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Chapter 1

Preface

The field of nonlinear hyperbolic partial differential equations has seen a tremendous devel-
opment since the beginning of the eighties, following the pioneering works of F. John, D.
Christodoulou, L. Hörmander, S. Klainerman and many others. On one hand, many papers
were dedicated to understanding global existence and blowup for quasilinear wave equations
or systems : Hörmander’s book [21] offers a nice overview of the main results. On the other
hand, Christodoulou and Klainerman [17] proved the stability of Minkowski space, and this
was the starting point of many mathematical works in the framework of General Relativity.
If we leave aside the papers about blowup, we observe essentially two main domains of in-
terest : the study of global smooth solutions, and the study of low regularity solutions, both
domains being obviously connected.

The striking fact is the unity of all the techniques and ideas used in these papers ; the em-
phasis is always put on good directions and good components, these components being taken
relative to some null frame. In this way, papers have incorporated more and more tools of
Riemannian geometry such as metrics, connexions, curvature, etc. They also borrowed con-
cepts from general relativity books, such as energy-momentum tensors, deformation tensors,
etc. There seems to be, however, some difficulties : most Riemannian geometry books do
not include the specific Lorentzian tools ; most relativity books do not include a description
of the relevant mathematical framework. Let us however point out two exceptions : the
classical book by Hawking and Ellis [20] and the new book by Rendall [37].

We believe that the use of Lorentzian tools (null frames, etc.) in the mathematical study of
nonlinear hyperbolic systems is going to intensify further, even in the aspects of the field not
directly related with general relativity. This is what we call “geometric analysis of hyperbolic
equations”. It is true that there are nonlinear examples where one can get along with the
geometry of the standard wave equation : these examples are striking, but the possibility
of using standard fields seems to be related to the fact that one is considering only small
solutions ; for large solutions, we believe that it wil be necessary to take into account the
geometry of the linearized operator.
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8 CHAPTER 1. PREFACE

The goal of this booklet is twofold :

i) Give to PDE analysts a self-contained and elementary access to recent literature,

ii) Explain the fundamental ideas connected with the use of null frames.

This book is meant for students or researchers with an elementary background about PDE,
specifically hyperbolic PDE. It can be read by students with five years of university training,
or partial differential equations researchers, without any knowledge of differential geometry.
Though the largest part of the text is about geometric concepts, this book is not a book
about Lorentzian geometry : it only provides the geometric tools needed to understand the
modern PDE literature. The author not being a geometer, we deliberatetly chose to give
naive and self-contained proofs to all statements, which can be viewed as “do it yourself”
exercises for the reader, without using sophisticated “well-known” facts. We hope that we
will be forgiven for that.

Finally, we would like to thank S. Klainerman and F. Labourie for many helpful converstions.



Chapter 2

Introduction

The prototype of all hyperbolic equations is the d’Alembertian

� ≡ ∂2
t −∆x

in R4
x,t. We first review briefly some properties of the solutions in the large (referring to [21]

for proofs), in order to introduce the concepts and questions of this book.

1. We consider in R4
x,t the Cauchy problem for the standard wave equation

�φ = (∂2
t −∆x)φ = 0, φ(x, 0) = φ0(x), (∂tφ)(x, 0) = φ1(x).

a. Suppose for simplicity φi ∈ C∞0 , φi(x) = 0 for r = |x| ≥ M : as a consequence of the
classical solution formula, the function φ can be represented for r ≥ 1 as

φ(x, t) = r−1F (r − t, ω, r−1), r = |x|, ω = x/r,

for some C∞ function F (σ, ω, z) vanishing for |σ| ≥ M (as a consequence of the strong
Huygens principle). Setting ∂r =

∑
ωi∂i, we introduce the two fields

L = ∂t + ∂r, L = ∂t − ∂r,

and define the rotation fields R = x ∧ ∂,

R1 = x2∂3 − x3∂2, R2 = x3∂1 − x1∂3, R3 = x1∂2 − x2∂1.

Remark that Ri(r) = 0, and
∑
ωiRi = 0. Using the representation formula, we observe that

Lφ = O(r−2), (R/r)φ = O(r−2), r → +∞,

while for instance Lφ has only the magnitude r−1. Hence the special derivatives Lφ, (R/r)φ
behave better at infinity that the other components of ∇φ.

9



10 CHAPTER 2. INTRODUCTION

b. We explain now an “energy method”, which is an alternative approach to the preceding
decay results, not using an explicit representation for φ. We define the hyperbolic rotations
H = t∂ + x∂t,

H1 = t∂1 + x1∂t, H2 = t∂2 + x2∂t, H3 = t∂3 + x3∂t,

and call Lorentz fields Z all the fields

∂α, S = t∂t +
∑

xi∂i = t∂t + r∂r, R = x ∧ ∂,H = t∂ + x∂t.

These fields are known to commute with �, except for S which satifies [�, S] = 2�. In the
situation of the preceding section, commuting any number of fields Z with � and using the
standard energy inequality, we obtain the bound∑

||(∇Zkφ)(., t)||L2
x
≤ C.

Now, the following easy formula establish a connexion between the special derivatives L, R/r
and the Z fields :

(r + t)L = S +
∑

ωiHi, (t− r)L = S −
∑

ωiHi, R/r = t−1ω ∧H.

Using these formula, we get for the special derivatives of ∇φ

||(L∇φ)(., t)||L2 = O(t−1), ||(R/r)(∇φ)(., t)||L2 = O(t−1), t→ +∞.

Taking into account the support of φ, we even obtain

||(Lφ)(., t)||L2 = O(t−1), ||(R/r)φ(., t)||L2 = O(t−1), t→ +∞.

Note the contrast with the information given by the standard energy inequality, which yields
only boundedness of these quantities.

It is in fact possible to obtain pointwise estimates from the preceding L2-estimates. For
this, we use Klainerman inequality, valid for any smooth function v sufficiently decaying at
infinity

|v(x, t)|(1 + t+ r)(1 + |t− r|)1/2 ≤ C
∑
k≤2

||Zkv(., t)||L2 .

We thus obtain again the pointwise bounds we had from the explicit representation formula

Lφ = O(t−2), (R/r)φ = O(t−2).

Note however that this “energy method” is likely to work in variable coefficients situations
(or nonlinear situations) where we do not know any representation formula.

If the data are not compactly supported but sufficiently decaying as |x| → +∞, this energy
method still works, but the “interior” behavior of the solution (that is, away from the light
cone {t = r}) is not as good as before.
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c. There is another type of “energy approach” allowing to take notice of the better behavior
of the special derivatives Lφ, R/rφ : we give two examples of this. First, one can prove
the following improvement of the standard energy inequality : for all ε > 0, there is some
constant Cε > 0 such that, assuming �φ = 0,

Eφ(T )1/2 + {
∫

0≤t≤T
< r − t >−1−ε [(Lφ)2 + |(R/r)φ|2]dxdt}1/2 ≤ CεEφ(0)1/2.

This inequality is easily obtained in the same way as the usual energy inequality, using the
multiplier ∂t and a weight ea, where a = a(r− t) is appropriately chosen (see [] for instance).
This inequality is only useful in a region where |r − t| is smaller that t, that is, close to the
light cone : in the region |r − t| ≤ C for instance, the L2

x norm of the special derivatives
Lφ, (R/r)φ is not just bounded, it is an L2 function of t. We can thus identify the “good
derivatives” of φ directly from the energy inequality, without commuting any fields with the
equation.

The second example is the conformal energy inequality which gives, for �φ = 0,

Ẽφ(t)1/2 ≤ CẼφ(0)1/2,

where the conformal energy Ẽ is

Ẽφ(t) = (1/2)

∫
[(Sφ)2 + |Rφ|2 + |Hφ|2 + φ2](x, t)dx.

This inequality is obtained in the usual way using the timelike multiplier K0

K0 = (r2 + t2)∂t + 2rt∂r.

As above, the direct bound of the quantities ||(Zφ)(., t)||L2 provided by the inequality yields
the bounds

||(Lφ)(., t)||L2 = O(t−1), ||(R/r)φ(., t)||L2 = O(t−1).

Once again, we can identify the good derivatives of φ directly from the conformal energy
inequality.

2. Consider now the “null frame”

e1, e2, e3 = L = ∂t − ∂r, e4 = L = ∂t + ∂r,

where, at each point (x0, t0), (e1, e2) form an orthonormal basis of the tangent space to the
sphere

{(x, t), t = t0, |x| = |x0|.
Using spherical coordinates

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ,

we can take (away from the poles)

e1 = r−1∂θ, e2 = (r sin θ)−1∂φ.
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The fields e1, e2 are related to the rotation fields by the formula

e1 = − sinφR1/r + cosφR2/r, e2 = (sin θ)−1R3/r.

Hence the “special derivatives” on which we insisted above are just, equivalently, the com-
ponents of dφ on e1, e2 and L. Thus the good derivatives are part of a null frame, the only
bad derivative being L.

To understand the name “null frame”, it is best to introduce on R4 the scalar product of
special relativity. For two vectors X = (X0, X1, X2, X3) and Y = (Y0, Y1, Y2, Y3), we set

< X, Y >= −X0Y0 +
∑

1≤i≤3

XiYi.

We can then easily check the fundamental properties which define a null frame

(e1, e2)⊥(e3, e4), < L, L >= 0, < L, L >= 0, < L, L >= −2.

The “gradient” ∇̃f of a function f in the sense of this scalar product is defined by

∀Y, < ∇̃f, Y >= df(Y ) = Y (f).

This gives immediately
∇̃f = (−∂tf, ∂1f, ∂2f, ∂3f).

For instance,
∇̃(t− r) = −(1, x/r) = −L.

Since L is “null”, we also have, with u = t− r,

< ∇̃u, ∇̃u >= 0,

and we say that u is an “optical” function. Remark that the null frame (e1, e2, L, L) is
associated to the functions u and t in the sense that

i) the surfaces {t = t0, u = u0} are the usual spheres,

ii) L = −∇̃u and (L,L) are the two null vectors in the orthogonal space to these spheres.

We see in that way how null frames and optical functions are related. Of course, the function
u = t+ r is also an optical function, and L = −∇̃u. Remark that the level surfaces of u are
“outgoing cones”, while level surfaces of u are “incoming cones” ; also, the good derivatives
(e1, e2, L) span, at each point, the tangent space to the outgoing cone through this point.

Let us mention to finish the nice relations between the fields S, K0 (that we have already
encountered) and u, L, u, L,

S = (1/2)(uL+ uL), K0 = (1/2)(u2L+ u2L).
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3. The aim of this book is to explain how one can extend the previously discussed concepts
and results to a general framework. More precisely, suppose we have, instead of the “flat”
Minkwoski metric |X|2 =< X,X > a more general metric g

g = gαβdx
αdxβ, g(X, Y ) ≡< X, Y >= gαβX

αY β.

We define the wave equation � associated to this metric by

�gφ ≡ �φ = |g|−1/2∂α(gαβ|g|1/2∂βφ),

where |g| is the determinant of the matrix (gαβ) and (gαβ) its inverse matrix. Our inter-
est concentrates on this wave equation, and also on the associated Maxwell and Bianchi
equations. From the considerations above for the “flat” case of the Minkowski metric, the
following natural questions arise : for solutions of �gφ = 0,

i) Are there “good derivatives” of φ (in the sense of a better decay at infinity) ?

ii) How to pick up a null frame which would capture this “good derivatives” ?

iii) What is the relation between null frames and optical functions ?

iv) Can one prove energy inequalities where the good derivatives are singled out ?

v) Are there good substitute for the Lorentz fields Z ?

vi) Can one commute these substitue with � to obtain pointwise bounds for the solutions ?

In the case of systems of equations, the vector character of the unknown has to be taken into
account : the new question of the good components of the unknown turns out to be crucial.

In quasilinear problems, the metric g is a function of φ itself : among the most difficult
examples are the Einstein equations, which can be written in special coordinates as the
system

�ggαβ = Fαβ(g, ∂g),

where F is quadratic in ∇g. In such problems, the properties of the solution “bootstrap” to
imply properties of the metric, which in turn lead to better properties of the solution, etc.

The plan of the book follows from what we have said before, with the idea of introducing at
each step only the necessary geometric machinery :

• In chapter 3, we discuss the notions of metric, optical functions and null frames, and give
the basic examples found in the literature.

• The differential geometry aspects appear in chapter 4 where the metric connection is
introduced, as a necessary tool to deal with frames ; we define then the frame coefficients
and compute them on the basic examples.
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• Chapter 5 is dedicated to the specific machinery used to prove energy inequalities : energy-
momentum tensor, deformation tensor, etc. The idea is to compute in such a way that the
energy and the additional “interior terms” can be easily expressed in the frame we are
working with.

• The question about how to pick up a good frame and thus identify the good components of
tensors is adressed in chapter 6, where we discuss extensions of the standard energy inequality
and of the conformal energy inequality.

• The way to find substitute for the standard Lorentz fields and to commute them with �
is explained in chapter 7.

• The curvature tensor is introduced only in chapter 8, where we explain how to control
optical functions and their associated null frames. We establish there the transport equations
and elliptic systems (on (nonstandard) 2-spheres) which govern the frame coefficients.

• Finally, the last chapter is devoted to discuss a number of applications of the ideas of
the previous chapters to nonlinear problems. Though it seems impossible to give complete
proofs of very difficult results, we try to outline the constructions of frames, the inequalities
used, etc., hoping to provide a guide for further reading.



Chapter 3

Metrics and Frames

3.1 Metrics, Duality

a. We will work in R4 or in a 4-dimensional manifoldM . Local coordinates on M are denoted
by xα, α = 0, 1, 2, 3. Sometimes, x0 = t is thought of as “the time”, while (x1, x2, x3) are
the “spatial coordinates”, though this does not make much sense in the context of relativity
theory. The corresponding partial derivatives are ∂α = ∂/∂xα.

The position of the indices is essential : vector fields are indexed with a lower index,
such as ∂α, 1-forms are indexed with an upper index, such as dxα. The components of a
vector field X are denoted by Xα, since Xα = dxα(X), and the components of a 1-form ω
are denoted by ωα, since ωα = ω(∂α). Here and in the sequence, a repeated sum on an index
in lower and upper position is never indicated ; for instance, we write in local coordinates a
vector field X =

∑
Xα∂α = Xα∂α, a 1-form ω =

∑
ωαdx

α = ωαdx
α. If f is a function, we

define df =
∑

(∂αf)dxα = (∂αf)dxα, and Xf = Xα∂αf , etc.

b. A metric is the smooth assignment to each point m of a symmetric bilinear form on
TmM . In local coordinates xα, the components of the metric are gαβ = g(∂α, ∂β), which are
supposed to be smooth. Hence g can be locally identified with the symmetric 4× 4 matrix
(gαβ). The elements of the inverse matrix are denoted by gαβ, the determinant of g by |g|.
In the whole book, the signature of the quadratic form g will be (−1,+1,+1,+1) ; in other
words, the metric is supposed to be Lorentzian (and non degenerate), in contrast with the
Riemanian case where g is assumed to be positive definite.

Using the same convention on repeated indices, the metric is sometimes written

g ≡ ds2 = gαβdx
αdxβ, g(X, Y ) = gαβX

αY β.

The most common examples of Lorentzian metrics are the following :

15
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i) The Minkowski metric (also called “flat” metric), given on R4
x,t by

g = −dt2 + (dx1)2 + (dx2)2 + (dx3)2.

Using spherical coordinates (see Introduction), we get

g = −dt2 + dr2 + r2(dθ2 + sin θ2dφ2).

Setting u = t + r, u = t − r, then tanp = u, tan q = u, it is often convenient to compactify
the whole of R4 by introducing new coordinates t′ = p+ q, r′ = p− q, with

−π < t′ + r′ < π, −π < t′ − r′ < π, r′ ≥ 0.

In these coordinates, the metric is

g = [4 cos2((1/2)(t′ + r′)) cos2((1/2)(t′ − r′))]−1g̃, g̃ = −dt′2 + dr′2 + sin2 r′(dθ2 + sin2 θdφ2.

The corresponding drawing in two dimensions in the coordinates (r′, t′) is called a Penrose
diagramm. It allows a better understanding of “infinity” : the lines I+ = {r′ + t′ = π} and
I− = {t′ − r′ = −π} are called respectively future and past null infinity, etc.

ii) Perturbations of the Minkowski metric such as

g = −dt2 +
∑

gijdx
idxj.

Note that in this context, latin indices run from 1 to 3 (while greek indices run from 0 to 3
!). The matrix gij is positive definite. Considering the absence of “cross terms”, we say that
g is split.

iii) The Schwarzschild metric

g = −(1− 2m/r)dt2 + (1− 2m/r)−1dr2 + r2(dθ2 + sin2 θdφ2).

Here, m ≥ 0 is given, and (r, θ, φ) are spherical coordinates on R3. When m = 0, this metric
reduces to the Minkowski metric written in spherical coordinates. One can show that the
surface {r = 2m} is only an apparent singularity of the metric, and one can also construct
Penrose diagramms for this metric (see [20] for details).

iv) The Kerr metric

g = −[(∆− a2 sin2 θ)/Σ]dt2 + (Σ/∆)dr2 − 4amr sin2 θ/Σdtdφ+ A sin2 θdφ2 + Σdθ2,

with Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2mr, A = (r2 + a2)2 − a2∆ sin2 θ. When a = 0, g is
the Schwarzschild metric. Again, it is explained in [20] how to construct Penrose diagramms
for Kerr metrics.

c. The metric provides a bijection between vector fields and 1-forms according to the formula

∀Y, < X, Y >= ω(Y ).
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We say that X and ω are dual of each other if the above relation is true for all fields Y . In
local coordinates, this reads

X = Xα∂α, ω = ωαdx
α, gαβX

β = ωα.

We say that ωα is obtained from Xβ by “lowering” the index, and we just write Xα = gαβX
β.

Analogously, we write, “raising” the index, ωα = gαβωβ. Hence we do not distinguish between
X and ω, using the same letter for both. We do the same for more general tensors ; for
instance, if T is a 2-tensor acting on vector fields, with components Tαβ = T (∂α, ∂β), we
write

T βα = gβγTγα,

and so on.

• Let f be a C1 function on M . The gradient ∇f is defined as the dual of df , with
components

∇fα = ∂αf ≡ gαβ∂βf.

Note that, by definition, < ∇f,X >= df(X) = Xf , a very useful formula.

• If eα is a basis, its dual basis is defined to be

eα = gαβeβ,

in such a way that < eα, eβ >= δαβ , δβα being one for α = β and 0 otherwise. For a two tensor
Tαβ, we define its trace to be

trT = gαβTαβ = T (eα, e
α) = T (eα, eα).

The remarkable fact is that this trace is independent of the basis eα chosen.

• Define locally the 4-form ε to be

ε = |g|1/2dx0 ∧ dx1 ∧ dx2 ∧ dx3.

From now on , we assume that we are working on R4 or on an orientable manifold M . One
can then easily check that ε does not depend on the local coordinates, we call it the volume
form. One should not confuse this volume form with the volume element used to integrate
functions on the manifold, with is the positive measure dv = |g|1/2dx.

• For any tensor Tαβ...γ, we define

|T |2 = Tαβ...γT
αβ...γ.

For instance, if T is a vector field,

|T |2 = TαT
α = gαβT

βTα =< T, T >

as expected. Note that |T |2 has no reason to be non negative.
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3.2 Optical functions

A C1 function u is called an optical function if it satisfies the eikonal equation

gαβ∂αu∂βu = gαβ∂
αu∂βu =< ∇u,∇u >= |∇u|2 = 0.

In PDE terms, this means that the level surfaces {u = C} are characteristic surfaces for �.
The classical examples for the Minkowski metric are the functions u = t− r and u = t+ r ;
in this case, the level surfaces {u = C} or {u = C} are respectively the outgoing light cones
and the incoming light cones with vortices on the t-axis, and the integral curves of the fields
L = −∇u and L = −∇u generate the cones. In general, note that if an optical function u
is constant on a surface S, then ∇u is both normal and tangent to S. Conversely, if u is
constant on a surface S to which ∇u is tangent, this implies that u is an optical function.

There are many ways of constructing optical functions for a given metric : one possibility
is to solve a Cauchy problem with data on some hypersurface, using the classical method of
characteristics for the eikonal equation. Another possibility is to define first outgoing and
incoming (half-)cones with vortices on some line, and to take u and u to be functions having
these half-cones as level surfaces. We will come back to this in 4.3 and in the last chapter.
Below, we show the role played by optical functions in constructing special basis called null
frames.

3.3 Null Frames

In an euclidean space, orthonormal basis play an important role. The corresponding concept
for a Lorentzian metric is that of null frame. A null frame is a basis (e1, e2, e3, e4) given at
each point (and depending smoothly on this point), such that

< e1, e1 >= 1, < e2, e2 >= 1, < e1, e2 >= 0,

< e3, e3 >= 0, < e4, e4 >= 0, < e3, e4 >= −2µ,

and the subspace generated by (e1, e2) is orthogonal to the subspace generated by (e3, e4).

Note the formula which gives ∇f in a null frame :

∇f = e1(f)e1 + e2(f)e2 − (2µ)−1(e4(f)e3 + e3(f)e4).

The dual basis of a null frame is (e1, e2,−(2µ)−1e4,−(2µ)−1e3), hence the trace of a symmetric
2-tensor T will be

tr T = T (e1, e1) + T (e2, e2)− µ−1T (e3, e4).

The most classical example of null frame is, for the Minkowski metric, using spherical coor-
dinates,

e1 = r−1∂θ, e2 = (sin θ)−1∂φ, e3 = ∂t − ∂r, e4 = ∂t + ∂r.
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The first two vectors form an orthonormal basis on the spheres of R3
x (for constant t), the last

two a basis of the orthogonal space to the sphere, and µ = 1. In general, for a given metric
g, we wish to construct “good” null frames, that is null frames which make the computations
as easy as possible (in particular, we try to arrange µ = 1 in most cases). Here are a few
examples :

1. Quasiradial frame

Let g be a metric on R4
x,t satisfying

g00 = −1, g0iωi = 0, ω = x/r.

This will be in particular the case of a split metric. Set

T = −∇t = −gαβ∂αt∂β = −g0β∂β = ∂t − g0i∂i.

We observe that < T, T >= ∇t(t) = −1, and that T is orthogonal to the surface

Σt = {(x, t)}.

We define then N = ∇r/|∇r|, a unit vector orthogonal to the standard spheres ; moreover,
T and N are orthogonal, since ∂ir = xi/r = ωi and |∇r| < T,N >= T (r) = −g0iωi = 0.
Hence, if we take (e1, e2) to be an orthonormal basis (in the sense of g !) on the standard
spheres, the basis

e1, e2, e3 = T −N, e4 = T +N

is a null frame, with < e3, e4 >= −2.

The advantage of this choice is its explicit character and simplicity, since one uses only the
foliation by the standard 2-spheres : we will see that it is sufficient for many applications.
It turns out, however, that there can be good reasons to introduce nonstandard spheres, as
we presently see.

2. Null frame associated to one optical function

Let g = −dt2 + gijdx
idxj be a split metric on R4

x,t (close to the Minkowski metric) and u
an optical function for g (close to t − r) ; this is for instance the framework of [24]. Using
the coordinate t, we define the foliation Σt0 = {(x, t), t = t0}, and using u, we define the
foliation by nonstandard 2-spheres

St0,u0 = {(x, t), t = t0, u(x, t) = u0}.

We set then L = −∇u = (∂tu)∂t − (gij∂iu)∂j. Since ∇u is orthogonal to {u = u0} and ∂t
is orthogonal to Σt0 , the field Ñ = −(gij∂iu)∂j is an horizontal field orthogonal to St0,u0 .
Moreover,

< Ñ, Ñ >= gij(g
ik∂ku)(gjl∂lu) = gkl∂ku∂lu = (∂tu)2.
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We set a = (∂tu)−1, N = aÑ . Then, if (e1, e2) form an orthonormal basis on the nonstandard
spheres, the frame

e1, e2, e3 ≡ L = a(∂t −N), e4 ≡ L = a−1(∂t +N)

is a null frame, with < L,L >= −2.

3. Null frame associated to two optical functions

A more symmetric approachfor a general metric g is to consider two optical functions u and
u, and define the sphere foliation by

Su0,u0
= {(x, t), u(x, t) = u0, u(x, t) = u0}.

One can think of u and u as being close to t − r and t + r, the spheres being nonstandard
2-spheres close to the usual ones. The advantage of doing so is that we do not have to
consider any t-coordinate, which is more satifying in the context of relativity theory. We set
then

L = −∇u, L = −∇u, 2Ω2 = − < L,L >= −(gαβ∂αu∂βu)−1.

The desired null frame is

e1, e2, e3 = 2ΩL, e4 = 2ΩL, < e3, e4 >= −2,

if, as before, (e1, e2) form an orthonormal basis of the spheres Su0,u0
.

4. Null frame associated to a sphere foliation

More generally, following [25], we can start from a 2-sphere foliation chosen in such a way
that the metric is positive definite on the tangent space to these 2-spheres. We choose then
(e1, e2) to be an orthonormal basis on the spheres, and e3 and e4 to be null vectors in the
orthogonal space to the spheres. The quasiradial case, for instance (example 1), corresponds
to choosing the standard spheres for this foliation, a simple choice which turns out to be
sufficient for many applications. Working with non standard spheres as in examples 2 or 3
can be delicate.

In this construction, e4 is orthogonal to the planes generated by (e1, e2, e4) ; if the distribution
of these planes is integrable, that is, if there exists u such that these planes are tangent to
the hypersurfaces {u = C}, then e4 is colinear to ∇u, hence u is an optical function as in
example 2. This shows how optical functions appear naturally in this framework. Note that
quasiradial frames are not integrable in general.

5. Schwarzschild metric : Since this metric is rotationally invariant, we also use the
standard spheres, the restriction of the metric being then the standard euclidean metric. We
take (e1, e2) as usual, and

e3 = ∂t − (1− 2m/r)∂r, e4 = ∂t + (1− 2m/r)∂r.
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6. Kerr metric : The case of the Kerr metrics is more delicate, since the metric is not
rotationally invariant. According to [39], there are good algebraic reasons to set

X = ∂t + a/(r2 + a2)∂φ, Y = ∆/(r2 + a2)∂r,

and to choose
e1 = Σ−1/2∂θ, e2 = (Σ1/2 sin θ)−1(∂φ + a sin2 θ∂t),

e3 = X − Y, e4 = X + Y,< e3, e4 >= −2Σ∆(r2 + a2)−2.

Note that(e1, e2) are not tangent to a sphere foliation, since

[e1, e2] = (r2 + a2)Σ−3/2 cos θ[aΣ−1/2(e3 + e4)− (sin θ)−1e2]

is not generated by (e1, e2).
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Chapter 4

Computing with frames

Performing computations in a variable frame requires very often to take derivatives of com-
ponents. A typical example will be an expression of the form X < Y,Z >, where (X, Y, Z)
are vector fields : the result involves both derivatives of the coefficients of the metric and
derivatives of the coefficients of the fields Y, Z. Even such simple computations become
quickly impossible if one does not use the appropriate geometric tool, the metric connexion.

4.1 Metric Connexion

1. A connexion is a derivation operator D of one vector field by another, yielding a new
vector field :

(X, Y ) 7→ DXY,

with the following properties :

i) For any function f ∈ C∞, DfXY = fDXY . We say that D is “linear” in X ; this implies
in particular that (DXY )(m) depends only on X(m).

ii) For any function f , DX(fY ) = fDXY + (Xf)Y . This is similar to the usual derivation
of a product.

iii) For any fields X, Y , DXY −DYX = [X, Y ] ≡ (XY − Y X). We say that D is “torsion
free”.

The fundamental theorem (see [19]) is that there exists a unique “metric” connexion, that
is a connexion enjoying the additionnal property

X < Y,Z >=< DXY, Z > + < Y,DXZ > .

23
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This formula seems to ignore the derivatives of the coefficients of the metric, which are
however present in < Y,Z >. This is because these derivatives are in fact part of the
definition of D, as we see now. In local coordinates, set

D∂α ≡ Dα, D∂α∂β ≡ Dα∂β = Γγαβ∂γ,

thus defining the Christoffel symbols Γγαβ. The torsion free character of D implies the
symmetry Γγαβ = Γγβα, and, using the properties in the definition of D, it is easy to obtain
the formula (be careful that we lowered the first index !)

Γγαβ ≡ gγνΓ
ν
αβ =< Dα∂β, ∂γ >= (1/2)(∂αgβγ + ∂βgαγ − ∂γgαβ).

The simplest example of connexion in R4 is

DX(Y α∂α) = X(Y α)∂α,

which is the metric connexion corresponding to a constant coefficients metric. Why dont we
take this in all cases ? just because it does not make sense : the formula is given in local
coordinates, and not as an intrinsic formula ! In general, we have

DXY = X(Y β)∂β + ΓγαβX
αY β∂γ.

2. It is very useful to extend D to derive any tensor field T . The natural way to do this is
to generalize the product formula ; if T acts on p vectors, we set

X[T (Y1, . . . , Yp)] = (DXT )(Y1, . . . , Yp) + T (DXY1, Y2, . . . , Yp) + . . .+ T (Y1, . . . , DXYp).

For instance,

X[g(Y1, Y2)] = (DXg)(Y1, Y2) + g(DXY1, Y2) + g(Y1, DXY2),

which gives, by comparison with the formula defining a metric connexion, DXg = 0. Another
instructive example is the computation of DXω for a 1-form ω : for any vector field Y ,

X(ω(Y )) = (DXω)(Y ) + ω(DXY ).

If Z is the vector field dual to ω, by the metric property,

< DXZ, Y >= − < Z,DXY > +X(< Z, Y >) = −ω(DXY ) +X(ω(Y )) = (DXω)(Y ).

In other words, DXZ is also dual to DXω : we said before we would not distinguish between
ω and its dual Z ; this holds also when we take derivatives : there is no need to know what
object we derive (form or field), the result is the same.

3. The divergence of a vector field X is defined as

div X = DαX
α.
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It is important to note that here and in the sequence, DαX
α never means that we take the

derivative ∂α of Xα : it means that we compute first DαX, and then take the α-coordinate :

DαX
α ≡ [DαX]α.

In local coordinates, using the above formula for the Christoffel symbols,

div X = ∂α(Xα) +XβΓααβ = ∂α(Xα) + (1/2)gαβX(gαβ).

Using the formula (log detA)′ = tr (A′A−1), we also obtain

∂α|g| = |g|gβγ∂αgβγ, div X = |g|−1/2∂α(Xα|g|1/2).

4. The following useful emma is a consequence of DXg = 0.

Lemma. i) Let T be a 2-tensor and X any vector field. Then

X(tr T ) ≡ X(Tαα ) = trDXT ≡ DXT
α
α .

ii) Similarly, X|T |2 = 2DXTαβT
αβ.

To prove the first formula, we note that, in any frame (eα), tr T = T (eα, e
α). Hence

X(tr T ) = (DXT )(eα, e
α) + T (DXeα, e

α) + T (eα, DXe
α).

Since < eα, eβ >= δαβ , DXe
α
β = −DXe

α
β . This implies that the last two terms in the formula

for X(tr T ) cancel out.

The proof of the second formula is similar :

X(TαβT
αβ) = X(Tαβ)Tαβ + TαβX(Tαβ) =

= 2(DXT )αβT
αβ + Tαβ[T (DXeα, eβ) + T (eα, DXeβ)]+

+Tαβ[T (DXe
α, eβ) + T (eα, DXe

β)].

Using DXe
α
β = −DXe

α
β as before, we see that the T terms cancel out. ♦

4.2 Submanifolds

If S ⊂ M is a submanifold of M , the restriction of g to vectors tangent to S gives a metric
on S. If S has codimension one with unit normal N , we define the bilinear second form
k, acting on vector fields X, Y tangent to S, by

k(X, Y ) = − < DXN, Y > .
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Remark that k is symmetric, since

k(X, Y ) = −X < Y,N > + < N,DXY >=< N, [X, Y ] +DYX >=

=< DYX,N >= − < DYN,X >= k(Y,X).

We have used here the torsion free character of D, the metric property and the fact that the
Lie bracket [X, Y ] of X and Y is also tangent to S.

Example 1 : Let g = −dt2 + gijdx
idxj be a split metric ; the second form of S = Σt is

given by kij = −(1/2)∂tgij, since

N = ∂t, < Di∂t, ∂j >= Γji0 = (1/2)∂tgij.

Example 2 : Consider in R3
x the flat riemannian metric and let S be the sphere of radius

R in R3 ; then
N = R−1xi∂i, DXN = R−1X(xi)∂i = R−1X

and k(X, Y ) = −R−1 < X, Y >. Keep in mind, in particular, that the trace of k is −2/R.

For vectors X, Y tangent to the hypersurface S, we decompose DXY into its tangential and
normal parts

DXY = T (X, Y ) +R(X, Y ).

Since
< DXY,N >=< R(X, Y ), N >= k(X, Y ),

we have R(X, Y ) = k(X, Y )N . It is then straightforward to check that T (X, Y ) enjoyes all
the properties of a metric connexion on S : by uniqueness, it is the metric connexion on S,
denoted by 6 DXY , and the formula reads

DXY =6 DXY + k(X, Y )N.

Finally, let us mention Stokes formula in this context : let D be an open domain (we
assume that there can be no confusion between the domain and the connexion !) of R4 with
smooth boundary ∂D, and X be a vector field on D. Then∫

D

div XdV =

∫
∂D

< X,N > dv.

Here, the oriented unit normal N is defined by N = ∇f/||∇f ||, if f defines ∂D and f < 0
in D ; the volume elements on D and ∂D are respectively dV and dv.

4.3 Hessian and d’Alembertian

1. For a given C2 function f , we define the Hessian ∇2f of f as the bilinear form

∇2f(X, Y ) =< DX∇f, Y > .
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More explicitly,

∇2f(X, Y ) = X < ∇f, Y > − < ∇f,DXY >= X(Y (f))− (DXY )f.

This formula gives in particular

∇2f(X, Y )−∇2f(Y,X) = (XY − Y X)(f)− (DXY −DYX)(f) = [X, Y ]f − [X, Y ]f = 0,

that is, ∇2f is bilinear symmetric.

2. The d’Alembertian �gf = �f of f is defined as the trace of ∇2f ; from the formula in
section 3.1 we get the various representations

�f = (∇2f)αα =< Dα∇f, ∂α >= div∇f = |g|−1/2∂α(gαβ|g|1/2∂βf),

�f = gαβ(∇2f)(∂α, ∂β >= gαβ[∂2
αβf − (Dα∂β)f ] = ∂α∂αf − (Dα∂α)f,

�f = gαβ∂2
αβf + [∂α(gαβ) + (1/2)gλµ∂βgλµ]∂βf.

Note that the principal symbol of � is p = gαβξαξβ, but there are also lower order terms in
� !

In a null frame (e1, e2, e3, e4), using the formula for the trace of a symmetric tensor, we get

�f = −∇2f(e3, e4)+∇2f(e1, e1)+∇2f(e2, e2) = −e4e3f+(e2
1+e2

2)f+[D4e3−(D1e1+D2e2)]f.

One has to be careful in interpreting this formula, as we can see in the flat case with the
usual d’Alembertian. In this case,

e4e3 = ∂2
t − ∂2

r , D4e3 = 0.

Using spherical coordinates and taking e1 = r−1∂θ, e2 = (r sin θ)−1∂φ, we have

D1e1 = −r−1∂r, D2e2 = −(r sin θ)−2(x1∂1 + x2∂2).

Hence, using the definition of the induced connexion on the sphere,

6 D1e1 = 0, D2e2 = −r−1∂r+ 6 D2e2, 6 D2e2 = −r−2(cos θ/ sin θ)∂θ.

Gathering the terms,

D1e1 +D2e2 = −(2/r)∂r − r−2(cos θ/ sin θ)∂θ.

Finally, we get

� = −∂2
t + ∂2

r + (2/r)∂r + r−2∆S, ∆S = ∂2
θ + (sin θ)−2∂2

φ + (cos θ/ sin θ)∂θ.

We recognize the usual expression of the d’Alembertian in spherical coordinates, ∆S being
the Laplacian on the unit sphere.
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3. Geodesics, Bicharacteristics and Optical functions :

a. To the metric g is associated the symbol

p(x, ξ) = gαβξαξβ.

This is a well-defined function on the cotangent space to the manifold M , which is the
principal symbol of the wave operator �. From a PDE point of view, it is important to
consider (null) bicharacteristic curves of � starting from a point (x0, ξ

0), which are defined
by

(d/ds)(xα ≡ ẋα = ∂ξαp, ξ̇α = −∂αp, xα(0) = xα0 , ξα(0) = ξ0
α, p(x0, ξ

0) = 0.

If we start from the point (x0, µξ
0), the solution is just (x(µs), µξ(µs)). Differentiating the

system once more, we get an autonomous differential equation for the coordinates xα

(d2/ds2)(xα) = ∂γg
αβgβµẋ

γẋµ − (1/2)∂αgλµgλλ′gµµ′ẋ
λ′ẋµ

′
=

= −gαβ∂γgβµẋγẋµ + (1/2)∂αgλλ′ẋ
λẋλ

′
= −Γαβγẋ

βẋγ.

We recognize the equation of a geodesic curve, which is, by definition, a curve such that
DTT = 0, for T = ẋ ; in fact,

DTT = DT ẋ = T (ẋα)∂α + Γαβγẋ
βẋγ∂α.

Since Tf = (d/ds)(f(x(s))) for any C1 function f , the claim is proved. The initial conditions
for the geodesic curve which is the projection of the bicharacteristic are

x(0) = x0, ẋ(0)α = 2gαβξ0
β.

b. For a given point x0, consider a non-zero future oriented null vector ξ0 at this point :
there is a unique bicharacteristic curve starting from (x0, ξ

0) ; the union of all such half-
curves (for s ≥ 0) starting from x0 form the geodesic (half) cone with summit at x0. Let L
be the vector field ẋ on this cone. For each value of the parameter s, let Ss be the locus of
the points x(s) for the various ξ0. Choose a non zero field X tangent to, say, Ss0 , and define
X on the cone to be X extended by the action of the flow of L.

Lemma. The vector L is a null vector, which is orthogonal to the geodesic cone.

First, < L,L >= 0 since L < L,L >= 2 < DLL,L >= 0 and, for s = 0,

< L,L >= gαβẋ
αẋβ = 4p(x0, ξ

0) = 0.

Next, [L,X] = 0 by construction. Then, for the induced connexion 6 D on the cone,

L < X,L >=<6 DLX,L > + < X, 6 DLL >=< [L,X], L > + <6 DXL,L >= (1/2)X < L,L >= 0.

Since < X,L > goes to zero when s goes to zero, < X,L >= 0 and the orthogonal to L is
the tangent plane to the cone. ♦



4.4. FRAME COEFFICIENTS 29

Consider now a one parameter family of geodesic cones such that there exists a function u
having the cones of this family as level sets : a typical case would be, for the Minkowski
metric, the geodesic cones with vortices on the t-axis, corresponding to a function u = F (t−r)
(which is of course singular on the t-axis). Since ∇u is then normal to each geodesic cone,
∇u is colinear to L, hence ∇u is a null vector and u an optical function.

c. This construction can be extended if, instead of starting from a single point x0, we start
from a spacelike 2-surface S0. Choosing at each point x0 of S0 an outgoing future oriented
null vector ξ0(x0) orthogonal to S0, we consider the union Σ of all the geodesic curves issued
from (x0, ξ

0(x0)). Defining L and X on Σ as before, we obtain L < X,L >= 0 as before,
hence < X,L >= 0 since this is true by construction for s = 0. Again, if we are given a one
parameter family of such surfaces Σ, such that there exists a function u having these Σ as
level sets, then u is an optical function.

4.4 Frame coefficients

As explained above, working in a given frame eα requires that we know the vectors Dαeβ.
In the case of local coordinates xα, eα = ∂α, Dα∂β = Γγαβ∂γ and we have seen already the
explicit formula for Γ.

1. a. Suppose we work with a null frame (eα) for which we know the brackets [eα, eβ]. Using
the various properties of the metric connexion, we can compute explicitly the vectors Dαeβ.
We give here a few examples of these manipulations :

i) < D1e1, e1 >= 0, since e1 < e1, e1 >= 0 = 2 < D1e1, e1 >.

ii) < D1e1, e2 >= − < e1, D1e2 >= − < e1, D2e1 + [e1, e2] >= − < e1, [e1, e2] >.

iii) For j = 3, 4,

< Dje1, e2 >=< [ej, e1], e2 > + < D1ej, e2 >,

< D1ej, e2 >= − < ej, D1e2 >= − < ej, [e1, e2] > − < ej, D2e1 >,

< ej, D2e1 >= − < e1, D2ej >= − < e1, [e2, ej] > + < e2, Dje1 > .

Finally,

2 < Dje1, e2 >=< [ej, e1], e2 > − < ej, [e1, e2] > + < e1, [e2, ej] > .

b. Let us compute for instance the frame coefficients for the quasiradial null frame of a
quasiradial situation, as described in chapter 3.3. We define the second form of the foliation
ΣT = {(x, t), t = T} by k(X, Y ) = − < DXT, Y >. In local coordinates,

kij = − < DiT, ∂j >= (∇2t)ij = −(Di∂j)(t) = −Γ0
ij = −(1/2)g0α(∂igαj + ∂jgαi − ∂αgij).
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For vector fields X, Y , we define 6 DXY to be the orthogonal projection of DXY onto the
space generated by (e1, e2)

6 DXY =< DXY, e1 > e1+ < DXY, e2 > e2.

In the sequence, indices a, b run from 1 to 2, corresponding to the basis on the spheres. We
set

c = |∇r|, c2 =< ∇r,∇r >= gijωiωj.

Theorem (Quasiradial case). The connexion D satisfies

DTT = 0, DNT = −kNNN − kaNea, DaT = −kaNN − kabeb,

DTN = kaNea, DNN = −kNNT + ea(c)/cea, DaN =6 DaN − kaNT,
DNea =6 DNea + ea(c)/N − kaNT, DT e= 6 DT ea − kaNN.

• For any field X, by symmetry of the Hessian, < DTT,X >=< DXT, T >= 0, hence
DTT = 0. For tangential X, Y , < DXT, T >= 0, < DXT, Y >= −k(X, Y ). This gives the
first line.

• Since g0iωi = 0, using the decomposition formula of ∂i into its radial part and its rotation
part

∂i = ωi∂r − (ω ∧R/r)i,
we obtain

T = ∂t − g0i(∂i − ωi∂r) = ∂t + g0i(ω ∧R/r)i,
N = c−1gijωi∂j = c∂r − c−1gijωi(ω ∧R/r)j.

This implies
[T,N ] = (Tc/c)N + . . . R.

We compute now the derivatives of N = c−1∇r. First, < DTN,N >= 0,

DTN, T >=< [T,N ], T > + < DNT, T >= 0.

Next,

< DTN, ea >= c−1 < DT∇r, ea >= c−1 < Da∇r, T >=< DaN, T >= − < DaT,N >= kaN .

• Similarly, we know DNN , since < DNN,N >= 0,

< DNN, T >= − < DNT,N >= kNN ,

< DNN, ea >= c−1 < DN∇r, ea >= c−1 < Da∇r,N >= ea(c)/c.

• Finally, < DaN,N >= 0,

< DaN, T >= c−1 < Da∇r, T >= c−1 < DT∇r, ea >=< DTN, ea >= kaN .
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The quantities < DaN, eb >=<6 DaN, eb > are the components of the second form of the
standard spheres with respect to the induced metric gij in Σt.

For any field X, < DXea, T >= − < DXT, ea > and < DXea, N >= − < DXN, ea > are
already known. The other quantities < DNea, eb >, < DT ea, eb > and < Dcea, eb > depend
on the choice of (e1, e2), and have to be computed using the expressions of the brackets as
above. ♦

2. In the case of a frame associated to one or two optical functions (see 3.3), using the
properties of the null frame and of the connexion, one can deduce all frame coefficients from
some of them conveniently chosen :

i) Define first the analogues of the second form for the nonstandard spheres

χab =< DaL, eb >, χab =< DaL, , eb >, L = e4, L = e3, a, b = 1, 2.

These two tensors are symmetric for the same reason as for the second form of a hypersurface,
namely, because [ea, eb] is tangent to the spheres.

ii) Next, we define for 1-forms on the spheres by

2ηa =< DLL, ea >, 2η
a

=< DLL, ea >,

2ξa =< DLL, ea >, 2ξ
a

=< DLL, ea > .

iii) Finally, the functions ω and ω are

4ω =< DLL,L >, 4ω =< DLL,L > .

We check now that these quantities allow to recover all frame coefficients. Suppose the frame
is associated to one optical function u, with L = −∇u as explained in example 2 of 3.3.

Theorem (Integrable case). The connexion D satisfies the formula

DLL = 0, DLL = 2ηaea + 2ωL,DaL = χabeb − ηaL,

DLL = 2η
a
ea, DLL = 2ξ

a
ea − 2ωL, DaL = χ

ab
eb + ηaL,

DLea =6 DLea + η
a
L, DLea =6 DLea + ξ

a
L+ ηaL,

Dbea =6 Dbea + (1/2)χabL+ (1/2)χ
ab
L,

ηa = ea(a)/a+ kaN .

First, we note that DLL = 0, since

< DLL,X >= − < DL∇u,X >= −∇2u(L,X) =
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= −∇2u(X,L) = − < DX∇u, L >=< DXL,L >= 0.

This means that the integral curves of L along the outgoing cones are geodesics. Also, since
T ≡ ∂t = −∇t, < DTT,X >=< DXT, T >= 0, which shows that DTT = 0. All other
formula are easy, except the last one ; for this, we compute ea(< L, T >) in two different
ways :

< L, T >= −1/a, ea(< L, T >) = ea(a)/a2,

ea(< L, T >) =< DaL, T > + < L,DaT > .

Now L = −a2L+ 2aT , which gives

< DaL, T >= (2a)−1 < DaL,L+ a2L >= ηa/a.

Also,
< L,DaT >= a−1 < T +N,DaT >= −a−1kaN ,

which proves the formula. ♦

We prove now that the underlined quantities can be recovered from the others and from the
second form k(X, Y ) = − < DX∂t, Y >.

Theorem. The following formula hold

χ
ab

= −a2χab − 2akab,

ξ
a

= −a2ηa + a2kaN ,

η
a

= −kaN ,

2ω = akNN − La/a.

For instance, since L = −a2L+ 2a∂t,

χ
ab

= −a2χab − 2akab,

2ξ
a

=< DLL, ea >= −2a2ηa + 2a < DL∂t, ea >,

< DL∂t, ea >=< Da∂t, L >= −a < Da∂t, N >= −a < DN∂t, ea >= akaN ,

2η
a

=< DL(−a2L+ aT, ea >= 2a < DL∂t, ea >= 2 < DNT, ea >= −2kaN .

Finally, we check 2ω = akNN − La/a : in fact,

< DLL,L >= a2 < DT−N(a−1(T +N)), T −N >=

= a2[−2(T −N)(a−1) + a−1 < DT−N(T +N), T −N >,

< DT−N(T +N), T −N >= −2kNN .

♦
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To conclude, note that the quantities χ, η are components of the Hessian ∇2u :

χab = −∇2uab, 2ηa = −∇2uaL.

Note in particular that, according to the trace formula of chapter 1,

�u = tr∇2u = ∇2uaa −∇2u34 = −tr χ+ < DLL,L >= −tr χ.

In chapter 7, we will discuss in more details how the tensors χ, ξ, etc. can be estimated, in
situations where they are not explicitly known.
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Chapter 5

Energy Inequalities and Frames

To obtain an energy inequality for �, we proceed as usual by choosing a vector field X (the
“multiplier”) and writing

(�φ)(Xφ) = div P +Q.

Here, P will be an appropriate field whose coefficients are quadratic forms in the components
of∇φ, while Q is a quadratic form in these components with variable coefficients. Integrating
(�φ)(Xφ) in some domain D, and using Stokes formula, we obtain boundary terms∫

∂D

< P,N > dv

which yield the “energy” of φ, and interior terms
∫
D
QdV . In practice, since some deriva-

tives of φ behave better than other, we must write these energies and interior terms in an
appropriate frame, and not in the usual coordinates. We describe now the clever machinery
which makes this possible and easy.

5.1 The Energy Momentum Tensor

1. Let φ be a fixed C1 function, and define the energy momentum tensor Q as a
symmetric 2-tensor by

Q(X, Y ) = (Xφ)(Y φ)− (1/2) < X, Y > |∇φ|2, Qαβ = (∂αφ)(∂βφ)− (1/2)gαβ|∇φ|2.

Consider a null frame (e1, e2, e3, e4), with < e3, e4 >= −2µ. Since ∇φ = e1(φ)e1 + e2(φ)e2 −
(2µ)−1(e4(φ)e3 + e3(φ)e4), we get

|∇φ|2 =< ∇φ,∇φ >= e1(φ)2 + e2(φ)2 − µ−1e3(φ)e4(φ).

35
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Note that |∇φ|2 is not a positive term ! Hence the components Qαβ = Q(eα, eβ) of Q are,
writing for simplicity eα(φ) = eα,

Q11 = (1/2)(e2
1 − e2

2) + (2µ)−1e3e4, Q12 = e1e2, Q22 = −(1/2)(e2
1 − e2

2) + (2µ)−1e3e4,

Q13 = e1e3, Q14 = e1e4, Q23 = e2e3, Q24 = e2e4,

Q33 = e2
3, Q34 = µ(e2

1 + e2
2), Q44 = e2

4.

In particular, the trace tr Q = Qα
α is, according to the formula of chapter 3,

tr Q = Q11 +Q22 − µ−1Q34 = −(e2
1 + e2

2) + µ−1e3e4 = −|∇φ|2.

2. The tensor Q enjoyes a remarkable positivity property .

Theorem (Positivity of Q). If X and Y are two timelike future oriented vectors, then

Q(X, Y ) ≥ 0.

Recall the terminology for vectors : a vector X is timelike, null or spacelike if < X,X >< 0,
< X,X >= 0 or < X,X >> 0 respectively ; future oriented means that the t-component is
positive. To prove the claim, let e3 and e4 be two null future oriented vectors in the plane
generated by (X, Y ) : then, by convexity of the future timelike cone,

X = ae3 + a′e4, Y = be3 + b′e4, a, a
′, b, b′ ≥ 0.

Hence, setting < e3, e4 >= −2µ, µ ≥ 0,

Q(X, Y ) = abe3(φ)2 + a′b′e4(φ)2 + µ(ab′ + a′b)[e1(φ)2 + e2(φ)2] ≥ 0.

♦

3. The energy-momentum tensor Q is related to the d’Alembertian by the formula

DαQαβ = (�φ)(∂βφ).

To prove this formula, we write, using DXg = 0,

Q = dφ⊗ dφ− (1/2)g|∇φ|2,

DXQ = DXdφ⊗ dφ+ dφ⊗DXdφ− g < DX∇φ,∇φ > .

Taking X = ∂α, and then the αβ component, we obtain

DαQαβ = (∇2φαα)(∂βφ) + (∂αφ)∇2φαβ −∇2φ(∂β,∇φ).

In the right-hand side, the first term is by definition (�φ)(∂βφ), the second is ∇2φ(∇φ, ∂β),
which cancels out with the third. ♦



5.2. DEFORMATION TENSOR 37

5.2 Deformation Tensor

Definition. The deformation tensor of a given vector field X is the symmetric 2-tensor
(X)π defined by

(X)π(Y, Z) ≡ π(Y, Z) =< DYX,Z > + < DZX, Y > .

In local coordinates (be careful about the place of the indices !),

παβ = DαXβ +DβXα.

• Let us digress shortly to explain a few things about Lie derivatives : for given X,
we define LXf = Xf , LXY = [X, Y ], and extend this to tensors by imitating the product
formula, exactly as we have done for DX :

X(T (Y1, . . . , Yp)) = (LXT )(Y1, . . . , Yp) +
∑

1≤i≤p

T (Y1, . . . , [X, Yi], . . . , Yp).

As is well known, the Lie derivative is defined using the flow of X, and LXY is not linear in
X, in contrast with the covariant derivative DXY . Using this definition with T = g, we find

X(g(Y, Z)) = (LXg)(Y, Z) + g([X, Y ], Z) + g(Y, [X,Z]) = g(DXY, Z) + g(Y,DXZ),

hence finally the important formula
π = LXg.

This formula helps visualize what π is ; in particular, π vanishes if g is invariant by the flow
of X : we call such a field a Killing field. If only LXg = λg, the field is conformal Killing.
For the Minkowski metric, the simplest examples of Killing fields are the derivations, the
spatial rotations and the hyperbolic rotations Hi = t∂i +xi∂t ; note that among these fields,
only ∂t is timelike. There are five conformal Killing fields (again, be aware of the position
of the index µ)

S = xα∂α, Kµ = −2xµS + |x|2∂µ,

for which the corresponding deformation tensors are

(S)π = 2g, (Kµ)π = −4xµg.

Among these, only K0 = (r2 + t2)∂t + 2rt∂r is timelike. For the Schwarzschild metric, ∂t
and the spatial rotations are Killing fields ; for Kerr metric, ∂t and ∂φ are Killing. For a
general metric, there are no Killing fields, because the number of equations to be satisfied is
10, while there are only 4 unknowns.

• To compute explicitly Xπ in a frame, we need the frame coefficients. However, in local
coordinates, we have the simple formula

(X)παβ = ∂α(Xβ) + ∂β(Xα)−X(gαβ).
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In fact, DαXβ =< DαX, ∂β >= gβγ∂α(Xγ) +XγΓβαγ. Hence

παβ = gαα
′
gββ

′
[gβ′γ∂α′(X

γ) +XγΓβ′α′γ + gα′γ∂β′(X
γ) +XγΓα′β′γ] =

= ∂α(Xβ) + ∂β(Xα) +Xγgαα
′
gββ

′
[Γβ′α′γ + Γα′β′γ].

Since, from the explicit formula, Γαβγ + Γβαγ = ∂γ(gαβ), the last term is

gαα
′
gββ

′
X(gα′β′) = −X(gαβ).

♦ • Finally, let us keep in mind the following formula, which will be useful later on :

(fX)π(Y, Z) = f (X)π(Y, Z) + (Y f) < X,Z > +(Zf) < X, Y >,

where f ∈ C1 is an arbitrary function. We will see that the deformation tensors play a
crucial role both in energy computations and in commutation formula.

5.3 Energy Inequality Formalism

Theorem (Key formula). Let φ be a given C1 funciton and Q be the associated energy-
momentum tensor. Let X be a vector field, and set Pα = QαβX

β. Then

div P ≡ DαP
α = (�φ)(Xφ) + (1/2)Qαβ(X)παβ.

• This is the key formula for proving energy inequalities. Let us explain why : the formula
is just a re-writing of (�φ)(Xφ) as the sum of a divergence of a field (the term div P ) and a
quadratic form q in the components of ∇φ, as expected. The point is that q is written as a
double trace (summation on α and β), which can be computed using any null frame. More
explicitly, we have for any null frame (eα) , denoting as usual eα(φ) = eα,

Qπ = Qαβπ
αβ = Q11π11 + 2π12e1e2 − (1/µ)π14e1e3 − (1/µ)π13e1e4 + π22Q22

−(1/µ)π24e2e3 − (1/µ)π23e2e4 + (1/(4µ2))π44e
2
3 + (1/(4µ2))π33e

2
4 + (1/(2µ))π34(e2

1 + e2
2) =

= (1/2)(e2
1 − e2

2)(π11 − π22) + (1/(2µ))π34(e2
1 + e2

2) + 2π12e1e2

−(1/µ)[π14e1e3 + π13e1e4 + π24e2e3 + π23e2e4]

+(1/(4µ2))[π44e
2
3 + π33e

2
4 + 2µ(π11 + π22)e3e4].

• To prove the key formula, using the definitions, we write

∂α(Pα) = ∂α(P (∂α)) = DαPα + P (Dα∂α) =

= ∂α(Q(∂α, X)) = (DαQ)(∂α, X) +Q(Dα∂α, X) +Q(∂α, D
αX).

The terms P (Dα∂α andQ(Dα∂α, X) cancel out ; using the above formulaDαQαβ = (�φ)(∂βφ),
we find the result. ♦

An energy inequality will be obtained by computing
∫
D

(�φ)(Xφ)dV for some domain D,
using the key formula and Stokes formula : this yields boundary terms and interior terms,
which we discuss now separately.
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5.4 Energy

Suppose we compute the integral
∫
D

(�φ)(Xφ)dV for some domain D, using Stokes formula.
The boundary terms that we obtain are∫

∂D

Q(N,X)dv,

where N is the unit outgoing normal to ∂D.

• The most common case is of course that of a split metric g = −dt2 + gijdx
idxj, when

D = {(x, t), 0 ≤ t ≤ T} is a strip and X = −∂t (we put a minus sign because, with the
normalization of g, the wave equation is minus the usual one !) : the boundary integral is
then equal to E(T )− E(0), with

E(T ) =

∫
ΣT

Q(∂t, ∂t)dv = (1/2)

∫
ΣT

[(∂tφ)2 + gij∂iφ∂jφ]dv.

This defines the “energy of φ at time T”, which controls (with some weight due to the
coefficients gij and to dv) the L2 norm of ∇φ at time T .

• Suppose now that the domain D is bounded by a portion ΣT ⊂ {t = T}, a portion
Σ0 ⊂ {t = 0} and some “lateral boundary” Λ ; in this case, the boundary terms are

E(T )− E(0)−
∫

Λ

Q(N, ∂t)dv,

the last term being always non negative as long as the lateral boundary of D has a time-
like past oriented normal N : we recognize here the condition for D to be a domain of
determination for � (see [1] for instance).

Usually, this last term is neglected in proving energy inequalities, but this is not necessarily
a good idea. Suppose for instance that, for a given general metric g, we work with a null
frame associated with two optical functions u and u as in example 3 of 3.3. Let D be the
domain enclosed between two spacelike hypersurfaces Σ0 and ΣT (playing here the role of
horizontal planes) and the surface of an incoming light cone {u = u0} (with u0 > 0). On the
lateral boundary Λ of D, an exterior unit normal is N = α−1∇u (with α = ||∇u||) ; if we
take X = (1/2)(∇u+∇u) (which looks like −∂t), the energy density integrated on Λ is

(2α)−1Q(L,L+ L) = (8αΩ2)−1Q(e3, e3 + e4) = (8αΩ2)−1[e1(φ)2 + e2(φ)2 + e3(φ)2].

In other words, the energy yields a (weighted ) L2 control of the derivatives of φ which are
tangential to Λ. In the approach of [25] for instance, the authors do not introduce any
t-coordinate, and never consider the “energy at time t” ; they integrate on domains bounded
by incoming cones, and use the energy on these cones as we just explained.

• More generally, as long as X is timelike past oriented and D is a domain of determination
of � (that is, the exterior normal N to the upper part of the boundary of D is also timelike
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past oriented), the boundary integral on the upper part of ∂D has a nonnegative energy
density Q(N,X). For the Minkowski metric for instance, the choice of the timelike past
oriented X, −X = K0 = (r2 + t2)∂t + 2rt∂r, leads to the well-known “conformal inequality”
(to which we will return later).

5.5 Interior Terms and Positive Fields

In the previous section, we discussed only the sign of the boundary terms arising from the
computation of

∫
D

(�φ)(Xφ)dV for some domain D, and the concept of (positive) energy.
In general however, we also have to deal with the interior terms∫

D

Qαβ
(X)παβdV ≡

∫
D

QπdV.

There are basically two different strategies to deal with these terms :

i) Control by brute force,

ii) Discussion of the signs of the terms.

1. Two examples of brute force control

a. Gronwall lemma

This approach is to bound the interior integrand Qπ by the integrand of the energy ; in the
simple case of a split metric and a domain D = {0 ≤ t ≤ T}, for instance, suppose that we
can obtain the bound ∫

Σt

|Q(∂t)π|dv ≤ 2C(t)E(t).

We will write our inequality

E(T )− E(0) ≤
∫

(�φ)(Xφ)dV +

∫ T

0

C(t)E(t)dt,

and Gronwall lemma yields

E(T ) ≤ [E(0) +

∫
D

|(�φ)(Xφ)|dV ] exp(

∫ T

0

C(t)dt).

The interior terms have thus disappeared from the energy inequality, but at the cost of
the amplification factor exp(

∫ T
0
C(t)dt). When dealing with global in time problems, for

example, this can be disastrous, if C is not integrable.

b. Weighted inequality
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An essentially equivalent approach is to replace X by fX for a well-chosen function f . Using
the formula of section 4.2, we have then

Q(fX)π = fQπ + 2Q(∇f,X).

A common choice is to take f = eλa for some function a and some real number λ :

Q(fX)π = eλa[Qπ + 2λQ(∇a,X)].

If X and ∇a are both timelike past oriented (for instance, a = t), reasonable assumptions
make it possible to obtain

Qπ + 2λQ(∇a,X) ≥ 0

for large enough λ. In this case, fX is positive. The drawback of this well-known approach
is of course that one has to keep the weight eλa in the formula for the energy.

2. Sign control of interior terms

In applications, the brute force strategy is generally too rough, so we discuss now the sign
strategy . If the multiplier X happens to be a Killing field, π ≡ 0 and the interior term is
identically 0. This is the case for instance of the multiplier X = ∂t for the flat metric.

Leaving aside this trivial and miraculous case, we prove now the following formula.

Theorem. For any C2 function R, the following identity holds∫
D

R|∇φ|2dV = (1/2)

∫
D

φ2(�R)dV −
∫
D

Rφ(�φ)dV

−(1/2)

∫
∂D

φ2 < N,∇R > dv +

∫
∂D

Rφ < N,∇φ > dv.

To prove the above formula, observe that, for any two functions f and h,

div f∇h = Dα(f∇h)α = ∂αf∂
αh+ f�h.

Using this formula with f = Rφ and h = φ, or f = φ2 and h = R, and integrating with the
help of Stokes formula, we get the result. ♦

We give a first example of how this formula can be used.

Example 1 : Suppose the multiplier X is conformal Killing ; then

Qαβπ
αβ = λQαβg

αβ = λtr Q = −λ|∇φ|2.

One should not be mislead by the expression |∇φ|2 : it is by no means a positive form ! Using
the above formula, one can get rid of these bad terms. This transformation has however two
drawbacks :
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i) It produces new interior term
∫
D
φ2(�λ)dV , which must be nonnegative if we are to obtain

an energy inequality,

ii) It produces additionnal boundary terms involving φ and∇φ, which can spoil the positivity
of the energy.

A typical example is the choice −X = K0 of a multiplier for the flat metric in a domain
D = {0 ≤ t ≤ T}. We have the identity

2(�φ)(Xφ) = ∂t[(r
2 + t2)((∂tφ)2 +

∑
(∂iφ)2) + 4rt(∂tφ)(∂rφ)]+

+
∑

∂i[. . .] + 4t[(∂tφ)2 −
∑

(∂iφ)2].

Transforming the interior term −4t|∇φ|2 yields the identity∫
D

(�φ)(Xφ− 2tφ)dxdt = Ẽ(T )− Ẽ(0),

where the modified energy Ẽ is now

2Ẽ(T ) =

∫
ΣT

{(r2 + t2)[(∂tφ)2 +
∑

(∂iφ)2] + 4rt(∂tφ)(∂rφ) + 4tφ(∂tφ)− 2φ2}dx.

In this example, we dont have to worry about the term
∫
φ2(�λ)dV , since λ = −4t and

�λ = 0 ! It is a delicate task to prove that the modified energy is indeed positive (see [1] or
[21] for instance). One finally obtains, for some constant C > 0,

C−1

∫
[(Sφ)2 + |Hφ|2 + |Rφ|2 +φ2](x, t)dx ≤ Ẽ(t) ≤ C

∫
[(Sφ)2 + |Hφ|2 + |Rφ|2 +φ2](x, t)dx.

The formula on R|∇φ|2 can also be used to get rid a some part of the interior terms, as
shown in the following example.

Example 2 : It can happen that the interior term Qπ is nonnegative, up to a multiple of
|∇φ|2 ! The typical example is that of the Morawetz inequality for the flat metric : taking
X = −∂r, we have the identity

2(�φ)(Xφ) = ∂t[. . .] +
∑

∂i[. . .] + (2/r)[
∑

(∂iφ)2 − (∂rφ)2]− (2/r)|∇φ|2.

In this case of course, the corresponding energy will not be positive, since X is spacelike : the
boundary terms will have to be controlled separately, using the standard energy inequality
(corresponding to X = −∂t). Note that in this example, λ = 2/r, and �(1/r), which is
zero for r > 0, but singular at the origin : as a result, the new interior term

∫
φ2(�λ)dV is∫

D
φ2�λdV becomes

∫ T
0
φ2(0, t)dt !

In the spirit of the preceding examples, we define a positive field X to be a field such
that, for some R,

I = Qαβ
(X)παβ +R|∇φ|2
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is a positive quadratic form in ∇φ.

Lemma. The concept of positive field depends only on X and the conformal class of the
metric g.

Set g̃ = eλg, that is g̃αβ = eλgαβ. Then

g̃αβ = e−λgαβ, g̃(∇̃ψ, ∇̃ψ) = e−λ|∇ψ|2,

and consequently Q̃αβ = Qαβ. Now

X π̃ = LX g̃ = eλ[LXg + (Xλ)g],

hence finally

Q̃X π̃ + R̃g̃(∇̃ψ, ∇̃ψ) = eλ[QXπ + (Xλ)tr Q+ R̃e−2λ|∇ψ|2] =

= eλ[QXπ +R|∇ψ|2 + |∇ψ|2(−R + R̃e−2λ −Xλ)].

It is enough to choose R̃ = e2λ(Xλ+R) to show that X is also positive for g̃. ♦

If X is a positive field and we perform the above transformation on the term R|∇φ|2, we
obtain for the interior terms∫

D

Q(X)πdV =

∫
D

(I −R|∇φ|2)dV =

∫
D

(I − (1/2)φ2�R)dV +

∫
∂D

. . . dv.

If �R ≤ 0, the integrand in D is positive and we have some hope to get in the end an energy
inequality if the boundary terms are well behaved. If �R has no special sign, we cannot say
anything about the integrand in D, but it can happen that

∫
D
IdV ≥

∫
D

(1/2)φ2�RdV : an
inequality of this type is called a Poincaré inequality (in France at least). A typical example
occurs when trying to prove a Morawetz type inequality for the Schwarzschild metric.

Example 3 : Let us first introduce, in the exterior (of the black hole) region r > 2m, the
coordinate

r∗ = r + 2m log(r − 2m)− 3m− 2m logm,

where the funny normalization is meant to get r∗ = 0 for r = 3m. With the coordinates
(t, r∗, θ, φ), the wave equation is

�φ = (1− 2m/r)−1[−∂2
t φ+ r−2∂r∗(r

2∂r∗φ)] + r−2∆S2φ.

Consider now a domain D = {0 ≤ t ≤ T}, and choose X = f(r∗)∂r∗ . A staightforward
computation (see for instance [18]) gives∫

D

QπdV =

∫ T

0

∫ +∞

−∞

∫
S2

[(f ′/(1− µ))(∂r∗φ)2 + (2r)−1(2− 3µ)f | 6 ∇φ|2−

−(1/2)(f ′ + 2f(1− µ)/r)|∇φ|2]r2(1− µ)dtdr∗dσS2 .
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Here, µ = 2m/r and 6 ∇φ is the gradient of the restriction of φ to the spheres

| 6 ∇φ|2 = e1(φ)2 + e2(φ)2.

Since 2− 3µ = (2/r)(r − 3m), we see that if f is increasing, vanishes at r∗ = 0 and has the
sign of r∗, the field f∂r∗ is positive. Getting rid of the |∇φ|2 term as above, we are left with
the expression

I =

∫ T

0

∫ +∞

−∞

∫
S2

[(f ′/(1− µ))(∂r∗φ)2 + (2r)−1(2− 3µ)f | 6 ∇φ|2−

−(1/4)(�(f ′ + 2f(1− µ)/r))φ2]r2(1− µ)dtdr∗dσS2 .

Since

�(f ′ + 2f(1− µ)/r) = (1− µ)−1f ′′′ + (4/r)f ′′ − 8mr−2(r − 2m)−1f ′ − 2mr−3(3− µ)f,

we easily see that f cannot be chosen to ensure the negativity of this coefficient.

The only thing we can do is to try to use the strength of the first term (f ′/(1 − µ))(∂r∗φ)2

to compensate for the bad sign of the φ2 term. The Poincaré inequality we use is the
consequence of the following trivial identity, valid for any C1 function α,∫

f ′(∂r∗φ)2r2dr∗ =

∫
f ′(∂r∗φ+ αφ)2r2dr∗+

+

∫
φ2[f ′′α + f ′(α′ − α2 + 2α(1− µ)/r]r2dr∗.

Dropping the first term of the right-hand side, we obtain a Poincaré inequality, depending
on some unknown function α still to be chosen. It turns out that we also need to use the
contribution from the | 6 ∇φ|2 term : for this, we decompose φ into spherical harmonics φl.
Finally, one can prove that there is some l0, some function f and some function α such that,
if φl = 0 for l ≤ l0,

I ≥
∫

< r∗ >−3−0 φ2dV.

4. Interior terms and Poisson bracket

Note that
(�φ)(Xφ) = div (Xφ)∇φ− div φ∇(Xφ) + φ[�, X]φ+ φX�φ.

Integrating this identity in some domain D, we see that the interior term Qπ must corre-
spond, modulo |∇φ|2, to the quadratic form

∫
D

([�, X]φ)φdV . In fact, we have

Qπ = ∂αφ∂βφπ
αβ − (1/2)|∇φ|2tr π.

Using the expression of παβ given in 5.2,

(∂αφ)(∂βφ)παβ = (∂αφ)(∂βφ)[2∂α(Xβ)−X(gαβ)].
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This quadratic form corresponds to the operator with symbol q = ξαξβ[2∂α(Xβ)−X(gαβ)].
We note that q is precisely the Poisson bracket

q = {gαβξαξβ, Xγξγ}

of the symbol of � with the symbol of X. Thus the formula of 5.2 for παβ provides a connexin
between deformation tensors and Poisson brackets.

5.6 Maxwell Equations

a. Generalities

In the Maxwell system, the unknown object is a 2-form F , and Maxwell equations are

dF = 0, DαFαβ = 0.

In the flat case, to connect this formulation with the usual formulation, set

Ei = −F0i, i = 1, 2, 3, H1 = −F23, H
2 = −F31, H

3 = −F12,

thus defining the “electric field” E and the “magnetic field” H. Then

dF = 0⇔ div H = 0, ∂tH − curl E = 0,

DαFαβ = 0⇔ div E = 0, ∂tE + curl H = 0.

• A convenient way of doing many computations is to introduce the dual form

∗Fµν = (1/2)εµναβF
αβ,

where ε is the volume form (see 3.1). This summation looks complicated, but it is enough
to note that for given (µ, ν), the are only two indices, say (α, β) different from µ and from
ν, so that

∗Fµν = εµναβF
αβ,

the right-hand side being in this case only one term (no sum !). Also,

∗ ∗ Fµν = (1/4)εµναβε
αβγδFγδ = |ε|Fµν = −Fµν .

In the flat case for instance,

∗F01 = ε0123F
23 = F23 = −H1,

which shows that the electric field of ∗F is just the magnetic field of F ; also, in view of the
relation above, the magnetic field of ∗F is minus the electric field of F .
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Lemma. For any vector field X,

DX ∗ F = ∗DXF.

This may seem obvious, since ∗ is defined using the metric only, and DXg = 0 ; we give
however a self-contained proof. First, we observe DXε = 0 : if eα is an orthonormal basis,

X(ε(e1, e2, e3, e4)) = 0 = (DXε)(e1, e2, e3, e4) + ε(DXe1, e2, e3, e4) + . . . ,

and the last three terms are zero since DXeα has no component on eα. Next, using the
definitions, we get

X(∗Fµν) = (DX ∗ F )µν + (∗F )(DX∂µ, ∂ν) + (∗F )(∂µ, DX∂ν) =

= [ε(DX∂µ, ∂ν , ∂α, ∂β) + ε(∂µ, DX∂ν , ∂α, ∂β) + ε(∂µ, ∂ν , DX∂α, ∂β) + ε(∂µ, ∂ν , ∂α, DX∂β)]Fαβ+

+εµναβ[(DXF )αβ + F (DX∂
α, ∂β) + F (∂α, DX∂

β)].

Cancelling the terms and using the symmetries, we obtain finally

[(DX ∗ F )µν − (∗DXF )µν ] = 2ε(∂µ, ∂ν , DX∂α, ∂β)Fαβ+

+2εµναβF (DX∂
α, ∂β) = I + II.

Taking X = ∂γ and using the formula for the Christoffel symbols, we see that the first term
I is just

I = εµνλβg
λλ′(−∂λ′gαγ + ∂αgγλ′ + ∂γgαλ′)F

αβ.

On the other hand,
Dγ∂

α = Dγ(g
αβ∂β) = ∂γg

αβ∂β + gαβΓλγβ∂
λ.

Hence, using ∂γg
αβ = −gαα′gββ′∂γgα′β′ ,

2(Dγ∂
α)λ = gαβ(−∂γgλβ + ∂βgγλ − ∂λgγβ).

This gives us the expression for the second term II

II = εµναβg
αδ(∂δgγλ − ∂λgγδ − ∂γgλδ)F λβ.

We see, changing the names of the indices, that each term in I is the opposite of the
corresponding term in II. ♦

• The duality makes it possible to rewrite Maxwell equations in the nice symmetric way

dF = 0, d ∗ F = 0.

To prove this, let us admit the following formula for the exterior derivative of a 2-form

F = Fαβdx
α ∧ dxβ, dF = DγFαβdx

γ ∧ dxα ∧ dxβ.
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Using this formula for ∗F and the commuttion formula above, we obtain

d(∗F ) = (∗DγF )αβdx
γ ∧ dxα ∧ dxβ =

= εαβµνDγF
µνdxγ ∧ dxα ∧ dxβ.

Now fix the index δ and look at the sum S of the terms involving (in some order) the three
remaining indices a < b < c. We can write

S/2 = εabµνDcF
µνdxc ∧ dxa ∧ dxb+

+εbcµνDaF
µνdxa ∧ dxb ∧ dxc + εacµνDbF

µνdxb ∧ dxa ∧ dxc.
Consider the first term of the right-hand side : either µ or ν has to be c, and then the other
index is necessarily δ ; hence this first term is 2εabcδDcF

cδdxc ∧ dxa ∧ db. Handling similarly
the two other terms, we get

S/4 = εabcδdx
a ∧ dxb ∧ dxc[DαF

αδ],

which finishes the proof. ♦

b. Energy formalism

For Maxwell equations, we can also define an energy-momentum tensor

Qαβ = 2FαγF
γ
β − (1/2)gαβ|F |2, |F |2 = FλµF

λµ.

If F is a solution of the Maxwell equations, one can prove, in a fashion similar to what we
have done in section 5.1,

∀β, DαQαβ = 0.

Also, Q enjoyes the same positivity property as in the case of the wave equation, since, in
any null frame,

Q33 ≥ 0, Q44 ≥ 0, Q34 ≥ 0.

These inequalities are proved in 6.2. The only difference with the case of the wave equation
is that

tr Q = Qα
α = 2FαγF

αγ − (1/2)× 4× |F |2 = 0.

The method for proving energy inequalities is exactly the same as before : we choose a
timelike multiplier X, set Pα = QαβX

β. If F is a solution of Maxwell equations, we have

DαPα = (1/2)Qαβπ
αβ.

Integrating in some domain D yields the identity

(1/2)

∫
D

QπdV =

∫
∂D

Q(N,X)dv.

All we have said about energy and interior terms extends also to this case, with the improve-
ment that if X is conformal Killing, the interior terms are identically zero.

In chapter 9, we will discuss briefly the analogous and more complicated case of Bianchi
equations, for which an energy formalism also exists.
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Chapter 6

The Good Components

6.1 The problem

Let g be a given Lorentzian metric on R4, say, not too far from the flat Minkowski metric.
Consider a solution φ of the wave equation �gφ = 0, with, smooth Cauchy data on {t = 0}
rapidly decaying at infinity. By analogy with the flat case (see the Introduction), we suspect
that some derivatives of φ behave better than others, meaning here, they have better decay
properties at infinity. These “good derivatives” of φ (again, “good” is meant here in the sense
of having a better decay at infinity) are some of the components of ∇φ in an appropriate null
frame ; in the flat case, these good derivatives are e1(φ), e2(φ), e4(φ). For a general metric
g, the question we ask is the following :

How to pick up a null frame (eα) which would “capture” the good components of ∇φ ? The
same question arises when dealing with Maxwell equations : what frame is going to capture
the good components of the 2-form F ?

There are, as far as we know, three approaches to this problem :

1. Weighted “standard” energy inequalities,

2. Conformal energy inequalities,

3. Commutation with modified Lorentz fields.

In the first approach, one establishes an improved version of the “standard” energy inequality
(by this we mean the inequality corresponding to the multiplier ∂t in the flat case) ; such an
inequality yields, besides the usual bound of the energy at time t, a bound of the (weighted)
L2 norm in both variables x and t of some special derivatives of φ. In other words, the L2

norm in x of these special derivatives is not just bounded in t, it is an L2 function of t also.

49
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This identifies these special derivatives as the “good derivatives” of our problem.

In the second approach, one generalizes the conformal inequality of the flat case. Recall that,
in the flat case, the conformal inequality gives a bound of the modified energy Ẽ, which is
equivalent to the sum of the L2 norms of the special fields S, Ri, Hi,

Ẽ(t) ∼
∫

Σt

[(Sφ)2 + |Rφ|2 + |Hφ|2 + φ2]dx.

Through the identities

L = (r + t)−1[S +
∑

ωiHi], ω ∧ ∂ = R/r = (1/t)ω ∧H,

one obtains a 1/t decay of the L2 norms in x of the special derivatives Lφ, (R/r)φ of φ, a
fact which identifies these derivatives as the “good derivatives”. In the general case, there
are generalization of the conformal inequality : the structure of the corresponding modified
energy Ẽ will display the good derivatives.

Finally, the third approach is to commute the Lorentz vector fields Z = ∂α, S, Ri, Hi with
�, and then to use the standard energy inequality : one obtains in this way a bound of the
L2 norms in x of ∇Zφ (or, equivalently, of Z∇φ), and one proceeds as above to identify
the good derivatives from the Z fields. In the general case, one constructs modified Lorentz
fields Z̃, for which the commutators [�, Z̃] are small, and obtains the good derivatives from
the fields Z̃.

We give some precise statements for the first two cases, postponing the discussion of com-
mutators to the next chapter.

6.2 An important Remark

In this chapter, we put emphasis on the decay at infinity of global solutions. However, as
we shall see in the last chapter, the use of appropriate null frames is not limited to problems
involving global solutions and their decay at infinity. It shoud be considered as a universal
method for all hyperbolic problems : this is beautifully explained by Christodoulou in the
prologue of [14]. If decay is not the problem, what are the guidelines to choose a good null
frame ? The basic principle of the construction of null hypersurfaces and optical functions has
been sketched in 4.3. We will see in the last chapter concrete examples of such constructions
; the exact choices and the benefit thereof depend on the context.
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6.3 Ghost Weights and Improved Standard Energy In-

equalities

1. The key idea

We explain here the key idea to obtain a “good” energy inequality. Let g be given as usual,
and suppose we have chosen a null frame which is suspected to capture the good components
of ∇φ, in the sense that e1(φ), e2(φ), e4(φ), the “good” derivatives, decay better than e3(φ).
For a given timelike multiplier X, we have to handle the interior terms

∫
D
Q(X)πdV , as

explained in chapter 5, 5.3. Writing Qπ in our null frame, we see that all terms involve at
least one “good” derivative, except π44e3(φ)2. Since we want Qπ to be as small as possible,
we choose X such that Xπ44 = 0 :

Key idea : Choose the multiplier X such that Xπ44 = 0.

This does not tell us, however, how to guess the good null frame ! What we do is to reverse
the problem : according to our geometric intuition, we choose a reasonable null frame, and
then give conditions on g which ensure that this null frame is indeed a good null frame.
Though this sketch may sound a little strange, we will see on examples how this method
works.

We start with two cases, giving complete proofs of the corresponding theorems.

2. The Wave Equation in the Quasiradial Case

We make the assumptions described in chapter 3 for the quasiradial case :

g00 = −1, g0iωi = 0.

We take our null frame to be

(e1, e2, e3 = T −N, e4 = T +N),

where (e1, e2) form an orthonormal basis (for g) on the standard spheres of R3 (for constant
t), and

T = −∇t = ∂t − g0i∂i, N = ∇r/||∇r||.
We set c = ||∇r|| = (gijωiωj)

1/2, and define the second fundamental form k of Σt by

k(X, Y ) = − < DXT, Y > .

Recall the formula for the components of k,

kij = −(1/2)g0α(∂igαj + ∂jgαi − ∂αgij).

Finally, we define the energy at time t to be

E(t) = (1/2)

∫
Σt

[(Tφ)2 + (Nφ)2 + | 6 ∇φ|2]dv,
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recalling the notation | 6 ∇φ|2 = e1(φ)2 + e2(φ)2.

Theorem. Assume that the components of k satisfy, for some ε > 0,

i) < t− r >1+ε [k2
1N + k2

2N + (k11 + k22)2] ∈ L1
tL
∞
x ,

ii) < t− r >1+ε [|Tc/c|+ |k1N |+ |k2N |+ |k11|+ |k12|+ |k22|] ∈ L∞x,t.

Then, for some constant C = Cε and all T ≥ 0,

E(T ) +

∫
0≤t≤T

< t− r >−1−ε [e4(φ)2 + | 6 ∇φ|2]dtdv ≤

≤ CE(0) + C

∫
0≤t≤T

|�φ||Tφ|dtdv + C

∫ T

0

A(t)E(t)dt.

The amplification factor A is

A(t) = ||Tc/c||L∞x + || < t− r >−1 (c− 1)||L∞x .

In particular, if A ∈ L1
t , e1(φ), e2(φ), e4(φ) are the good components of ∇φ.

Note that the assumptions i) and ii) do not require the derivatives of the metric to be
integrable in time. The proof of the theorem is an application of the key idea above, combined
with the use of the weight ea, a = a(t− r) :

• We choose the multiplier X = eaT , and set π = Tπ : from the formula of chapter 5, 5.3,

QXπ = ea[Qπ + 2Q(∇a, T )].

Since
∇a = a′∇(t− r) = −a′(T + cN) = −a′(T +N + (c− 1)N),

and 2Q(T, T ) = (Tφ)2 + (Nφ)2 + | 6 ∇φ|2, we can compute the additionnal terms due to the
weight

Q(T +N, T ) = (1/2)(e4(φ)2 + | 6 ∇φ|2),

−QXπ = ea[−Qπ + a′(e4(φ)2 + | 6 ∇φ|2) + 2a′(c− 1)(Tφ)(Nφ)].

The idea of the “ghost weight” is to choose a′(s) = A < s >−1−ε : in this way, a is bounded
and the weight ea disappears from the inequality (leaving only constants depending on ε) ;
on the other hand, choosing A big enough will give us plenty of the good derivatives.

• We now dispatch all terms of Qπ into three categories :

i) The terms containing two good derivatives, which have the coefficients π34, π33, πa3, πab
(1 ≤ a, b ≤ 2),

ii) The terms containing only one good derivative, which have the coefficients πa4, π11 + π22,
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iii) The bad term π44e3(φ)2.

To handle the terms in the first two categories, it is enough to assume respectively

< t− r >1+ε [|π34|+ |π33|+
∑
|πa3|+

∑
|πab|] ∈ L∞x,t,

< t− r >1+ε [
∑

(πa4)2 + (π11 + π22)2] ∈ L1
tL
∞
x .

• To allow for the simple choice of our multiplier, we do not realize exactly π44 = 0 as
announced in the “key idea”, but π44 = −2Tc/c. In fact, since

T = ∂t − g0i(∂i − ωi∂r) = ∂t + g0i(ω ∧R/r)i,

Nc−1gijωi∂j = c∂r − c−1gijωi(ω ∧R/r)j,

we obtain
[T,N ] = (Tc/c)N + . . . R,< [T,N ], N >= Tc/c.

On the other hand, since DTT = 0,

< [T,N ], N >=< DTN,N > − < DNT,N >= kNN ,

π44 = 2 < DT+NT, T +N >= 2 < DNT, T +N >= −2kNN .

• Finally, it remains to compute the components of π to translate the conditions above on
π into the conditions of the theorem on k. We obtain easily

π34 = 2kNN = −π33, πa4 = 2kaN = −πa3, πab = 2kab.

♦ The same method can be extended to generalize Morawetz type inequalities, see for
instance [4], [7].

3. The Wave Equation in the General case

We present here a more geometric, but less explicit, result. Assume given an optical function
u to which we associate a null frame (e1, e2, e3 = L, e4 = L) as explained in chapter 3. Define
the corresponding energy at time T to be

E(T ) = (1/2)

∫
ΣT

[a(e4(φ))2 + a−1(e3(φ))2 + (a+ a−1)| 6 ∇φ|2]dv.

Theorem. Let T = (1/2)(L+L) and π = Tπ. Assume that, for some ε > 0, the components
of π satisfy the following estimates :

< u >1+ε a[(π1L)2 + (π2L)2 + (π11 + π22)2] ∈ L1
t  L∞x ,
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< u >1+ε [|π11|+ |π22|+ |π12|+ |π1L|+ |π2L|+ |ω|] ∈ L∞x,t.

Then, for some C = Cε and all T ,

E(T )1/2 + {
∫

0≤t≤T
< u >−1−ε [(Lφ)2 + | 6 ∇φ|2]dtdv}1/2 ≤

≤ CE(0)1/2 + C

∫ T

0

||(a1/2 + a−1/2)f ||L2(dv)(t)dt.

The nice feature here is that there is no amplification factor at all ! In comparision with the
preceding theorem, we see that the amplification factor A there came from Tc/c (the error
in π44) and c− 1 (the error coming from taking u = t− r instead of a true optical function).

In particular, in this theorem, the derivatives e1(φ), e2(φ), e4(φ) are identified as the good
derivatives. The components of π can be computed explicitly in terms of the frame coeffi-
cients : following the “key idea”, we have arranged

πLL =< DL(L+ L), L >= − < L+ L,DLL >= 0.

The other components appearing in the assumptions of the theorem are

2πLa =< DL(L+ L), ea > + < Da(L+ L), L >= 2η
a
− 2ηa,

2πLa =< DL(L+ L), ea > + < Da(L+ L), L >= 2ηa + 2ξ
a

+ 2ηa = 4ηa + 2ξ
a
,

πab = χab + χ
ab
, 4ω = ∇2uLL.

The proof of the theorem follows the same lines as before. First, using the multiplier T gives
an energy density

Q(T, ∂t) = (1/4)Q(L+ L, aL+ a−1L) = (1/4)[a(Lφ)2 + a−1(Lφ)2 + (a+ a−1)| 6 ∇φ|2].

Taking X = eaT as a multiplier xith a = a(u), we get from the weight additional interior
terms

−a′(u)Q(L, T ) = (−a′(u)/2)[(Lφ)2 + | 6 ∇φ|2].

We choose a′(s) = A < s >−1−ε with A big enough, and finish the proof exactly as before
(see [4] for details). ♦

A variation on this theme of improved standard inequality appears also in [35] (see chapter
9 for a statement).

4. Maxwell equations in the general case

Let us work again with a null frame associated with one optical function, but consider now
Maxwell equations. Instead of defining the electric and magnetic fields as in the flat case
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(which means altogether six functions), let us define the six components of F in our null
frame (e1, e2, L, L) as

αa = F (ea, L), αa = F (ea, L), ρ = (1/2)F (L,L), σ = F (e1, e2).

Remark that α and α are 1-forms on the (nonstandard) 2-spheres, and that σ does not
depend on the chosen orthonormal frames on these spheres, since for another frame

ẽ1 = cos θe1 − sin θe2, ẽ2 = sin θe1 + cos θe2,

we would find

σ̃ = F (ẽ1, ẽ2) = −(sin2 θ)F (e2, e1) + (cos2 θ)F (e1, e2) = F (e1, e2) = σ.

First, we note that, computing the double trace |F |2 in our null frame and taking into
account the symmetries of F ,

|F |2 = 2F 2
12 − 2F13F14 − 2F23F24 − (1/2)F 2

34 = 2σ2 − 2ρ2 − 2αα.

From the definition of the energy momentum tensor in this case, we can write

Q(X, Y ) = 2F (X, ∂γ)F (Y, ∂γ)− (1/2) < X, Y > |F |2,

and we observe that the first term is a trace, which can be computed in any basis with its
dual basis. For instance,

F (X, ∂γ)F (y, ∂γ) = F (X, e1)F (Y, e1) + F (X, e2)F (Y, e2)−

−(1/2)F (X,L)F (Y, L)− (1/2)F (X,L)F (Y, L).

For the components of Q, we thus find

Q(L,L) = 2|α|2, Q(L,L) = 2|α|2, Q(L,L) = 2(ρ2 + σ2),

Q(L, e1) = 2(−σα2 + ρα1), Q(L, e1) = 2(−σα2 − ρα1),

Q(e1, e1) = σ2 + ρ2 − α1α1 + α2α2, Q(e1, e2) = −(α1α2 + α2α1),

and similarly for the other components.

Finally, define the energy of F at time T to be

E(T ) = (1/2)

∫
ΣT

[a|α|2 + a−1|α|2 + (a+ a−1)(ρ2 + σ2)]dv.

The following theorem is completely analogous to the corresponding theorem for �.

Theorem. Let T = (1/2)(L+L) and π = Tπ. Assume that, for some ε > 0, the components
of π satisfy the following estimates

< u >1+ε a(π2
11 + π2

12 + π2
22 + π2

1L + π2
2L) ∈ L1

tL
∞
x ,



56 CHAPTER 6. THE GOOD COMPONENTS

< u >1+ε (|π11|+ |π22|+ |π1L|+ |π2L|+ |ω|) ∈ L∞x,t.
Then, for some constant C = Cε, for all solutions F of the Maxwell equations and all T ,

E(T ) +

∫
0≤t≤T

< u >−1−ε (|α|2 + ρ2 + σ2)dtdv ≤ CE(0).

In particular, under these assumptions, the good components of F are α, ρ, σ.

The proof of this theorem is practically the same as before : we use the multiplier X = eaT
with a = a(u). This gives in Qπ additional terms

a′(u)Q(L,L+ L) = 2a′(u)(|α|2 + ρ2 + σ2)

and identifies the good components. The corresponding energy density is

Q(X, ∂t) = (1/2)eaQ(T, aL+ a−1L),

justifying the definition of E. The rest of the proof is the same as before (see [4] for details).
♦

6.4 Conformal Inequalities

• In the flat case, this quite miraculous inequality is obtained using the multiplier

K0 = (r2 + t2)∂t + 2rt∂r.

Recall that K0 is a timelike conformal Killing field. The question is now : for a general
metric g (close to the flat case), how to pick up a nice substitute for K0 ? To motivate the
answer, let us go back once more to the flat case, and set u = t − r, u = t + r. We easily
check the formula

S = t∂t + r∂r = (1/2)(uL+ uL), K0 = (1/2)(u2L+ u2L).

Suppose now that we have a general split metric g and an optical function u, and that we
work in the associated null frame as explained in 3.3. Following the presentation of [], by
analogy with the flat case, define u = 2t−u (though terribly ugly, this formula will do), and
set

K0 = (1/2)(u2L+ u2L).

• For a certain function Ω to be chosen later, let us set

π = K0π, π̃ = π − Ωg.

Similarly to what we have done in chapter 5, we can modify the key formula for energy
inequality by writing

DαP̃α = (1/2)Qαβπ̃
αβ − (1/4)φ2�Ω + (K0φ+ (Ω/2)φ)(�φ),



6.4. CONFORMAL INEQUALITIES 57

with the modified P̃
P̃α = QαβK

β
0 + (Ω/2)φ∂αφ− (1/4)φ2∂αΩ.

We choose Ω = 4t, which is the value for the flat case. By integrating in a slab {0 ≤ t ≤ T},
we then obtain the conformal energy at time T

Ẽ(T ) = (1/4)

∫
ΣT

{au2(Lφ)2 + a−1u2(Lφ)2+

+(a−1u2 + au2)| 6 ∇φ|2 + 8tφ∂tφ− 4φ2}dv.
Recall here the notation

a = (∂tu)−1, N = −(∂tu)−1gij∂iu∂j.

We prove now the following theorem.

Theorem. Assume |a− 1| ≤ 1/10 and (div N)(u− u) = 4 + ε with |ε| small enough. Then,
for some constant C > 0,

Ẽ(T ) ≥ C

∫
ΣT

{u2(Lφ)2 + (u2 + u2)| 6 ∇φ|2 + u2(Lφ)2 + φ2}dv.

This theorem identifies Lφ and 6 ∇φ as the good derivatives of φ. The additional control of
uLφ is not useless (as we shall see in 7.1) : it is a weak form of a control of Zφ (Z denoting
a Lorentz field a usual), since

uL+ uL = 2S, uL− uL = 2
∑

ωiHi.

Once again, note that we have followed the “key idea”, since

π̃LL = πLL = 2 < DLK0, L >=< DL(u2L+ u2L), L >=

= L(u2) < L,L > +u2 < DLL,L > +L(u2) < L,L > −u2 < DLL,L >= 0.

Of course, the theorem provides only an analysis on the conformal energy : it should be
complemented with a thorough analysis of the interior terms

∫
D
QπdV in the spirit of 5.5.

We refer to [24] or to Hörmander book [21] ( in a non geometric setting) for such an analysis;

The idea of the proof is to transform the term t∂tφ of Ẽ, using two auxiliary fields S and
S, into a term involving a tangential derivative, for which we can perform an integration by
parts on ΣT .

1. We set
S = (1/2)(auL+ a−1uL), S = (1/2)(auL− a−1uL).

Then

t∂tφ = Sφ− (1/2)(u− u)Nφ, t∂tφ = [(2t)/(u− u)]Sφ− [(2t2)/(u− u)]Nφ.
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For some number 0 < λ < 1 to be determined, we split t∂tφ = λt∂tφ + (1− λ)t∂tφ and use
the expression with S for the first term, and the expression with S for the second.

2. To integrate by parts in ΣT , we need some formula. For any field X and any two functions
f, h, we have

div (fgX) = fg div X +X(fg).

We will use this with X = N , noting that

ν ≡ div N =
∑

< DaN, ea >=< Da(aL− T ), ea >= atrχ− kaa.

3. Using the formula of 2., we obtain∫
tφ∂tφdv =

∫
φSφdv−(1/4)

∫
(u−u)N(φ2)dv =

∫
φSφdv+(1/4)

∫
[N(u−u)+ν(u−u)]φ2dv.

Similarly, we get∫
tφ∂tφdv =

∫
[(2t)/(u− u)]φSφdv +

∫
[N(t2/(u− u)) + νt2/(u− u)]φ2dv.

Now, using the assumptions of the theorem, we find for the φ2-coefficient in the first expres-
sion

N(u− u) = 2N(t− u) = −2Nu = 2 < N,L >= 2, N(u− u) + ν(u− u) = 6 + ε,

and for the φ2-coefficient in the second

N(t2/(u− u)) + νt2/(u− u) = (t2/(u− u)2)[−2 + ν(u− u)] = (2 + ε)t2/(u− u)2.

4. We observe now

a2u2(Lφ)2 + +a−2u2(Lφ)2 = 2[(Sφ)2 + (Sφ)2].

Since |a − 1| ≤ 1/10, d ≤ a and d ≤ a−1 for d = 9/10. The integrand of 4Ẽ is bigger than
(a−1u2 + au2)| 6 ∇φ|2 + F , with

F = 2d[(Sφ)2 + (Sφ)2] + 8λtφ∂tφ+ 8(1− λ)tφ∂tφ− 4φ2.

Integrating on ΣT , we get∫
Fdv =

∫
{2d(Sφ+ 2λφ/d)2 + φ2[(12 + 2ε)λ− 4− 8λ2/d]+

+2d[(Sφ+ 4t(1− λ)/(d(u− u))φ)2 + (t2/(u− u)2)φ2(4(1− λ)(2 + ε)/d− 16(1− λ)2/d2)]}dv.
Taking ε = 0, we need to impose the conditions

λ > 1− d/2, 2λ2/d− 3λ+ 1 < 0.

Since d = 9/10, this reads
λ > 0.55, 0.6 < λ < 0.75,

which is certainly possible. Thus, choosing λ is also possible for |ε| small enough. ♦



Chapter 7

Pointwise Estimates and
Commutations

In the previous chapters, we put emphasis on energy estimates, since nothing is possible
without them : they provide the basic control of the solutions, and allow one to identify the
“good components”, as explained in chapter 6. However, for the sake of completeness or for
applications to nonlinear equations, one generally needs more that (weighted) L2 estimates,
one also needs pointwise estimates, displaying the rate of decay and the qualitative behavior
of the solutions.

The basic tool in this direction is Klainerman inequality

(1 + |t|+ r)2(1 + |r − t|)|v(x, t)|2 ≤ C
∑
||Zkv||2L2

x
,

where the fields Z are the standard Lorentz fields Z = ∂α, S, Ri, Hi and the sum is extended
to all products Zk of k such fields, k ≤ 2 (see for instance [21] for a proof). “Klainerman
method” is the fundamental strategy to obtain pointwise estimates. It consists of the
following three steps :

i) Prove an energy inequality for �,

ii) Commute products of Z fields with � to obtain equations �Zkφ = f , and apply the
energy inequality to these equations,

iii) Use Klainerman inequality to obtain the qualitative behavior of ∇φ.

The only problem with this strategy is that the standard Lorentz fields Z have no reason
to commute reasonably with � = �g in general ! Hence there are three possibilities :

1. We use modified Z fields but do not commute them with � : this is made possible by
using (generalized) conformal inequalities, which, as we have seen in 6.3, yield directly a
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bound for the L2
x norms of

uLφ, uLφ, u 6 ∇φ.
These fields can be considered good substitutes for the Z fields. In this case, however, we
control only one Z field, and not products of such fields ! We will see that this is enough to
get some qualitative information, though not as good as that from Klainerman inequality.

2. We modify the standard Z into deformed fields Z̃ which commute better with � : this
is a rather difficult geometric construction, and we will see two aspects of it.

3. We nevertheless use the standard Lorentz fields Z : rather unexpectedly, this approach
turns out to be efficient in many nonlinear problems. We postpone this discussion to the
last chapter.

7.1 Pointwise Decay and Conformal Inequalities

We have seen in chapter 6, 6.3 the expression of the modified energy Ẽ which arises when
establishing a conformal inequality. If we can bound Ẽ, we can bound in particular the
spatial L2 norm of r 6 ∇φ.

The article [24] is written using a null frame associated with one optical function u, as
explained in chapter 1. Th strategy of [24] is the following :

• One does not try to commute the Z fields with � ; one commutes only ∂t, or more precisely,
T0 = (1/2)(L + L). We have already seen in 6.2 that (T0)πLL = 0, which is, as we shall see
in the next section, a condition ensuring cancellation of the bad terms in the commutator
[T0,�]. Using the equation, the control of the T0 derivatives yields a control of all derivatives
; for instance, in the flat case,

||∂2φ||L2 ≤ ||∆φ||L2 ≤ (||∂2
t u||L2 + ||�u||L2).

• One defines a higher order energy Ẽk+1 by the formula

Ẽk+1 =
∑
|α|≤k

Ẽ(∂αφ).

The following proposition gives the required pointwise bound.

Proposition. Let φ be smooth and sufficiently decaying as |x| → +∞. For p > 2,

|∂φ(x, t)| ≤ Cp(1 + t)−2/pẼ3(t).

The drawback of this strategy is obviously that, even in the flat case, it can never give
the good decay rate t−1, since p > 2. However, it has the advantage of commuting only
“ordinary” derivatives with �, instead of Z fields.
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We outline briefly the proof in the flat case, since we can see then the full strength of the
conformal energy. First, we admit the following lemma.

Lemma. it For any smooth function v on R3
x sufficiently decaying at infinity, and p > 2,

s ≥ 5/2− 3/p,

|v(x)| ≤ C|x|−2/p(||r 6 ∇v||Hs + ||v||Hs).

Considering a solution φ(x, t) of �φ = 0, this lemma yields the inequality of the proposition
only for |x| ≥ t/2. For |x| ≤ t/2, we just note that

Ẽ ≥ Ct2
∫
|x|≤t/2

|∂φ|2dx.

This is where the term uLφ is used. The control of uLφ, uLφ, r 6 ∇φ yields in fact the
control of the hyperbolic rotations Hiφ, since

H0 ≡
∑

ωiHi = t∂r + r∂t = (1/2)(uL− uL),

Hi = ωiH0 + t(∂i − ωi∂r).

7.2 Commuting fields in the scalar case

1. Before discussing strategy 2 above, we establish a general commutation formula.

Theorem (Commutation formula). For any field X with deformation tensor π = Xπ,

[�, X]φ = παβ∇2φαβ +Dαπ
αβ∂βφ− (1/2)∂α(tr π)∂αφ.

In particular, X is a Killing field if and only if [�, X] = 0 ; this is an easy way in practice
to identify a Killing field : for instance, if g is the Kerr metric, we see immediately that ∂t
and ∂φ commute with � ! If X is conformal Killing, that is, π = λg, we have Dαπαβ = ∂βλ,
hence

[�, X] = λ�φ− ∂αλ∂αφ.

For the flat metric for instance, we get [�, S] = 2�, but [�, Kµ] 6= −4xµ�φ. We say that S
commutes well with �, since if �φ = f is known, so is �Sφ = Sf + 2f ; but this is not the
case for Kµ.

We give here a (pedestrian ) self-contained proof of the theorem, using the formula for παβ

given in chapter 5 :
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a. We write �φ = ∂α∂αφ− (Dα∂α)φ, hence

X�φ = [X, ∂α]∂αφ+ ∂α[X, ∂α]φ− [X,Dα∂α]φ+ �Xφ.

Now
[X, ∂α] = −(∂αX

µ)∂µ, [X, ∂
α] = X(gαβ)∂β − (∂αXµ)∂µ.

Gathering the terms, we get for a first order differential term E

[�, X]φ = παβ∇2φαβ + E,

E = παβ(Dα∂β)φ+ (∂αgαγ)(∂
γXβ)∂βφ+ ∂α(∂αXβ)∂βφ+ [X,Dα∂α]φ.

b. From the definition of Dπ, we get

Dαπαβ =< DαDαX, ∂β > + < DαDβX, ∂α > −

− < DDα∂αX, ∂β > − < DDα∂βX, ∂α > .

Also,
(1/2)∂βtr π =< DβDαX, ∂

α > + < DαX,Dβ∂
α > .

Hence
Dαπαβ − (1/2)∂βtr π = I + II + III,

where
III =< D[∂α,X]∂α, ∂β > + < Dα[∂α, X], ∂β > +

+ < [X,Dα∂α], ∂β > −π(Dα∂β, ∂α)− (∂βg
αγ) < DαX, ∂γ > .

Here, we have introduced on purpose the terms

I =< DαDβX −DβDαX, ∂
α >,

II =< DαDX∂α −DXD
α∂α −D[∂α,X]∂α, ∂β > .

These terms are “curvature terms”, denoted

I = Rα
Xαβ, II = Rα

βαX .

For simplicity, we chose to introduce the curvature tensor R only in the next chapter, so we
have to admit at this point the symmetries of this tensor

Rαβγδ = −Rβαγδ = Rγδαβ.

This being admitted, we obtain I + II = 0, and

III = παγ < Dγ∂α, ∂β > −παγ < Dα∂β, ∂γ > +

+∂α(∂αX
γ)gγβ+ < [X,Dα∂α], ∂β > −(∂βg

αγ) < DαX, ∂γ > .
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c. Finally,
(Dαπαβ − (1/2)∂βtr π)∂βφ− E =

= (1/2)(∇φ)(gαβ)παβ − (1/2)(∇φ)(gαγπ
αγ = 0,

since
παγ < Dα∂β, ∂γ >= παγ < Dβ∂α, ∂γ >= (1/2)παγ∂βgαγ.

♦ 2. The commutation formula has the advantage, like such formula, to be written as
multiple traces : the term παβ∇2φαβ is a double trace, analogous to the term παβQαβ of the
energy inequalities ; the other terms are

Dαπ
αβ∂βφ− (1/2)∂β(tr π)∂βφ = Dαπ

α
∇φ − (1/2)(∇φ)(tr π).

7.3 Modified Lorentz fields

In practice, we cannot expect to find X commuting exactly with �, and we choose fields X
which look close to the standard Lorentz fields and can be nicely expressed in the null frame
we are working with. We start with a simple remark.

1. Good commutation condition

If one is mainly concerned with decay at infinity, one can use the concept of “good derivative”
to construct modified fields. In chapter 5, when looking for a good multiplier X to obtain an
energy inequality, we found the condition XπLL = 0 ; this condition ensured that all terms
among the interior terms παβQαβ would contain at least one “good derivative” e1, e2 or L.
Similarly, we can sketch what could be a “good commuting field” X for � : it is a field X such
that the higher order terms παβ∇2φαβ (given by theorem 7.2) involve only good derivatives
of φ, that is, second order derivatives containing at least one good derivative. Since, with
this definition, the only bad second order derivative is L2φ, the required condition is again
XπLL = 0.

Good commutation condition : XπLL = 0.

2. The difficulty with the hyperbolic rotations

Consider the equation ∂2
t − c2∆x instead of the standard � ; for the hyperbolic rotations,

we have to take Hi = (xi/c)∂t + ct∂i. In other words, Hi depends on the speed c, while S
and Ri do not. It turns out that, in more general situations, good substitutes for Hi are not
known.

This being admitted, in view of strategy 2, one has to explain how to replace Klainerman
inequality when the fields Hi are missing : the idea is to use only the fields Γ = ∂α, S, R and
the operator itself �. For the flat case, one can prove the following inequalities (see [33]),
which can be viewed as a substitute for Klainerman inequality :
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Proposition. Let E(φ) be the standard energy, and define a higher order energy Ek+1 by

Ek+1(φ) =
∑
|α|≤k

E(Γαφ).

Then, ∂i (i = 1, 2, 3) being the spatial derivatives,

(1 + r) < t− r > |∂i∇φ| ≤ C(E
1/2
4 + t||�φ||L2).

It turns out that this type of inequality is also available for more general situations than
the flat case (see for instance [6]). Thus Klainerman method can be extended to non flat
geometric situations, dropping the Hi and using appropriately defined S and R̃i.

3. The fully geometric approach

This is for instance the approach of [25], where the null frame is associated with two optical
functions u and u as explained in chapter 3. In such a geometric framework, one is looking for
substitutes for the standard Lorentz fields S, Ri, Hi. We have already mentioned that it was
necessary and possible to forget about the hyperbolic rotations Hi. The generalization for S
follows easily from the formula of chapter 6 : we just take S = (1/2)(uL + uL). For Ri, we
take fields tangent to the (nonstandard) 2-spheres of the foliation. The actual construction
in [25] is rather delicate, and we only sketch it here : first, we consider in Σ0 = {t = 0} a
specific sphere foliation, with unitary normal field N . The flow of N and the asymptotic
properties of the metric at infinity allow one to pull back to a given sphere the standard
rotations Ri at infinity (which are homogeneous of degree zero). Once this is done, we push
forward these rotation fields by the flow of L along an outgoing cone. In this way, wwe
obtain rotations iO satisfying good commutation relations

[iO, jO] = εijk
kO, [L, iO] = 0.

The drawback of this definition is of course its global character.

4. A simplified approach

Suppose for instance that we choose a quasiradial frame and that our assumptions on g allow
us to identify e1, e2 and L as the good derivatives (see chapter 5). The idea to construct
a good commuting modified field Z̃ is to try Z̃ = Z + aT , since the other terms in the
perturbation of Z would involve only good derivatives and would probably play a negligible
role (note that we take here T rather than L since T has smooth coefficients everywhere).
Then

Z̃πLL = ZπLL + aTπLL − 2La = 2 < [L,Z], L > −2a(Tc/c)− 2La.

For the reasons already explained above, we forget about Hi and will use and modify only
Z = Ri and Z = S. Since [Ri, ∂r] = 0, [S,Ri] = 0,

[R, T ] = [R, ∂t] + . . . R, [R,N ] = (Rc/c)N + . . . R, [S, T ] = [S, ∂t] + . . . R,
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[S,N ] = (Sc/c)N + c[S, ∂r] + . . . R, [S, L] = −L+ (Sc/c)N + . . . R,

we get
< [L,Ri], L >= −Rc/c, < [L, S], L >= −Sc/c.

Finally, we define a = Za by
La+ aTc/c+ Zc/c = 0,

and use the fields
Z̃ = Z + ZaT.

This causes of course a certain number of technical difficulties : control of a simultaneously
with the solution φ, obtention of a pointwise estimate from a bound of ∇Z̃kφ in L2 norm,
etc. The advantage by comparison with the fully geometric approach more simplicity in the
computations. We refer to [6] for details.

7.4 Commuting fields for Maxwell equations

In the scalar case of the previous section, our aim was to control Xφ, or more generally Xkφ
for some collection of fields X, φ being a solution of �φ = 0. For Maxwell equations, the
unknown is a 2-form F , and XF does not make sense : it has to be replaced by LXF , the
Lie derivative that we briefly discussed in chapter 5. Since d commutes with mappings, we
have [LX , d] = 0. Thus, for a solution of Maxwell equations,

LX(dF ) = 0 = d(LXF ),

LX(d ∗ F ) = 0 = d(LX ∗ F ).

To compute the commutation defect coming from the second equation, one can use the
following formula, where π stands for the deformation tensor of X :

LX ∗ Fµν = ∗LXFµν + ∗F ρ
µ πρν + ∗F ρ

νπµρ − (1/2)tr π ∗ Fµν .

Using this formula, one obtains again the set of Maxwell equations for LXF , perturbed by
first order derivatives of F . Let us point out that there is an analogous formalism for the
Bianchi identities, that we will very briefly discuss in the last chapter. We refer to [25] for
more details about commutators in these cases.
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Chapter 8

Frames and Curvature

In this chapter, we always assume for simplicity that the metric g is split

gαβdx
αdxβ = −dt2 + gijdx

idxj,

that the coefficients gij and gij are bounded, and that, for some C > 0 and all points,

gijξ
iξj ≥ C|ξ|2.

We wish to examine in more details how one can control the frame coefficients of a given
null frame. At this point, one needs to introduce the curvature tensor R.

8.1 The Curvature Tensor

• The three fields X, Y, Z being given, the field R(X, Y )Z is defined by the formula

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z.

Hence R(X, Y )Z measures the commutation defect of DX and DY , when applied to Z. The
remarkable feature here is that this expression is linear in all three fields X, Y, Z ! For
instance,

R(fX, Y )Z = fDXDYZ −DY (fDXZ)−Df [X,Y ]−(Y f)XZ = fR(X, Y )Z,

R(X, Y )(fZ) = DX((Y f)Z + fDYZ)−DY ((Xf)Z + fDXZ)−D[X,Y ](fZ) =

= (XY f)Z + (Y f)DXZ + (Xf)DYZ − (Y Xf)Z−

−(Xf)DYZ − (Y f)DXZ − ([X, Y ]f)Z + fR(X, Y )Z = fR(X, Y )Z.
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Remark also that, by construction,

R(Y,X)Z = −R(X, Y )Z.

• The curvature tensor is just

R(W,Z,X, Y ) =< R(X, Y )Z,W > .

The point of introducing all four arguments X, Y, Z,W lies in the remarkable symmetries of
R :

Rαβγδ = −Rβαγδ = −Rαβδγ,

Rαβγδ = Rγδαβ.

The symmetry in γδ has already been shown ; the symmetry in αβ is some “integration by
parts” formula, since the derivatives acting on Z = ∂β are transferred to act on W = ∂α.
The symmetry of the second line is more mysterious, and we refer to standard textbooks for
its proof (see for instance [19]). Finally, we also have the “circular permutation” formula

Rαβγδ +Rαδβγ +Rαγδβ = 0.

Using the definition, one can write down an explicit formula for the components of R

Rδ
αβγ = ∂αΓδβγ − ∂βΓδαγ + ΓδαµΓµβγ − ΓδβµΓµαγ.

Thus R is expressed using second order derivatives of the metric g. Generally speaking,
whenever a computation involves second order derivatives of g, one can expect to see R
appearing ; we will follow this path in many proofs of this chapter...

• The Ricci tensor is a trace taken on R (because of the symmetries of R, there are not
many traces to be taken)

Rµν = gαβRµανβ = R α
µαν ,

and the scalar curvature is the trace of the Ricci tensor R = Rα
α. Remark that, due to the

symmetries of R, the Ricci tensor is symmetric

Rµν = gαβRµανβ = gαβRνβµα = gβαRνβµα = Rνµ.

From the explicit formula for R we easily get

Rµν = (1/2)∂α∂µgαν + (1/2)∂α∂νgαµ − (1/2)gαβ∂2
µνgαβ − (1/2)gαβ∂2

αβgµν

+gαβgγδ(Γ
γ
µβΓδαν − ΓγµνΓ

δ
αβ).
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8.2 Optical functions and curvature

1. New normalization of the null frame

From now on, to better fit the reference paper [26], we are going to change slightly the choice
of the null frame associated to the optical function u (see 4.3). In this new normalization,
we set L′ = −∇u, and take, still noting a = (∂tu)−1,

L = aL′ = ∂t +N, L = ∂t −N.

Thus, as usual,

< L,L >= 0, < L, L >= 0, < L, L >= −2.

With these new definitions, the formula for the frame coefficients have to be slightly modified.
We give only the results, the proofs being analogous to that of section 4.4.

Theorem (Frame coefficients). The frame coefficients are given by the following formula

DaL = χabeb − kaNL, DaL = χ
ab
eb + kaNL,

DLL = −kNNL, DLL = 2η
a
ea + kNNL,

DLL = 2ηaea + kNNL, DLL = 2ξ
a
ea − kNNL,

DLea =6 DLea + η
a
L, DLea =6 DLea + ηaL+ ξ

a
L,

Dbea =6 Dbea + (1/2)χabL+ (1/2)χ
ab
L.

The formula expressing χ, ξ, η in terms of χ, ξ, η, given in 4.4 have also to be slightly
modified and read now

χ
ab

= −χab − 2kab,

ξ
a

= −ηa + kaN , ηa = −kaN , ηa = ea(a)/a+ kaN .

An important fact which will be useful later is the following.

Lemma. With the new normalization, the coordinates of L are bounded .

This is clear for the t-coordinate. Since N = −a∂iu∂i, the i-coordinate of L is −gij∂ju/∂tu
: taking into account the eikonal equation (∂tu)2 = gij∂iu∂ju and the assumptions on the
metric, the claim is proved ♦.

2. Transport equation for u

Let u be an optical function, that is < ∇u,∇u >= 0.
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Theorem. The second order derivatives of u are related to the curvature tensor through the
transport equation

DL∇2uαβ − a∇2uαγ∇2uγβ = a−1RβLαL.

Using the definitions, we get

DL∇2uαβ = L(∇2uαβ)−∇2u(DL∂α, ∂β)−∇2u(∂α, DL∂β),

L(∇2uαβ) = L < Dα∇u, ∂β >=< DLDα∇u, ∂β > + < Dα∇u,DL∂β > .

Since DL∇u = −aD∇u∇u = 0, using the symmetry of the Hessian, we obtain

DL∇2uαβ =< DLDα∇u, ∂β > − < DαDL∇u, ∂β > − < D[L,∂α]∇u, ∂β > +

+ < Dβ∇u, [L, ∂α] > − < Dβ∇u,DL∂α > .

Taking into account [L, ∂α] = DL∂α +Dα(a∇u), the formula is proved. ♦

The above formula can be viewed as a system of differential equations on the unknowns
∇2uαβ, along the integral curves of L. If we assume given the components RαLβL of the
curvature tensor, we can use the above proposition to compute the components of ∇2u, by
solving the differential equations along L, with initial data either on {t = 0} or on the t-axis.
To understand why this is not the best strategy, one has to imagine that the metric g is
not smooth, and that we wish to pay the greatest attention to the regularity of the various
objects at hand, counting the derivatives, etc. In this context (which will be discussed shortly
in the last chapter), the components of R have two derivatives less than g, and integrating
along L does not gain anything (except of course one derivative...along L !).

In particular, consider the components χab = −a∇2uab : it turns out that we have to split χ
and χ into their traces and their traceless parts

tr χ = χaa, tr χ = χa
a
,

χ = χ̂+ (1/2)(tr χ)g, χ = χ̂+ (1/2)(tr χ)g.

The traces will be controlled by integration along L, while the traceless parts will be con-
trolled through an elliptic system on the sphere foliation.

8.3 Transport equations

Theorem (Transport equations). The quantities a and tr χ satisfy

La = −akNN ,

L(tr χ) + (1/2)(tr χ)2 = −|χ̂|2 − kNN tr χ−RLL.
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• We first prove the second formula. Since χab = −a∇2uab, tr χ = −a∇2uaa. In order to
obtain L(tr χ) from the transport equation on u, we observe that L commutes with the
partial trace

L(∇2uaa) = DL∇2uaa.

In fact,

L(∇2uaa) = DL∇2uaa + 2∇2u(DLea, ea).

Now, since < DLea, ea >= 0, < DLea, L >= 0 and < DLe1, e2 >= − < DLe2, e1 >, we have
for some coefficients α, βa,

DLe1 = αe2 + β1L, DLe2 = −αe1 + β2L.

Hence

∇2u(DLe1, e1) +∇2u(DLe2, e2) = ∇2u(e1, e2)(α− α) + βa∇2u(L, ea).

Since DL∇u = 0, ∇2u(L, ea) = 0 and the claim is proved. We thus obtain

L(tr χ) = (La/a)tr χ− aDL∇2uaa.

From the transport equations on u, we immediately get

DL∇2uaa = a∇2uaγ∇2uγa + a−1
∑

RaLaL.

From the definition of the Ricci tensor R, using the symmetries of R,

RLL =
∑

RaLaL − (1/2)RLLLL − (1/2)RLLLL =
∑

RaLaL.

As we already observed that ∇2uLa = 0, the trace in the above formula is just

∇2uaγ∇2uγa =
∑
∇2uab∇2uab = a−2|χ|2.

Summarizing, the formula is proved, since |χ|2 = |χ̂|2 + (1/2)(tr χ)2. ♦

• To prove the first formula, we observe that

< DLL,L >= −2La/a,

since DLL = DL(−a∇u) = (La/a)L. On the other hand, since T and N are orthogonal unit
vectors with DTT = 0,

< DLL,L >=< DT+N(T +N), T −N >=< DTT, T −N > +

+ < DTN, T −N > + < DNT, T −N > + < DNN, T −N >= 2kNN .

♦
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The point of these formula is that they involve only k (first order derivatives of g), χ̂ (which
will be separately controlled later on by an elliptic system) and RLL. We have to show now
what is so special about RLL !

Theorem (Special structure of RLL). Let z = Lνgαβ∂βgαν − (1/2)gαβL(gαβ). Then

RLL = Lz − (1/2)LµLν�gµν + E,

where, for some constant C, |E| ≤ C|∂g|2.

The proof is by brute force, using the explicit formula given for Rµν . Observe first that the
quadratic terms in Γ in the formula for Rµν can be put into E. Next,

gαβ∂2
αβgµν = �gµν + E ′,

where E ′ can be put into E. We are left with the first three terms of the formula, which can
be handled similarly, so we handle only the first one gαβLµLν∂2

µβgαν . We just write it

L(Lνgαβ∂βgαν)− L(Lν)∂αgαν − LνL(gαβ)∂βgαν ,

and observe that the last term can be put into E, while the first one enters into z. It remains
to examine L(Lν) : since L = −a∇u, Lν = −agνµ∂µu. Hence

L(Lν) = (La/a)Lν + L(gνµ) < L, ∂µ > +gνµ < L,DL∂µ > .

Taking into account that La/a = −kNN , all three terms are linear combinations, with
bounded coefficients, of first order derivatives of g. Thus the term L(Lν)∂αgαν can be put
into E, and this finishes the proof. ♦

8.4 Elliptic Systems

These systems will control the traceless part of χ on one hand, and η on the other hand.
Recall that χ and η are tensors on the spheres : we will thus consider the induced connexion
6 D on the spheres to take their derivatives.

Recall that, if X or Y are not tangent to the spheres, we have defined 6 DXY as the orthogonal
projection of DXY on the spheres ; we can extend this definition to tensors by the usual
formula

XT (Y, Z) = ( 6 DXT )(Y, Z) + T ( 6 DXY, Z) + T (Y, 6 DXZ).

This extension will be used in the proofs.

1. We first establish the system on χ̂.
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Theorem (Codazzi equation). The tensor χ̂ satifies

div χ̂a + χ̂abkbN = (1/2)(ea(tr χ) + kaN tr χ) +RbLba.

Recall that χ̂ is a symmetric 2-tensor on the sphere foliation, and div means the trace with
respect to one argument

div χ̂a =6 Dbχ̂
b
a.

One should be careful, as usual, that we consider first 6 Dbχ̂, and then take the ab component
and sum. This is different from taking the divergence of the 1-form χ̂(ea, .) !

• To prove the Codazzi equation, we first prove

6 Dcχab− 6 Daχbc = RbLca − kcNχab + kaNχcb.

This follows smoothly from the definitions ; in fact,

6 Dcχab = ec(χab)− χ(6 Dcea, eb)− χ(ea, 6 Dceb) =

=< DcDaL, eb > + < DaL,Dceb > − < DbL, 6 Dcea > − < DaL, 6 Dceb > .

Since a second order derivative of L appears, we wish to introduce the missing terms to see
a curvature term. Thus we write

6 Dcχab = RbLca+ < DaDcL, eb > + < D[ec,ea]L, eb > +

+ < DaL,Dceb− 6 Dceb > − < DbL, 6 Dcea > .

We transform terms according to the formula

< DaDcL, eb >= ea(χbc)− < DcL,Daeb >,

< D[ec,ea]L, eb >=< DbL, [ec, ea] >=< DbL, 6 Dcea− 6 Daec >,

and we get

6 Dcχab = RbLca + I + II,

I = ea(χbc)− < DbL, 6 Daec > − < DcL, 6 Daeb >,

II =< DaL,Dceb− 6 Dceb > − < DcL,Daeb− 6 Daeb > .

Since

6 Daχbc = ea(χbc)− < DcL, 6 Daeb > − < DbL, 6 Daec >= I,

we are left to deal with the terms II of the second line.

In section 4.2, in the case of a submanifold of codimension one, we introduced the second
form k, and proved the formula DXY =6 DXY + k(X, Y )N . Here, we are dealing with the
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submanifold St,u of codimension two, for which χ and χ act as a pair of second forms. Just
as in section 4.2, we can prove the formula

Daeb− 6 Daeb = (1/2)χabL+ (1/2)χ
ab
L.

In fact,
< Daeb, L >= ea < eb, L > − < eb, DaL >= −χab

gives the coefficient of L, and similarly for L. Then

II = (1/2) < DaL, χbcL > −(1/2) < DcL, χabL > .

Since
< DaL,L >=< DaT, T > − < DaT,N > +

+ < DaN, T > − < DaN,N >= 2kaN ,

we find
II = kaNχbc − kcNχab.

• In the previously obtained formula, lift the index b and take c = b to obtain

6 Dbχ
b
a− 6 Daχ

b
b = RbLba − kbNχba + kaN tr χ.

We finally have to split χ in this formula. First,

ea(tr χ) = ea(χ
b
b) =6 Daχ

b
b + 2χ(eb, 6 Daeb).

Since <6 Daeb, eb >= 0 and <6 D1e1, e2 >= − <6 D1e2, e1 >, we find for instance

χ(eb, 6 D1eb) =<6 D1e1, e2 > (χ(e1, e2)− χ(e2, e1)) = 0,

and similarly for 6 D2. Next,

6 Dbχ =6 Dbχ̂+ (1/2)eb(tr χ)g,

6 Dbχ
b
a =6 Dbχ̂

b
a + (1/2)ea(tr χ),

which yields the formula. ♦

2. We have to explain why this system is called “elliptic”. Note that χ̂ depends only on two
functions χ̂11 and χ̂12, and that we have two equations. More precisely, we know from the
definition that

6 Dcχ̂ab = ec(χ̂ab) + . . . ,

where the dots stand for zero order terms in χ̂. Hence the Codazzi equations are

e1(χ̂11) + e2(χ̂12) + . . . = . . . , e1(χ̂12) + e2(χ̂22) + . . . = . . . .

Since χ̂ is symmetric and traceless, this can be written as a first order 2× 2-system on the
unknowns χ̂11, χ̂12, with matrix [

e1 e2

−e2 e1

]
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The operator matrix has for principal symbol the principal symbol of e2
1 + e2

2, that is the
principal symbol of the Laplace operator on the spheres.

3. We turn now to the system on η.

Theorem (div-curl system on η). The 1-form η satisfies the following system

div η = (1/2)L(tr χ)− (1/2)kNN tr χ− |η|2 + (1/2)χ̂abχ̂ab + (3/4)(tr χ)(tr χ)− (1/2)Ra
LLa,

curl ηab = (1/2)(χ̂bcχ̂ac − χ̂acχ̂bc) + (1/2)(−RaLLb +RbLLa).

• We first prove the formula

6 DLχab = 2 6 Daηb + χabkNN + 2ηaηb − χacχcb +RbLLa.

Using the definitions,

6 DLχab = L(χab)− χ(6 DLea, eb)− χ(ea, 6 DLeb) =

=< DLDaL, eb > + < DaL,DLeb > −χ( 6 DLea, eb)− χ(ea, 6 DLeb).

Forcing the curvature term into the formula by adding and substracting terms, we get

6 DLχab = RbLLa+ < DaDLL, eb > + < D[L,ea]L, eb > +

+ < DaL,DLeb > −χ(6 DLea, eb)− χ(ea, 6 DLeb) =

= RbLLa + 2ea(ηb)− < DLL,Daeb > +

+ < D[L,ea]L, eb > + < DaL,DLeb > −χ(6 DLea, eb)− χ(ea, 6 DLeb).

The third, fourth and fifth term are handled by brute force, using the formula above for the
frame coefficients :

< DLL,Daeb >= 2η( 6 Daeb)− χabkNN ,
[L, ea] =6 DLea − χacec + (ηa − kaN)(L− L),

< DaL,DLeb >= χ(ea, 6 DLeb) + 2kaNηb.

Substituing into the above formula, we see that the χ terms cancel out, while

2ea(ηb)− 2η(6 Daeb) = 2 6 Daηb.

This yields the formula.

• We use the above formula in two ways : first, we take b = a and sum to obtain

6 DLχ
a
a = 2div η + kNN tr χ+ 2|η|2 − χabχab +Ra

LLa.

As before, noting that 6 DLχ
a
a = L(tr χ), and splitting χ and χ, we obtain the first formula

of the theorem.
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For the second, we substract the formula with ba from the formula with ab we have estab-
lished, to get

2curl ηab = χbcχac − χacχbc −RaLLb +RbLLa.

Splitting χ and χ as usual, the χ, χ terms yield the same terms with χ replace by χ̂ and χ
by χ̂, the other terms cancelling out by symmetry. ♦

Remark that the system on η is also elliptic, since its matrix operator has the same principal
symbol as the Laplace operator on the spheres.

8.5 Mixed transport-elliptic systems

If we examine the system on tr χ, χ̂, η, we observe the presence of the term L(tr χ) in the
expression for div η, a term for which we have no control. Since we already know L(tr χ), we
can compute L(div η) and write L(Ltr χ) = [L,L]tr χ+L(Ltr χ). The result is summarized
in the following theorem.

Theorem. Set µ1 = L(tr χ)− (1/2)(tr χ)2. The quantity µ1 satisfies the following transport
equation:

Lµ1 + (trχ)µ1 = −L(RLL)− 2 6 DLχ̂abχ̂
ab + 2(η

a
− ηa)ea(tr χ)−

−L(kNN)(tr χ)− (kNN + tr χ)L(tr χ)− (1/2)(tr χ)3,

where the quantity 6 DLχ̂ is given through

6 DLχ̂ab = 2 6 Daηb − div ηδab + kNN χ̂ab + 2(ηaηb − |η|2δab)−

−(1/2)(tr χ)χ̂ab − (1/2)(tr χ)χ̂
ab

+RaLLb.

The formula about 6 DLχ̂ follows from the formula in the proof of the theorem about η just
by splitting χ :

6 DLχ =6 DLχ̂+ (1/2)(L(tr χ)g + (tr χ) 6 DLg).

Proving as usual 6 DLg = 0, and using the expression of L(tr χ) in terms of div η given in the
theorem, we obtain the formula.

To prove the transport formula, we check first

Lµ1 + (tr χ)µ1 = LL(tr χ) + L(tr χ)(tr χ)− L(tr χ)(tr χ)− (1/2)(tr χ)3.

On the other hand, using the formula for L(tr χ), we get

L(L(tr χ)) = −L(RLL)− 2 6 DLχ̂abχ̂
ab−

−(tr χ)[L(tr χ) + L(kNN ]− kNNL(tr χ).
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Using the formula
[L,L] = 2(η

a
− ηa)ea + kNN(L− L),

we finish the proof. ♦

The way one uses these formula to obtain an actual control of all frame coefficients is far
from being obvious :

i) First, we note the presence of terms ea(tr χ) in the transport equation for µ1 : hence
one has to establish also a transport equation for 6 D(tr χ). The system of the transport
equations on tr χ, ea(tr χ) and the elliptic Codazzi equations on χ̂ and 6 Dχ̂ is closed.

ii) To control η, we use the transport equation on µ1 along with the elliptic system for η,
which form a closed system on η, µ1 and 6 Dη.

We refer to [26] for the actual implementation of this strategy.
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Chapter 9

Applications to some Quasilinear
Hyperbolic problems

As explained in the Introduction, it is not possible here to give complete proofs of delicate
results, some of them being several hundred pages long. We just want to point out how the
methods and ideas explained in the preceding chapters enter in an essential way in the proofs
of these results. For each example, we give a very brief sketch of the method of proof ; we
explain what is the frame or the optical functions used in the work, how it is constructed,
and why this frame is supposed to be a good frame. The examples we have chosen to discuss
do not of course represent the whole literature on the subject, but they seem to us recent
and representative enough. In the following list, to facilitate an overview, we characterize
the method in one line :

i) Global existence for small solutions of quasilinear wave equations

−∂2
t φ+ ∆φ+

∑
gij(∂φ)∂2

ijφ = 0

satisfying the null condition. The proof is by commuting standard Lorentz fields to get decay
estimates.

ii) Global existence for small solutions of quasilinear wave equations

gαβ(φ)∂2
αβφ = 0.

Though the first proof used modified Lorentz fields, a simpler new proof uses only the
standard Lorentz fields to get decay estimates.

iii) Low regularity well-posedness for quasilinear wave equations

−∂2
t φ+ ∆φ+

∑
gij(φ)∂2

ijφ = N(φ, ∂φ).

79
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The proof uses the full machinery of chapter 8 to obtain decay of solutions of some linear
wave equation �hλ . Here, hλ is a smoothed rescaled version of g.

iv) Stability of Minkowski spacetime (first version) : the full machinery of chapter 8 is used to
prove decay for the solutions of the Bianchi equations, a first order system on the curvature
tensor R.

v) The L2 conjecture for Einstein equations : the machinery of chapter 8 is used to obtain
a control of the geometry and of the solutions of Bianchi equations in a context of very low
regularity.

vi) Stability of Minkowski spacetime (second version) : just as in examples i) and ii), standard
Lorentz fields are used to get decay estimates.

vii) Formation of Black Holes : the full machinery using the sphere foliation associated to
two optical functions is used.

As shown by examples i), ii) and vi), it turns out that, surprisingly enough, for some nonlinear
problems, one can ignore the geometry of the linearized operator and work with the standard
Lorentz fields. For example ii), and even more for example vi), this came as a surprise. This
is due to the specific nonlinear structure of the equations, and to the fact that we are dealing
with small solutions.

In constrast with these examples, examples iii), iv), v) and vii) show that the geometric
machinery explained in this book can be used in many different contexts

a) to prove decay estimates and global existence of solutions,

b) to prove low regularity results, counting carefully derivatives,

c) to prove formation of singularities.

9.1 Quasilinear Wave Equations satisfying the Null Con-

dition

This is a classical result (see [13], [21] or [22] for instance). We present here the sketch of a
new proof based on the results of chapter 6.

Consider the Cauchy problem with small data for a quasilinear wave equation

−∂2
t φ+ ∆φ+

∑
1≤i,j≤3

gij(∂φ)∂2
ijφ = 0, φ(x, 0) = εφ0(x), (∂tφ)(x, 0) = εφ1(x).
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We assume φi ∈ C∞0 (i = 1, 2) ; for simplicity (cubic terms playing no role), we take

gij(∂φ) =
∑

1≤k≤3

gijk∂kφ.

The equation is said to satisfy the null condition if, for all ξ ∈ R3,

gijkξiξjξk = 0.

This condition can also be interpreted by saying that the function u = r − t is closer to be
an optical function than in the general case of a quasilinear wave equation. In fact,

< ∇u,∇u >= gij(∂φ)ωiωj = gijkωiωj(∂kφ) = gijkωiωj(∂kφ− ωk∂rφ) = O(t−1|Zφ|).

This suggests that we can work with the standard frame, as will be seen in the proof of the
following classical result.

Theorem. There exists ε0 > such that, for ε ≤ ε0, the problem admits a unique global C∞

solution φ.

• We explain here two facts about the null condition. We first show how the null condition
is related to the Lorentz fields Z : recall the formula

∂i = ωi∂r − (ω ∧ (R/r))i, R/r = t−1ω ∧H.

If, in the nonlinear expression
∑
gijk∂ku∂

2
ijv, we replace ∂i using these formula, we obtain

the pointwise estimate (see [21], lemma 6.6.4)

|
∑

gijk∂ku∂
2
ijv| ≤ C(1 + t)−1(|Zu||∂2v|+ |∂u||Z∂v|),

since the main term
(
∑

gijkωiωjωk)(∂ru)(∂2
rv)

vanishes.

The following algebraic fact (see Lemma 6.6.5 of [21]) is also useful : for all Lorentz fields Z,

Z(
∑

gijk∂kφ∂
2
ijφ) =

∑
gijk∂kZφ∂

2
ijφ+

∑
gijk∂kφ∂

2
ijZφ+

∑
g̃ijk∂kφ∂

2
ijφ,

where the new sum with the constant coefficients g̃ijk satisfies again the null condition.

• The idea which is common to the solutions of almost all nonlinear Cauchy problems is that
of induction on time :

Assume that the solution exists and belongs to C∞ for 0 ≤ t < T ; if moreover, for some C
and all t < T ,

|∂2φ(x, t)| ≤ C,
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then for some η > 0, the solution exists and belongs to C∞ for 0 ≤ t < T + η.

This is the consequence of the standard local in time existence theorem (see for instance
[36]). Using all Lorentz fields Z, we define the higher order energy EN from the standard
energy E by

EN(t) =
∑
k≤N

E(Zkφ)(t) = (1/2)
∑
k≤N

∫
|∂Zkφ|2(x, t)dx.

With C0 > 0 some constant to be fixed later, we make the following induction hypothesis.

(Induction Hypothesis.) Assume that the solution φ exists for 0 ≤ t < T and satisfies
there, for some big N to be chosen later,

EN(t) ≤ C2
0ε

2.

• Using Klainerman inequality, the induction hypothesis implies

|Z l∂φ|(x, t) ≤ CC0ε(1 + t)−1 < r − t >−1/2, l ≤ N − 2.

The idea is now to commute with the equation products Z l of standard Lorentz fields (l ≤ N).
Defining the linearized operator P by

P ≡ � + gijk∂kφ∂
2
ij + gijk∂2

ijφ∂k

and using repeatedly the algebraic fact above, we obtain an equation

PZ lφ ≡ �Z lφ+
∑

gijk∂kφ∂
2
ijZ

lφ+

+
∑

gijk∂kZ
lφ∂2

ijφ =
∑

p+q≤l−1

hijkpq ∂kZ
pφ∂2

ijZ
qφ ≡ H,

where, for each (p, q) and all ξ ∈ R3 ∑
hijkpq ξiξjξk = 0.

If N ≥ 3, then (l − 1)/2 ≤ N − 2, and we can use the induction assumption to bound the
factor in H containing less Z-fields than the other, thus obtaining, for some integrable h(t),

|H| ≤ Cεh(t)
∑
p≤l

|∂Zpφ|.

• The key is this : There exists a standard energy inequality for P with an integrable
amplification factor. This inequality is very similar to that we proved in 6.2, 2. Here,

c = 1 +
∑

gijkωiωj∂kφ = 1 +
∑

gijkωiωj(∂kφ− ωk∂rφ),
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hence |c− 1| ≤ Cε(1 + t)−2 < r − t >1/2. Similarly, |∂tc| ≤ Cε(1 + t)−2 < r − t >−1/2. As a
consequence, the amplification factor is integrable, and its presence appears in the inequality
only through a factor eC1ε, C1 depending of course of C0.

Using the energy inequality for P , we obtain finally the estimate

EN(t) ≤ CEN(0)eC2ε,

where C is independent of C0 while C2 depends on C0.

To finish the proof, it is enough to choose first C2
0 = 2CEN(0)/ε2, then ε small enough to

obtain
EN(t) ≤ (2/3)C2

0ε
2.

This shows that the solution φ is global. ♦

9.2 Quasilinear Wave Equations

We consider the Cauchy problem for the quasilinear wave equation

gαβ(φ)∂2
αβφ = 0, φ(x, 0) = εφ0(x), (∂tφ)(x, 0) = εφ1(x).

The coefficients gαβ(s) are given (smooth enough) functions of one real variable s, with

gαβ(0) = mαβ,

m being here the Minkowsksi metric, that is, mαβ∂2
αβ = −∂2

t + ∆x. The data φ0, φ1 are fixed
functions in C∞0 . The general result is the following.

Theorem ([5], [34]). There exists ε0 > 0 such that, if ε ≤ ε0, there is a global C∞ smooth
solution to the Cauchy problem.

Remark that it makes a big difference whether the coefficients g depend on φ or, as in the
preceding example, on ∇φ ; for instance, consider the model equation

−∂2
t φ+ c2(∂tφ)∆φ = 0.

Taking the t-derivative and setting ψ = ∂tφ, we get

−∂2
t ψ + c2(ψ)∆ψ = −2(c′/c)(ψ)(∂tψ)2.

In other words, the left-hand side of the equation is of the form considered in this section, but
there is a source term in the right-hand side, which makes even the small solutions blowup
in finite time (see [3]). The case of Einstein equations in “harmonic coordinates” is a system
of such equations, for which the source terms display some sort of null condition : we will
discuss it later in this chapter.
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The theorem was first proved in [5] in the special case

−∂2
t φ+ c2(φ)∆φ = 0,

using modified Lorentz fields. However, Lindblad [34] gave recently a simpler proof, the
geometrical aspects of which we discuss now. The starting point of the proof of [34] is the
following bet, which is far from being obvious :

One can use the standard Lorentz fields Z and commute them with the equation.

Assuming this is true, it means that the good derivatives of φ will be the standard ones
Lφ = ∂tφ+ ∂rφ, (R/r)φ, as explained in 6.1. This example shows that, for a given problem,
it is not clear beforehand how to choose the geometry of the relevant fields. The induction
hypothesis reads, for some 0 < δ < 1,

EN(φ) ≤ 16Nε2(1 + t)δ.

• One proceeds to express the linear operator

�̃ ≡ gαβ∂2
αβ

using the standard derivatives L, L, R/r. One should be careful that we do not consider
the metric gαβ (inverse matrix of gαβ), but consider gαβ just as a symmetric 2-tensor on the
background manifold R4 with the flat Minkowski metric m. In particular, we define

gαβ = mαα′mββ′g
α′β′ .

To express gαβ in terms of the coordinates of the fields L, L, ea, we compute the double
trace

gαβ = mαα′mββ′gα′β′

in the standard null frame (e1, e2, L, L). We thus get

gαβ = (1/4)gLLm
α
Lm

β
L + (1/4)gLLm

α
Lm

β
L+

+(1/4)gLL(mα
Lm

β
L +mα

Lm
β
L)− (1/2)gaL(mα

Lm
β
a +mα

am
β
L)−

−(1/2)gLa(m
α
Lm

β
a +mα

am
β
L) + gabm

αamβb.

Since, for any field X, mα
X = Xα, we obtain

�̃ = (1/2)gLLL
αLβ∂2

αβ + (1/4)gLLL
αLβ∂2

αβ − gaLLαeβa∂2
αβ + γαβ∂2

αβ,

with
γαβ∂2

αβ = −gaLLαeβa∂2
αβ + (1/4)gLLL

αLβ∂2
αβ + gabe

α
ae

β
b ∂

2
αβ.

In other words, γαβ∂2
αβ is the part of �̃ which is expressed with two good derivatives. Setting

L1 = −(1/2)gLLL− (1/4)gLLL+ gaLea,
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we obtain
�̃ = −Lα1Lβ∂2

αβ + γαβ∂2
αβ.

• After some rough estimates, it turns out that one can discard a part of L1 and define

L2 = L− (1/4)gLLL

as a substitute for the standard L in the transport equations. One also introduces, as a
substitute for the optical function u = r − t, the function ρ defined by

|r − t| ≥ t/2⇒ ρ(x, t) = r − t, |r − t| ≤ t/2⇒ L2ρ = 0.

Introducing the coordinates q = r − t, p = r + t, the key step of the proof is to obtain, by
integration along L2, for some 0 < ν < 1, the estimates

|∇φ| ≤ Cε(1 + t)−1(1 + |ρ|)−ν , |∇2φ| ≤ Cε(1 + t)−1(1 + |ρ|)−1−ν |∂qρ|.

• These estimates once obtained, the rest of the proof is by commuting products Zk to the
equation, a procedure which requires serveral delicate arguments. As a result, one obtains,
for some constant C,

EN(t) ≤ 8Nε2(1 + t)Cε.

Taking Cε0 ≤ δ finishes the proof by induction. ♦

9.3 Low Regularity results for Quasilinear Wave Equa-

tions

This is the paper [25] we used in chapter 8. The problem is the well-posedness of the (local)
Cauchy problem with non smooth data

−∂2
t φ+ gij(φ)∂2

ijφ = N(φ, ∂φ), φ(x, 0) = φ0(x), (∂tφ)(x, 0) = φ1(x).

We assume (φ0, φ1) ∈ Hs × Hs−1, and N quadratic in ∂φ. The result of [] (under some
technical assumptions that we skip) is the following.

Theorem. The Cauchy problem has a unique local solution for s > sc = 2 + (2−
√

3)/2.

Let us recall that standard methods give the well-posedness for s > 5/2 (see [36] for instance).
In contrast with the first two examples above, this is an example where one does not use the
standard Lorentz fields Z, but develops the specific geometry of the problem.

• The first step of the proof, due to Bahouri and Chemin [10], [11] is to reduce this problem
to the problem of the time decay of solutions of some linear wave equation. This linear
wave equation is associated to a (split) metric hλ, depending on some parameter λ, which
is a smoothed rescaled version of g. The precise behavior of h and its derivatives with
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respect to λ reflects the smoothness assumptions on g. In the original approach of [10], the
Strichartz type estimate was proved using parametrices ; the “vector field” approach of [26]
is a refinement of an original idea of Klainerman [24].

• According to the reduction step above, the authors deal with the linear operator �hλ .
They define a “canonical” optical function u as being t on the time axis and “having forward
light cones with vertices on the time axis” as level surfaces. This refers to the construction
explained in 3.2. There seems to be no special reason for this choice, except its natural
character ; the normalization on the time axis reflects the will of imitating the flat case. The
full machinery of chapter 8 is then developed, along with the use of conformal inequalities
as explained in chapter 7, to prove the required decay estimates. Since we have presented
this material in this book, we refer to [26] for the actual implementation.

9.4 Stability of Minkowski space-time (first version)

We refer here to the book by Klainerman and Nicolò “The Evolution Problem in General
Relativity” [25], the previous book by Christodoulou and Klainerman [17] being more difficult
to access. The goal is to solve Einstein equations with initial data close to the flat Minkowski
metric. More precisely, we look for a metric g, close to the Minkowski metric, for which the
Ricci tensor R is identically zero (these are the simplest Einstein vacuum equations), and
which extends for all t the Cauchy data given on {t = 0} (in a sense which has to be made
precise).

There are many ideas in this long work, but two of them seem especially relevant in the
context of this booklet :

i) The authors never use the time variable. In the proof, they construct two optical functions
u and u (substitutes for the usual u = t− r and u = r+ t of the flat case), and use the frame
associated to these two functions,

ii) The authors do not deal with the wave equation �, but with the Bianchi equations.

We postponed the discussion of this case until now because of its complexity, though it
presents some features analogous to the case of Maxwell equations.

1. Bianchi equations

The Bianchi equations (or second Bianchi identity ) are

D[λRγδ]αβ = 0.

The bracket here means that we take the sum on the circular permutation of the indices.
The idea is of course that these equations control directly the second order derivatives of
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g through R : one has better chances to recover some induction hypothesis on g without
loosing derivatives...The drawback is that these equations are more difficult to handle than
a wave equation, or even the Maxwell system. The general character of this strategy, which
Christodoulou calls the “first method”, is sketched in the prologue of [14], refering to the
book [15].

• If the metric g satisfies the vacuum Einstein equations Rµν = 0, the curvature tensor R
is traceless, by definition. Since we want to handle the Bianchi equations by the method
of energy inequalities and commuting fields, we have to define a concept containing the
curvature tensor R and some of its Lie derivatives. Hence, generally, we define a Weyl field
as a traceless 4-tensor W with the symmetries of the curvature tensor

Wαβγδ = −Wβαγδ = −Wαβδγ = Wγδαβ,

Wαβγδ +Wαγδβ +Wαδβγ = 0,

gαγWαβγδ = 0.

The tensor W is said to satisfy the Bianchi equations if

D[λWγδ]αβ = 0.

• Just as we did for Maxwell equations, one can define a dual tensor ∗W by

∗Wαβγδ = (1/2)εαβµνW
µν
γδ.

Here, ε is the volume form, and ∗(∗W ) = −W as in the case of Maxwell equations. As
in chapter 5, there exists an energy machinery to prove energy inequalities for the Bianchi
equations, that we explain here without proofs. We define the energy-momentum tensor
(called here the Bel-Robinson tensor)

Qαβγδ = WαργσW
ρ σ
β δ + ∗Wαργσ ∗W ρ σ

β δ .

If W is a Weyl field satisfying the Bianchi equations, then

DαQαβγδ = 0.

This is of course similar to the formula proved in chapter 5. Moreover, Q enjoyes the positiviy
property : if X, Y, Z, T are non-spacelike future oriented fields,

Q(X, Y, Z, T ) ≥ 0.

To prove an energy inequality, one chooses three multipliers X, Y, Z and sets

Pα = QαβγδX
βY γZδ.

For a solution W of the Bianchi equations, we have then

div P = (1/2)Qαβγδ(
(X)παβY γZδ + (Y )παγXβZδ + (Z)παδXβY γ).
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We see that we have now the choice of three multipliers, which gives a lot of flexibility. In [],
many choices appear, where the multipliers are picked among the fields T0 = (1/2)(L + L)
(standard choice), K0 = (1/2)(u2L+ u2L) (conformal choice), L or L.

• In [25], the authors also need to commute vector fields with the Bianchi equations. We
already know from the case of Maxwell equations that the good way to do it is to consider
LXW . There is however some technical difficulty, namely : this Lie derivative is no longer
a Weyl field ! This forces us to define a modified Lie derivative L̂XW , which is LXW plus
some linear combination of components of W . We will not go any further in this direction,
and refer to [25].

2. Optical functions

Consider a bounded region K of spacetime whose boundary is formed by

i) A portion of the spacelike hypersurface Σ0,

ii) A portion of the null outgoing hypersurface C0,

iii) A portion of the null incoming hypersurface C∗.

We want to construct two optical functions u and u such that C0 is contained in a level
set of u, and C∗ is contained in a level set of u. In fact, in the approach of [], the authors
proceed by induction on the “last slice” C∗, instead of proceeding by induction on time as
in example 9.1 for instance.

a. To construct u, we prescribe an initial foliation on Σ0 given by the level sets of a function
w. The natural frame associated with such a foliation is (N, ea), where

N = |∇w|−1∇w

is the unit vector normal to the leaves of the foliation, and ea form an orthonormal basis
of the 2-dimensional leaves. If θ denotes the second form of the foliation (in Σ0), one can
establish the equation (we keep the notation of [] for convenience)

N(tr θ) + (1/2)(tr θ)2 = −( 6 ∆ log a+ ρ) + [−| 6 ∇ log a|2 − |θ̂|2 + g(k)],

where
a = |∇w|−1, ρ = −(1/4)R3434, g(k) = k2

NN +
∑
|kNa|2.

Here, the frame implicitly used in the notation R3434 is

e3 = N − T0, e4 = N + T0,

where T0 is a unit vector orthogonal to Σ0. In order to save derivatives of θ, we want w to
be constant on the trace of C∗ on Σ0, and a to satisfy the elliptic equation on the leaves (the
symbol “bar” denotes the mean value on the leaves)

6 ∆ log a = −(ρ− ρ̄), ¯loga = 0.
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The existence of such a function w requires of course a proof. We refer to [24] for details :
the point we want to make is that u is constructed in a very careful way, in accordance with
smoothness requirements.

b. The optical function u is the outgoing solution of the eikonal equation with initial
condition u = u∗ on the last slice C∗. The function u∗ is the solution of a highly non trivial
system which we do not discuss here.

The careful construction of both optical functions u and u and their associated frame makes
it possible to obtain specific decay properties for the various components of R on this frame
: these are called the “peeling properties”.

9.5 L2 conjecture on the curvature

We refer here to two series of works

i) the papers [30]-[32] where the local well-posedness of the vacuum Einstein equations is
proved with an initial curvature in H+0,

ii) the papers [27]-[29] starting the proof of the same result with curvature only in L2.

The general framework is very similar to that of the preceding example 9.4. The challenge
is to control the geometry of null geodesic cones, and of the associated optical functions
and frames, using only L2 bounds on some components of the curvature. The control of
this geometry will allow us to use the machinery of chapter 8 to obtain estimates on the
curvature via the Bianchi equations. We sketch here the issue of the boundedness of tr χ,
the importance of which we first explain.

• Assume given an optical function u. Let S0 be a fixed 2-“sphere” in an initial spacelike
hypersurface Σ0. Let u be constant on S0 and consider the hypersurface H which is the
union of the integral curves of L = −∇u starting from S0. Then u is constant on H, and H
is a null hypersurface. Let s be the function on H defined by

Ls = 1, m ∈ S0 ⇒ s(m) = 0.

The image of S0 by the flow of L at time s0 is the level surface Ss0 of s, and the 2-“spheres”
Ss form a foliation, called the “geodesic foliation”, of H. The null frame we are working
with is associated to this sphere foliation as explained in chapter 3.

We pick up on S0 coordinates ω = (ω1, ω2) and define coordinates on H following the
trajectories of L ; more precisely, if m is the image of the point of S0 of coordinates ω by
the flow of L at time s, the coordinates of m are (s, ω). The importance of tr χ with respect
to the foliation Ss is displayed in the following theorem.
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Theorem. Let dAs be the area element on Ss, and |Ss| =
∫
Ss
dAs be the area of Ss. Then

(d/ds)|Ss| =
∫
Ss

(tr χ)dAs.

Following [], we first prove that, with the coordinates we introduced on H,

∂s(gab) = 2χab.

This is due to the fact that L = ∂s :

L < ∂a, ∂b >=< DL∂a, ∂b > + < ∂a, DL∂b >=

=< DaL, ∂b > + < ∂a, DbL >= 2χab

since [L, ∂a] = 0.

Denoting by γ the restriction of g to the spheres, this implies

∂s(|γ|1/2) = |γ|1/2tr χ.

Now

|Ss| =
∫
|γ|1/2dω1dω2,

(d/ds)|Ss| =
∫
tr χ|γ|1/2dω1dω2 =

∫
Ss

tr χdAs.♦

• Define some components of R by

βa = RLaLL, ρ = (1/4)RLLLL, σ = ∗RLLLL.

Assume that these components are bounded in L2(H) by R0. We want to use the machinery
of chapter 7 to obtain a bound for tr χ in L∞, carefully counting derivatives.

For this, we come back to the transport equation on tr χ, which is here, since the Ricci tensor
is zero,

L(tr χ) + (1/2)(tr χ)2 = −|χ̂|2.

To obtain a L∞ control of tr χ, we need to control
∫

Γ
|χ̂|2 on each of the geodesics Γ which

foliate H. We turn then to the Codazzi equation on χ̂, which is here

div χ̂ = −β + (1/2) 6 ∇tr χ+ ...,

where the dots denote terms which are supposed to cause no problems. Denoting by D−1

the pseudodifferential operator of order −1 which solves the elliptic system on χ̂, we have to
bound

I1 =

∫
Γ

|D−1β|2, I2 =

∫
Γ

|D−1 6 ∇tr χ|2.
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• The bound on β implies that D−1β is bounded in Hs(H) for s = 1, and we cannot consider
its trace on the codimension 2 curve Γ, since this would require s > 2/2 = 1 ! In a way which
is analogous to what has been done with the special component R44 in 6.3, we investigate
now the special structure of β. To this aim, we write the Bianchi equations in our frame,
and obtain

div β = DLρ+ . . . , curl β = −DLσ + . . . ,

where the dots as usual are supposed to be harmless terms. In short, we write the solution
of this elliptic system β = D−1(L(ρ), L(σ)), thus obtaining

D−1β = ∇LQ+ . . . , Q = D−2(ρ, σ).

The integral I1 is bounded by ||Q|Γ||2H1 , which is itself bounded by

||Q||2H2(H) ≤ C||(ρ, σ)||2L2(H) ≤ CR2
0.

• To bound ||tr χ||L∞ using the transport equation, we also have to bound I2 with this same
norm. The difficulty here is that D−1 6 ∇ is a zero order pseudodifferential operator on
the spheres, which does not act on L∞. This forces the authors to work in Besov spaces,
and leads to considerable developments which are beyond the scope of this introduction.
A related approach in progress, based on a parametrix construction, has been exposed by
Szeftel in his Cours Peccot [38].

9.6 Stability of Minkowski spacetime (second version)

For quite a long time, it has been believed that working in harmonic coordinates for the
Einstein equations could only lead to local (in time) existence results, see for instance the
work of Choquet-Bruhat [12]. The idea to prove global results was then to avoid coordinates
altogether, as was the case for the first version mentioned in example 9.4. In this second
version [35] however , just as in the example ii) above, it turns out that one can use the
standard Lorentz fields to handle the problem of small solutions.

• Let us explain first the use of “harmonic coordinates” : this means that we are working on
R4 with coordinates xα, each one of them being a solution of the wave equation �gx

α = 0.
From the formula of 2.3, this means, for each µ,

∂αgαµ = (1/2)gαβ∂µgαβ.

It also means that the lower order terms in � are identically zero

� = gαβ∂2
αβ.

If we take the ν derivative of the above formula, we get

∂α∂nugαµ = (1/2)gαβ∂2
µνgαβ + qµν ,
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where qµν is a quadratic expression in the first order derivatives of g

qµν = (1/2)∂ν(g
αβ)∂µgαβ − (∂νg

αβ)∂βgαµ.

Exchanging µ and ν and summing, we obtain

∂α∂νgαµ + ∂α∂µgαν − gαβ∂2
µνgαβ + qµν + qνµ.

Using the explicit formula from 6.1 for the Ricci tensor, we observe that, in harmonic coor-
dinates, the first three terms cancel out, modulo quadratic terms in first order derivatives of
g. Hence the vacuum Einstein equations can be written

�gµν = Fµν(g)(∂g, ∂g),

for some appropriate expressions Fµν , quadratic in ∂g. This is the only known way to display
the hyperbolic character of Einstein equations.

Besides reducing Einstein equations to a hyperbolic system, the point of harmonic coordi-
nates is this : suppose g satisfies the system

gαβ∂2
αβgµν = Fµν(g)(∂g, ∂g)

with initial values (g, ∂tg) = (g0, g1) on {t = 0} satisfying the harmonic coordinates relations
; then the harmonic coordinates relations are true for all t, and g is in fact a solution of
Einstein equations.

We refer to [19] for a proof of this well-known fact.

• From the preceding point, we see that we have to work with a diagonal (in its principal part)
system of wave equations, coupled with the first order condition of harmonic coordinates.
In the scalar case of example ii), we concentrated on the good derivatives of the solution φ ;
since we work here with a system on the tensor g, we will not only concentrate on the good
derivatives of single components gαβ, but also on ordinary derivatives of good components of
g. The harmonic coordinates relation provides precisely a link between good derivatives and
good components : with the notation of [35], let T be one good derivative L, e1, e2 : defining
the perturbation h of the Minkowski metric by gαβ = mαβ + hαβ, we have

T µ∂αhαµ = T (hαα) +O(h∂h).

On the left-hand side, we have for fixed µ, modulo O(h∂h terms, the trace of the tensor

(X, Y ) 7→ DXh(Y, ∂µ).

In the null frame (e1, e2, L, L), this trace is

Dah(ea, ∂µ)− (1/2)DLh(L, ∂µ)− (1/2)DLh(L, ∂µ).

This implies the relation
|(∂h)LT | ≤ |Th|+O(h∂h).
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In words, the good component LT of any derivative of h is controlled, modulo harmless
terms, by all components of a good derivative of h : this is the “duality” specific of this
system.

• As in ii), we start with the induction hypothesis

EN(t) ≤ 64ε2(1 + t)2δ.

The above estimate and similar other estimates following the same duality principle and
using the harmonic coordinates condition gives, for some γ > 0,

|(∂h)LT |+ |(∂Zh)LL| ≤ Cε(1 + t+ r)−1−2γ, |hLT |+ |(Zh)LL| ≤ Cε(1 + t+ r)−1 < r − t > .

Now, the authors establish the following improved energy inequality, which is very close to
the one in chapter 6.

Theorem. Assume that the metric g satisfies the decay estimates

< r − t >−1 |hLL|+ |(∂h)LL|+ |Th| ≤ Cε(1 + t)−1,

< r − t >−1 |h|+ |∂h| ≤ Cε(1 + t)−1/2(< r − t >−1/2−γ .

Then, for any 0 < γ ≤ 1/2, there exists ε0 > 0 such that, for ε ≤ ε0,

Eφ(T ) + (1/2)γ

∫
0≤t≤T

< r − t >−1−2γ
∑
|Tφ|2dxdt ≤

8Eφ(0) + Cε

∫
0≤t≤T

(1 + t)−1|∂φ|2dxdt+ 16

∫
0≤t≤T

|�φ||∂tφ|dxdt.

Remark that this inequality gives the classical improved energy inequality with an amplifi-
cation factor (1 + t)Cε. The estimates already proved on h fit with the assumptions of the
theorem, and this is the key to the proof.

There are of course many other difficult problems to settle : estimates for the right-hand
sides Fµν , estimates of the commutators [�, Zk], etc. We will not go into this, refering to
the well-written introduction of [35] for details.

This work shows that, in the study of systems of wave equations or hyperbolic symmetric
systems with an unknown u ∈ RN , it is an essential step to understand the duality between
the good derivatives of u and its good components. Note that in the present case, as well
as in the case of the Bianchi equations briefly discussed in example iii), the same null
frame is used to identify the good derivatives (e1(h), e2(h), L(h)) and the good components
hLT , ∂hLT . In a more general situation, it could occur that one has to construct a null frame
in the physical space to identify the good derivatives of u, and another frame (with which
properties ?) in RN to capture the good components of u. An example of this situation is
given in [9] : following the guidelines given by a nonlinear geometrical optics approximation
of the solution (see the “weak null ” condition discussed in [35]), we identify good components
of ∂u, which play an essential role in the proof.
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9.7 The Formation of Black Holes

We refer here to the monography [14] by Christodoulou. We will not discuss here the heart
of the book which is what the author calls the “short pulse method” or “third method”,
the first two methods being working with Bianchi identities and null frames, as explained
in example 9.4. We only want to point out the construction of the optical functions, which
is very close to that of example 9.3. The author constructs first a timelike geodesic line
Γ0, and considers the outgoing future null geodesic cones with vertices on Γ0 : the optical
function u is then taken to have these cones Cu as level surfaces. For u, its level surfaces are
assumed to be the past incoming geodesic cones Cu with vertices on Γ0. The exact values of
u and u on Γ0 depend only on two functions of one variable, which leaves much less flexibility
than in example 9.4, where u and u were depending on the choices of two functions of three
variables. Despite this fact, it turns out that these choices of u and u are relevant, since in
the end some sphere of the foliation

Suu = Cu ∩ Cu

turns out to be the desired “trapped surface”. We will not explain this term, let us only say
that a trapped surface announces a singularity, as explained in [20] for instance.
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