | denotes the usual Euclidean distance.

Proor: Here we will suppress the index on ¢, letting it be denoted simply by ¢. Define (def o) = 9;04 + Ok,
Thus 2Va = curla + defa. Let 8 = diag(diaq,...,0,a,) and define v = (defa — (8. Then |[(Va| <
|Ccurl @] + |¢div a| + |7y]. It remains to control . Also define

(B.2) Q% = % — NIN*,
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the projection onto tangential vector-fields. Hence
|’Y|2 = 5ij5kl%‘k’¥jz
= (Q7+ N'N’) (Q" 4+ N*N") viryi
Q7 QM virvjt + Q7N N'yiyjt + N NI QM vy

+ N'NIN*Nlyj.
Since 7 is symmetric, N'NJQ*~;,v;1 = QY N*¥ Nlv;yj1. Also,
(B.3) N'N/N Ny = NN yi)® = [6% i — Q" vir)* = (@ vir)* < Q7 QM yirvju,
since for a symmetric matrix M we have [Tr(M)]? < ¢Tr(M?). ;From (B.3),

QY Q" iyt + QY N*N'yipviu N*NIQM~ipyji + N NIN*N'yipvi

Q7Q vyt + 2QY N* Nyinyji + Q7 QM yipvsi
2cQ7 (Q™ + N*N'vievin
20Q”5kl%k'yjl.

ININ +

Using the fact that v = (defa — (S we have
(B4) Q" v = QY6 ((def o) (Cdefa) jy + Q7 6F (Cdef )i By + QY™ (Biw (Cdef ) jy + Q7 6 (BB

where the second and third term can be controlled by £[¢Va|? + 1|(div a|? and the fourth term can be controlled
by |¢diva|?. The first term in (B.4) can be controlled as follows:

(B.5) QF (¢defa)ik(Cdefa)y; = QY5 (COiak + COrai)(C0jay + COrarj)
(B.6) = QM (COin)(COjm) + QY6 (¢Ban) (COLar;)
(B.7) + QUM (COkaq) (COjeu) + QM (COeri) (COucvy).

Let V4, = Q%9;. Since QY = §,,,, @™ Q’™, the first term in (B.6) can be bounded by [(V[a]|?. The second
[

and third term in (B.6) can be bounded by e[¢Val? + L[¢Vq[a][*. The fourth term we manipulate as follows:
QUM (¢ ) (CO1aj) = Gmn Q™ (CORer) Q™ (CO*arj) and

(B.8) QM (COkew) = QM (COiax) + Q™ ¢k — (Diau]
(B.9) = (Vlar] + Q™ (Courl ).

Thus the fourth term in (B.6) can be controlled by (1+ 1)[(Vg[a]|* 4 |¢curl af? + €[¢Va|?. This concludes the
proof. [ |

(From lemma B.1 we have the following result:

LEMmMA B.2 For1 <s <35,

(B.10) [[¢allm= < Pllals] [I¢allz o, + ICcurlal meia, + ICdival mer@,) + Y 160all2 0,

Jj=1

Proor: The base case is when s = 1 we have on ), according to lemma B.1, ||[(Va| < |[Ccurl o r2q,) +
¢divallL2q,) + [[C0sa| L2 (), Wwhich means that (B.10) holds. Now suppose that s = 5 and that we have the
result for smaller s. Then, by lemma B.1 we see that

(B.11) 16V all 22 < lICeurlall ey + ICdival g, + €06V 0l (0.
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To manipulate the second to last term in (B.11) we write
(B.12) (V40pa — (0pV a = (V/0pz)((VFHa)

summing over j + k = 4 such that k¥ < 3. For 0 < j < 2 we have |[|[V/0pz||L=(0,) < [|z[s and we con-

trol [|[(V*™al[12(q,) by induction. For 3 < j < 4 we have |[V/0pz|r2(0,) < [lz]l5 and [[(V2ap~(q,) <
P[llz|ls ] |¢ell 4 (q,) Py Sobolev’s inequality. This we control by induction. Now

(B13) H§V489a||L2(Qt) S ||Ccur1 V389a||Lz(Qt) + ||<d1V VS(?QOZHLQ(Qt) + ||C89v3(9904|‘[/2(9t)
(B.14) <KV (V) (Va)]ll L2 (e, + 1KV Opcurl al| L2,y + IV Bpdiv o L2 (0,
(B.15) + €05V Dgarl| 120, ) -

The first term in (B.14) is controlled by

(B.16) D VI 9pa) (CVE )| L2 0

where the sums is over j + k& = 3. This term can be controlled by ||z||5/Cc||f4(q,). We control the second term
in (B.14) by

(B.17) D (V2 9p)(¢VF eurl )| L2(q,)

where the sum is over j 4+ k = 3. We control this term by ||z[|5||Ccurl a|| f4(q,). Similarly for the third term in
(B.14). ]

In this section we prove the following lemma.
LeMmMA B.3 Let diva and curla be defined as in lemma B.1. Then, for s <5,
(BA8)  lalluen < Plllzls] |lallzzon + Idival s, + lleurlal @, + ({03 ) - Nll120, |
where N is the outward unit normal to 9Q; and where p(s) is a polynomial which depends on s. Also, for s <5,

‘ 1

(B.19)  llolmeoy < Pllells) [lallzao + ldivallm-i, + leurlala, + 10 ) - Qllza(on, |

where Q is a unit vector which is tangent to 0§2;.

Proor: First we prove (B.18) and (B.19) for s = 1, then we will use lemma B.2 to obtain the higher order
results. Finally, we will use interpolation to obtain the result for real s. Now

(B.20) IValz2 ) :/ dja;07a’dr = / a;N;&a'dS(x) — (o, Aa)q,
Q4 o

where we define (o, Aa)o, = [, @;0;0’a’dr. And

(B.21)
—(a, Aar)q, = 7/ o; [0 oy + 0;07 0" — 80 ] da = / o [fﬁidiva + &7 (curl oz)j} dz
Q4 Q
(B.22) =— NioydivadS(z) + / [diva)® do + / a; N7 (curla); dS(x) — & a; (curl oz)j- dx.
aﬂt Qt BQt Qt
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Also,
(B.23) — [ & a(curl a); dx = —/ (curl oz)g (curl a)§ dx — e (curla); dx
Q Qy Q
and
(B.24) — ey (curla); der = — N;a? (curloc); dS(z) + / a9, (curla); dz.
Q. 0 Q
Moreover,
(B.25) /Q o’ 9; (curl 04); dx = /Q o?9; [0'c; — 0] da
(B.26) = (o, Aar)q, —/ a?9;0;0' dx
Qq
(B.27) = (o, Aar)q, —/ o N;0;a"dS () +/ [dival]® da.
00 Q

From (B.27) we see that

(B.28) =2 (o, Aa)g, = 2/

A [diva]® dz — / (curl a)g (Curla)é- dx
t

Q¢

(B.29) - 2/ a - NdivadS(x) + / (a; N7 — N;o) (curla);. dS(z).
0y o

The boundary terms from (B.20) and (B.28) are

(B.30) / a;N;&a'dS(x) — / a - NdivadS(x) + 1 / (i N7 — N;a) (curla); dS(z).
0% o9 2 Joa,

The second term in (B.30) can be manipulated using @: On 9, @« = a- NN + Qa and therefore

(B.31) —a - Ndiva = —(0;N")[a- N> —a-NVy[a-N] —a- NN;Vy[Q'a] — a- NV;[Q"a]
where Vy = N%9;. In the above, —a - NN;Vy[Q'a] = —[a- N]?N;VN[QY]N; — a- NN;VN[QY]Q . And the
third term from (B.30) we manipulate as follows:
1 , _ , 1 _ o .
(B.32) B (i N7 — N;o?) (curla);- = 5 (i N7 — N;o? (8'aj — 0;0"))
(B33) = 5 [Oéz'NjaZOLj — OziNjajOéZ — szoﬂalaj + Nioﬂajo/]
(B34) = OéiNjaiOtj — aiNjajo/.

The second term in (B.34) cancels the first term in (B.30). The first term in (B.34) we deal with as follows:
(B.35) a;N'9'a; = a;0'[a - N| — a;oj(0'N7) = oo NV [~ N + QiaVila - N] — aza; (9'N).
The first term in (B.35) cancels the second term in (B.31). The remaining terms therefore are

(B.36) | @Na- NP - fo NENSAQUIN, - o NNx[QU]Qu0] dS(a)

(B.37) + /8 . [—a - NVqi[Q'a] + QiaVy|a - N] — a;a;(9'N7)] dS(x).
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To get the lower order terms into the form we want, we use the fact that we can trade normal and tangential
boundary components: Define 7;; = 2a;c; — 6;;(a*) (). Then

/ [NiNjaiozj - Qijaiaj] dS(z)
o0

lo- Nl7200,) = o QlZ2(a0,)

/ 2NN — 6] [oyi,]dS ()
o0

< ZH: (pN* N]deS( )
i /o,
Iz . 12 .
< ; /UmQt (0 NJ)T”CZI‘ ; /Umsz,, CeN? O 5dx) .
Now
d'riy = 2divaa; + 20;(dia;) — (950) (@) — () (9;0%)
= 2divaa; + 20;(9ia;) + (—(950) (a¥) + (Opey) (&) — (Oraj)(aF)
+ (—(aF)(9;0F) + (aF)(a?)) — (aF)(Dra?).
Thus,
(B.38) lac- NiE2(a0,) = lla- Q22 (a0, | < llzlls [Hallizmt) + [[dival| gz, + IICurlaHLzmt)} :

Hence all the lower order terms in (B.36) can be controlled by

- N||iz(agt) + HaH%z(Qt) + ”diVO‘H%Q(Qt) + ||Cur104||2L2(Qt)
or
(B.39) llo- QU2 o0, + ltllZae, + 1divalZs g, + lleurlallfzq,)-

To control the fourth term in (B.36) we use lemma A.1:
(B.40) / a-NVgi[Q'aldS(z) = / a - Ncdp|Q'aldS(x)
0y o0

(B.41) < lec- N lec- Q]

H% (09) H3 (09,)"

By using the fact that ab < ea® + g and the trace theorem we see that the fourth term in (B.36) can be
controlled by both

1 .
Nzl [l N3 g, + laliEagqy + Idivala,) + learlalfg,y | +llellal? g,

and
1 .
N2l [l QI3 o, + ez + IdivalZaa,) + lleurlallfagq, | +elelFllal? -

The fifth term in (B.36) can be controlled similarly. This proves (B.18) and (B.19) for s = 1. We now prove the
estimate in terms of « - N, with the estimate in terms of « - @) following similarly.
Suppose that 2 < s < 3 and that we have the result for smaller s. Using lemma B.2, we have

(B.42)

ol Zre () = lellZzg,) + IVallFr- @,
s—1
(B43) < P[] [|a||m<nt> + IVallzzo,) + lleurl allge-1a,) + [div all 1o, + 3 10'Val 2o,

i=1
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where 0 denotes both 9y and nV. Then

(B.44) 0" 'WVa - Vo la =) (V) (VT a)

where the sum is over i + j = s — 1 such that j < s — 2. The commutator in (B.44) can be controlled by
llzll5]|all zrs—1(q,)- Using the above computation for the case s = 1 we have

(B.45)
IVo a2 < Plllzls} 10"l + 1diva ™ all iz, + lewrl 0" el L2, + 107 ) - Ny 0 ]
(B.46) < Plllzlls) ez (@) + lldiv el me—rq,) + lowlaflz-r ) + 105 ) - Nl g o0 1

Now suppose that s = 4. Then we control the commutator in (B.44) as follows: For 0 < i < 2 we estimate this
term as above. For i = 3 we have j = 0 and we can control the commutator by ||z||4||c||3(,). The case for
s = 5 follows similarly. Using corollary A.3 we see that

s 1 os
119 104)'-7\’||H%(39t) < 1((9)2 85~ ) - Nll 2000 N [l oe 002,) + vl o1 002) [{96)* NI L2 902, )-

Let o have tangential Fourier expansion Y axe™®. Then 95 'ad = S (ik)* 'ale™ and (9p)70; 'ad =
S™(k)= (ik)*ad e, Therefore ((95)295 *a) - N = S (k)3 (ik)* 'ay, - Ne?*?. Thus

(B.A7) 1((96)205 " @) - N[ 2090,y = >_(k)k2"D]ax - NI,

Also, ((9g)*~2a) - N = S (k)" 2oy, - Ne*®. Thus

s_1 s 1
(B.48) 1((@6)*~2a) - NliZ2a0, = D ()** ™| - NI

Thus ||((85)205 ) - Nllz200,) < (D)~ 2ax) - Nllz2(p0,)- By interpolation we now obtain the result for
non-integer s. This concludes the proof. [ ]
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