CHAPTER VI

NONLINEAR PERTURBATIONS OF THE WAVE EQUATION

6.1. Introduction. In this chapter we shall discuss the solution of a nonlinear Cauchy
problem in R*+",

(6.1.1) Fu,u',u")=0; u(0,") = ug, 8u(0, ) = uy;

where u; are small and of compact support or at least decrease fast at infinity. The
variables will usually be denoted by ¢ € R and z € R"™, but sometimes we write z, instead
of ¢ to obtain symmetrical notation, and £ = (z1,...,2,) to avoid confusion. We shall
assume that u = 0 is a solution of the equation F(u,u’,u") = 0 and that the linearization
there is the wave equation. Thus

F(u, v, u") = Ou+ f(u,u',u")
where
(6.1.2) O=02-A

is the wave operator, also called the d’Alembertian, and f vanishes of second order at 0.
Additional conditions will be imposed on f in low dimensions.

As an orientation we shall first rephrase a simple special case of Theorem 4.3.1 as a
result on the Cauchy problem (6.1.1) when n = 1. Thus consider the Cauchy problem

1
(6.1.3) ' Z gix(u)80ku=0; u(0,) = euo, Su(0, ) = cuy;
Jk=0

where Zjl k=0 9ix(0)0;0r = 03 — 02. With U; = G;u, Uy = O,u, this is equivalent to a
system

U +a(U)0;U =0; Uy =euy, Uy =cupift=0.

Here

a(U) = ((901 +_gi0)/900 911(/)900) .

The eigenvalues are given by

AMgoo — A(go1 + g10) + 911 = 0.
When U = 0 this reduces to A?> = 1, and the corresponding eigenvectors of a(0) are

(1,—A). The projections of (u1, uf) on these directions are fy(1,—) where 2f; = u; — ug
and 2f_1 = ug + uy. The differentials of the eigenvalues at 0 are given by

2X dA + A?dgoo — Ad(go1 + g10) + dg11 = 0,
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that is,
1

2(dA, (1,-2)) = Z gjkl(—)\)j+k+1+1, gix1 = 0gjr(0)/0u;.
J,k,1=0

If T; is the lifespan of the classical solution of (6.1.3), with u; € C$°(R), then Theorem
4.3.1 states that

1
(6.1.4) lim1/(eT) = max —§ 3 gjm(=2) ! £ (y).
§,k;1=0

To interpret this result we observe that the solution of the unperturbed wave equation
with Cauchy data (uo,u1) can be written in the form Fy(z —t) + F_;(—z — t) where F, is
the wave moving to the right and F_; is the wave moving to the left. To determine Fiy;
we have the equations

Fi(e) + F_1(~2) = uo(z), Fi(z) + I 4(=2) = —uy (),

and after differentiation of the first formula we find that Fj(Az) = —fy(z) for A = +1.
Hence we can rewrite (6.1.4) in the form

1
(6.1.5) lim 1/(eT:) = max 3 > gimdi i F (y)
Jed=0

where ) = (=1, ) and the maximum is taken with respect to y € R and A = #1.

Our aim will be to prove results similar to (6.1.5) when n = 2 or n = 3, with 7,
replaced by v/T; and log T, respectively while there will be global existence theorems for
n > 3. The reason for the improved behavior when the dimension n gets large is that
solutions of the linear Cauchy problem in R'*” with smooth data of compact support
can be estimated by (14 ¢)(=")/2 and that for the solution of the ordinary differential
equation du(t)/dt = e(1 + t)1=")/2y(t) we have

u(t) = u(0) expet, ifn =1,
u(t) = u(0)exp (2e(V1+¢t —1)), ifn =2
u(t) = u(0)(1+1¢)°, if n =3;
u(t) < u(0)]e*, ifn> 3.

In view of the crucial role of the linear wave equation we shall start with a thorough
study of its solutions in Section 6.2. This can be based on Fourier transforms or the com-
pletely explicit fundamental solution. The Friedlander radiation field which describes the
asymptotic behavior of the solutions is studied in Section 6.2, first using the fundamental
solution of 00, and then using a conformal compactification. However, for equations with
variable coefficients or nonlinear equations we must use the energy integral method to de-
rive estimates. It is presented in Section 6.3 where we also outline a proof of existence and
uniqueness of solutions to the Cauchy problem for linear hyperbolic equations with vari-
able coefficients. In Section 6.4 we then discuss briefly some “interpolation inequalities”
and Sobolev inequalities which are indispensible in nonlinear problems, and we show how
they work in a simple case by proving local existence theorems for the nonlinear Cauchy
problem (6.1.1). Global existence theorems are proved in Section 6.5 using an idea of
Klainerman [3] which exploits the infinitesimal generators of the Lorentz group, that is,
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vector fields commuting with O0. In dimensions 2 and 3 the results only give at first the
order of magnitude of a finite lower bound for the lifespan in terms of the size of the initial
data, but they are then improved to asymptotic lower bounds for the lifespan similar to
(6.1.5). It is plausible that these really give the asymptotic behavior as ¢ — 0 of the lifes-
pan but this is only known from work of F. John [2] in some special cases closely related
to (6.1.5). (See also the remarks at the end of Section 6.5.) In Section 6.6 the results of
Christodoulou [1] and Klainerman [4] on existence of solutions for all £ > 0 when n = 3
and the so called null condition is fulfilled are proved with the methods of Klainerman.
Section 6.7 gives the proof of Christodoulou based on a conformal compactification, which
explains the role of the null condition better.

6.2. The linear wave equation. In this section we shall discuss the behavior at
infinity of the solution of the wave equation in R!*", n > 1,

(6.2.1) Ou= (82— A)u=0
with Cauchy data |
(6.2.2) u=Ff, Opu=g whent=0,

where f,g € C8° (R"). At first we assume that f = 0, Whlch implies that in the sense of
distribution theory

U(t,w)=/E(t,m—y)g(y)dy, t>0,

where E is the fundamental solution (see e.g. Hormander [4, Section 6.2])
=155 (0 - o).
Here ¢ = (¢1,...,2,) and

x3(s) =s%/T(a+1), >0, xi(s)=0, s<0, if Rea> -1,
dx3/ds=x4"' foralle€C.

Thus x"’“ = 6("’ 2 ,k=1,2,..., is supported by the origin.

Set ¢ = rw where r= |x| a,ndw € 5" 1. Thenr <t+M insuppu 1f|y| < M in supp g,
for |z| < |z — y| + ly| < t + M in the support of the “integrand”. When n is odd we also
have r >t — M, for |z| > | — y| — |y| > t — M (Huygens’ principle). When n is even we
note instead that u(t,z) = O(t'~") if |2| < t/2 and ¢t — oo, for E is homogeneous of degree
1 —n. Differentiation gives a faster decrease, 8%u(t, z) = O(t!~"~!2l) when |2| < t/2. The
main contributions to u must therefore always occur when r — ¢ is small compared to ¢, so
we set r =t + g where —r < o< M, if 2r > ¢ > r — M. Then

=z —yl*=(r—0)® - |rw—y|* =2r({w,y) — ) + &* — y*,

and we obtain by the homogeneity of £
r) T u(t,2) = § [ x0T (0, - 0+ (& = o)/2r)a(0) dy
= %/X:_%n(s — o0+ 0%/2r)G(w, 7", 5) ds

= %/X?(S+(t2—rz)/Qr)G(w,r‘l,s) ds.
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Here

G(w,2,5) = / 6(s — {w, ) + 9P =/2)9(y) dy

is a C* function in $”~! x [0, 1/2M] x R with |s| < 5M/4 in the support and G(w, 0, 5) =
R(w, s; ), where

©29  Rwso= [ omsma= [ s

is the Radon transform of g, which has support in $*~! x [~M, M]. Hence
(6.2.4) | r"T—lu(t, z)=F(w,r™1 )

where the convolution

11—

l—n

(6.2.5) F(w,z,0) = 1(2m)72 /X_i_Tn(s — 0+ 0%2/2)G(w, 2, 8)ds

is a C* function in S"~1 x [0,1/2M] x R with ¢ < M in the support. This result is due to
Friedlander [1, 2] who only assumed that u satisfies the wave equation for large |2|. The
restriction Fy of F' to z = 0 i1s the Friedlander radiation field,

Fo(w,0) = 3(2m)*5" / Xs* (s = O)R(w, 539) ds.

1—n

From the homogeneity of x_;z_ it follows at once that Fp(w, ) is a polyhomogeneous
symbol in g of degree (1 —n)/2 (cf. Hormander [4, Def. 18.1.5]). We have, still with
g=r—tand z = rw,

(6.2.6) lu(t, ) — v 7" Fo(w, 0)| < C((1+ 0)/r)(r(1 + ) 3", ifr > /2> 1.

This follows at once from the differentiability of F when ¢ > —2M, say. When n is even
we must also use that for ¢ < —2M we have

|0F (w, 2, 0)/82| < C(1 + |g|) 7",

since differentiation of (6.2.5) shows that 0F/8z can be estimated by a constant times
1+n 1—n
@(L+ o) ™"5" + (1+|o) 7"
So far we have only studied the solution of (6.2.1), (6.2.2) when f = 0. However, an
approximating radiation field always exists. In fact, choosing ¢ € C$°(R) equal to 1 in
[1,00) and 0 in (—co, 0) we obtain when ¢ > 1 o

u=Ex K, K=0()u)=2¢'(t)0u/dt+¢"(t)u.

Thus K € CP(R'*") if f,g € C°(R™), and in the sense of distribution theory

| u(t,z) = /01 ds/E(t—s,m—y)K(s,y)dy

is a superposition of solutions of the form discussed already. If (6.2.6) is valid for a solution
u of (6.2.1) then (6.2.6) remains valid if u is replaced by u(- — s,-) and Fy is replaced by
Fo(+,-+ s). In view of the uniformity in g of the estimate (6.2.6) in the case where we
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have proved it, we conclude that there is always some Fy, obviously uniquely defined, such
that (6.2.6) holds and Fj is a symbol in g of order (1 — n)/2, which is smooth in w. The
radiation field depends continuously on the initial data f,g. If Fy is the radiation field of
u we have just observed that the radiation field of (u(-+s, ) —u)/s is (Fo(:,-—s) — Fo)/s,
so we conclude that the radiation field of fu/dt is —3Fy/dp. If u satisfies (6.2.1), (6.2.2)
with f = 0, then du/0t satisfies (6.2.1) and (6.2.2) with f replaced by g and g replaced
by 0. It follows that the radiation field is given in general by

—n lzn 1=n 1-n
(6.2.7) Fo(w, ) = %(271')17)(_2 *(R(w,59) — R(w, f)), x2 =x:° (=),
with convolution and differentiation taken in the variable g indicated by a dot.

By (6.2.6) we have for bounded g, small h and large r

u(t, 2+ h) = r'7" (Fo(w, 0) + 0Fo(w, 0)/Be(d’, h) + O(|h[* + 1/r)),
so the radiation field of u(t,z + k) is Fo(w, 9) + 8Fo(w, 0)/00{w, k) + O(|h|?). In view of
the continuous dependence just pointed out it follows that the radiation field of du/dx;
is w;OFo/dp; the other terms obtained by formal differentiation of (6.2.6) are absorbed
by the error term. However, to give a precise description of the behavior of u at infinity
we must also apply other differential operators which exploit the invariance of the wave
operator under the Lorentz group and homotheties. These are the vector fields

(6.2.8) i ij = )\j.’ltja/amk —)\kmka/axj, j,k:O,...,n,

where A = (1,—1,...,—1), which all commute with 00, and the radial vector field
n

(6.2.9) Zo = Z:Bja/amj,
0

for which [0, Zo] = 020 — ZoO = 20. For an arbitrary product Z7 of such vector fields it
is clear that O0Z7u = 0 if Ou = 0. We have
Zin(le|=t) =0, G, k#0; Zop(lz|—t) = (t—lalzr/lel, *k#0; Zo(lz]-1) = [z] -1
Thus . .

Z' (|7 Fo(e/lz], || = 8)) = |27 Fr(z/l2|, |z| - 1),
where Fr(w, g) is also a polyhomogeneous symbol of order (1 —n)/2 in ¢. In fact, when
7 = Zjy or Zo operates on a homogeneous function it gives another one of the same degree,
and when it operates on ¢ = |z| — ¢ we have just seen that Z acts as the operator ¢d/0¢
followed by multiplication with a homogeneous function of z of degree 0. If s — T(s)
is the one parameter group of linear transformations generated by Z, then we deduce as
above from (6.2.6) that the radiation field of uoT'(s) is r*5 (1+ sZ)r 3 Fo(w, 0) + O(s?),
so the radiation field of Zu is r*= Zr 3" Fo(w, 0). Repeating the argument we find that
(6.2.6) implies the following result:

Theorem 6.2.1. If u is a solution of the Cauchy problem (6.2.1), (6.2.2) with f,g €
C§°(R™), then
(6.2.10) 10°27u| < Car(1+ [t] + [ — o) 5"
for arbitrary o and I. More precisely, if Fy is the radiation field of u, then

3—n

6.2.11)  |0°Z(ult, ) — 1T Fo(w, 0))] < C(1 + 0) Tt~ 52, ifr>/2> 1.
When n = 1 then (6.2.6) simplifies to
u(t,z) = F(sgnz, |z]—1t)
for large t when = # 0, so F(w,-) is the function F, of the introduction for w = 1.
When n = 2,3 we shall obtain results similar to (6.1.5) for the lifespan of the solution of

a nonlinear Cauchy problem where F) is replaced by the radiation field. The following
theorem will be important in the interpretation of the result:
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Theorem 6.2.2. If f,g € C§°(R"™) then the radiation field Fy of the solution u of
(6.2.1), (6.2.2) is not identically O unless f and g are identically 0.

Proof. If Fy is identically 0 it follows from the theorem of supports and (6.2.7) that
R(w, 0;9) — dR(w, ¢; f)/de = 0.
Since R(w, ¢;-) = R(—w, —p;-), this is equivalent to
R(-w,—g;9) — dR(-w,—g; f)/de = 0.

If we carry out the differentiation and replace (—w,—p) by (w, g) afterwards, it follows
that

R(w, 0;9) + dR(w, g; f)/do = 0,

so R(w,0;¢9) = 0 and dR(w, ¢; f)/de = 0, which implies R(w, g; f) = 0. Hence f and ¢
vanish identically.

Remark. The proof shows that the projection of the support of R(w, g;9) — R(w, 0; f)’
on S"~! cannot omit two antipodal points. In fact, if R(w, ¢;g) vanishes for all w in an
open set, then it vanishes identically since the Fourier transform of g will vanish in the
open cone which it generates. '

When n = 3 and f, g are functions of r = |z| only, hence C* functions of r2, then the
solution of (6.2.1), (6.2.2) is a function of ¢ and 7, and the equation (6.2.1) can be written

(’I’U);’t - (ru ;'/r =0.

Hence
u(t,z) = r'lFo(r —t), t>M, r=|z|,

so the left-hand side of (6.2.6) vanishes for large t. It is easy to compute Fy, for

[e e} o0

g@t)dn(t? — ¢*) = 2r / tg(t) dt,

R = [

fel

and similarly for R(w, g; f). It follows that the radiation field, which only depends on g,
is given by

(6-2-12) dFo(e)/de = (d(ef(e))/de — 09(0))/2.

The arguments in this section have all been based on the properties of the fundamental
solution of 1, essentially as in Friedlander [1]. We shall now discuss another approach from
Friedlander [3] which exploits the conformal map from the Minkowski space M1T", that
is, R*™ with the standard Lorentz metric, to the Einstein universe R x S”, defined in
Section A.4 of the appendix. The scalar curvature of the Einstein universe is minus that of
S™ with the standard metric, so it is —n(n — 1) by (A.2.10). The conformal d’Alembertian
(see Section A.3) is therefore

2 —A+n(n—1)(n-1)/4n =0+ (n—1)?/4

where A is the Laplaée operator on S™ and O is the d’Alembertian on R x S”. If u is a
solution of Ju = 0 in M!*", and with the notation in Section A.4

(6.2.13) &(T, X) = (cos T + Xo)! =™/ 2y(¥(T, X)), when cosT+ Xo >0, 0<T < ,
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it follows that (04 (n—1)?/4)@ = 0 and conversely. If the Cauchy data of u are in S(R"),
then those of % are in C°(S™), and they vanish of infinite order at the pole corresponding
to infinity in R™. We shall prove in Section 6.3 that this linear Cauchy problem has
a solution & € C*®°(R x S"), and below we shall also outline a proof using an explicit
fundamental solution of 0 + (n — 1)2/4. Since

cos T+ Xo = 0 = 2((1+ (|a| = 1)) (1 + (2] + )*)) ~*,

it follows at once that

fu(t, 2)| < C((1+ (2] — )2)(1 + (2] +)2)) =7,

which is the estimate (6.2.10) (without differentiations). To conclude (6.2.11) we must
determine the limit of ¥~(¢,(t + g)w), w € S"7!, as t — +oo. The corresponding
coordinates T, « are defined by .

sinT = Qt, sina = Q(t + 0), cosa = Q1 — o(t + 1)),
and since  ~ t~1(1 + QQ)f%, it follows that
sina — (14 gz)“%, cosa — —o(1+0%)"%, sinT — (1+ ¢%)73.

We have T' + o — 7 since T' > 0 and ¥(T, X) remains finite when |T'| + o has a bound
< 7. Hence

(6.2.14) tn_;l(l-l-gz)nT_lu(t, (t+o)w) — U(r—a, (cosa,sinaw)); 0< a < m, cota = —p,
which means that
(6.2.15) Fo(w, 0)(1 + 35 T = #(m — a, (cosa, sin aw)).

For bounded g the difference between (7, &) and the limit is O(1 /t), so the difference be-
tween the two sides in (6.2.14) is actually O(1/t), which gives (6.2.11) when no derivatives
are present. What remains is to examine what application of the differential operators
Z and O mean in the Einstein model; the full result (6.2.11) will then be a consequence
of the fact that 4 € C°, with vanishing of infinite order at the infinitely distant point
T = 0, « = m. We leave this for the interested reader but will return to the conformal
d’Alembertian in Section 6.7.

It would not have been necessary to use the results of Section 6.3 here, for we can write
down the fundamental solution for the conformal d’Alembertian in R x S™ explicitly. To
do so we first take the pole at T" = 0 and the point in S™ corresponding to o = 0. Recall
that the fundamental solution of 00 in M11" is for t > 0

B =iy, (22 - o).
With the notation in (A.4.2) weset t = Q 'sinT, z = Q7' X, Q = cos T + cos &, and note
that
t2 — |2|? = (sin? T — sin? @) /Q? = (cos @ — cos T) /2.

Hence E(¥(T, X)) = %ﬂ'(l‘")/29("‘1)/2xg_1_n)/2(cosa —cosT). Now

@ + (n - )2/O)(QFE(W(T, X)) = Qw0 E = 2775,
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* where 6o should be replaced by é0/./g if the coordinates in the Einstein universe are not
chosen geodesic. (Recall that &y is a distribution density.) Hence

(6.2.16) @ +(n—12/4)E =6, if E=1L1@2r)5"x,” (cosa—cosT),

provided that o + |T'| < m and we define E(T,-) = 0 when T < 0. (6.2.16) remains true

for T < w. If n is odd then Xgﬁn)ﬂ is even or odd, so replacing T' by # — T and a by
7 — o shows that we have a solution of the homogeneous conformal d’Alembertian when
7 < a+ T and T < =, and the solution has the same distribution limits on the character-
istic surface o + T = = from both sides. If n is even, then we obtain by this substitution
the distribution 1(2x)(1-")/ 25(1=™)/2(cos o — cos T'), which satisfies the homogeneous con-

formal d’Alembertian for & + |T| < 7 since Ox" ™/%(t2 — |z|?) = 0 in R**™ for even n.
(See Hormander [4, Theorem 6.2.1].) Again we conclude that (6.2.16) is a fundamental
solution for T < .

If the pole on S™ defined by & = 0 is replaced by another point, we just have to replace
a in (6.2.16) by the geodesic distance s to that point along S™. We can therefore write
down the fundamental solution for 7' < = with pole at an arbitrary point in S™. This
suffices to conclude that the Cauchy problem for the conformal d’Alembertian with C'*°
initial data when T = 0 has a solution in C'® for T' < 7, and iteration of this conclusion
proves that there is a C°° solution for all T' > 0.

It is in fact easy to obtain a global fundamental solution. Assume first that n is odd.
Then the fundamental solution arrives as T' — m — 0 as (—1)(3~")/2 times the backward
fundamental solution at the antipode, and it must be continued as (—1)(*=")/2 times the
forward fundamental solution with pole at the antipode and time . At time 27 it arrives
as minus the backward fundamental solution at the original point, so the fundamental
solution then repeats with period 27 in T'. Assume now that n is even. Then the funda-
mental solution continues beyond the antipodal point at time 7 with support outside the
characteristic conoid there, and it arrives at time 27 as the backward fundamental solution
at the original point in S™. It is then continued with a change of sign to the next interval
27 < T < 4w and so on, with a period of 47. The fundamental solution is for every n a
continuous function of T' with values in D’(S") for all T', and when T # 0 it is infinitely
differentiable with values in D’.

6.3. The energy integral method. The basic energy estimate for the d’Alembertian
O is obtained from the identity

(6.3.1) 200uliu = Bolu'|> — 2 8;(Boudju),
1
where "
WP =3 1602, 6 = 6/a;.

0
If u € C? and u vanishes for large ¥ = (z1,...,2,), then integration with respect to &
gives

dollu’ (2o, )|I* = 2/30uﬂu dZ < 2|’ (2o, llTu(zo, ),

where the norms are L? norms with respect to . Thus

Bollu’ (o, )| < lITu(zo, ),
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which gives after integration

(6.3.2) o' Gaos 1 < 10,1+ [ " o, .

In particular it follows that u = 0 if Ju = 0 and the Cauchy data vanish, which also follows
at once by taking Fourier transforms in &.

The strength of the energy integral method is its stability under perturbations of the
equation whereas methods based on the Fourier transformation break down at once. As
a first step towards more general energy identities we consider a hyperbolic operator
23 k=0 g7*9;0;, with a constant symmetric matrix (¢/%). If K* are constants then (6.3.1)
generalizes to

(6.3.3) 2 Ko Y ¢*00u= ) 0(T! (WK,

i=0 j,k=0 1,j=0
v n . > n
(6.3.4) T (u) = QZg’kakuaiu-— 6! Z g¥ O udyu.
k=0 k=0

The definition of 7/ means that if v is a covector, then

n
(6.3.4) 3" T () Ky = 2(K, ') (gu',v) — (K, v){gu’, v).
4,j=0
If A denotes the bilinear form defined by the inverse of g and N = gv, U = gu' are the
vectors corresponding to the covectors v, u/, then the energy on a surface with conormal
v, that is, the integrand obtained there by integrating out the right-hand side of (6.3.3),
becomes

n
3" T (kv = 24(U, N)A(U, K) = A(U,U)A(N, K)
(635) 7,§=0
= AQQUA(U,K) - KA(U,U),N).
Lemma 6.3.1. (6.3.5) is positive definite in U if A has Lorentz signature and
A(K,K)>0, A(N,N)>0, A(N,K)>0,
that is, if K and N are in the same open Lorentz half cone.

Proof. Set V =2UA(K,U)~ KA(U,U). Then

AV, V) = A(K, K)A(U,U)? >0, A(V,K) = A(K,U)* + A(K, U)Z A(K,K)A(U,U),
where the difference of the last two terms is positive if U ¢ RK, by the reversed Cauchy-
Schwarz inequality which follows from the Lorentz signature. Hence A(V,K) > 0 and
A(V,V) > 0, which implies A(V, N) > 0.

One can also prove the lemma by an easy computation. If K 1is normalized with
A(K, K) = 1, we can choose coordinates so that A(z) = e2—zi—-..—2z2 K =(1,0,...,0),
and obtain

V = (U2 4% 2Uprw) if (Uy,...,Up) =rw, lw|=1.
We have
(U2 + r?,2Uqr) = (UZ + r?)(1,sin 26),
if 0 is the polar angle in a Euclidean (Up,r) plane. If N = (No, N) with |N| < Ng then
A(V, N) = (U2 + r*)No — 2Uor{w, N) > (No — |N])(UF +r?).
If g and K are allowed to depend on z, we get additional terms in (6.3.3) compensating

those where 8; acts on the coefficients of T] The following simple but useful proposition
shows that these can often be taken care of
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Proposition 6.3.2. Let u € C? satisfy a differential equation
n 3
Ou+ Y Y¥@)90u=f 0<zo<T,
J,k=0

and assume that u = 0 for large &. If

Il = Zlv”“l< , 0<z<T,
§ k=0

it follows for 0 < zg < T that

To

636) ol < 2w+ [l et esw ([ 2kvenar),

where the norms are L? norms with respect to & and

n

Y ®l= ) supldini*(t, ).

i,j,k=0

Proof. We shall use (6.3.3) with the modification just indicated, with g/* equal to 47*
plus the coefficients of 0, and K = (1,0,...,0). Then

1o (z,u) = |u'|* + 7% (8ou)? — Z v O udu > [u'|?/2.

k=1
With
R(z,u) =2 Z 8; 7' * Oy udou — Z dov* Oy ubiu
3,k=0 k,1=0
= 0p7°°(Gou)? — Z Aov* O udu + 2 Z Z 8; v ¥ O udou
k=1 j=1k=0
we obtain
00 [ T3(e,0)d5 < 20 (eo, Mooutaa, N + [ Ala,wa,

hence

o E(z0)* < 2V2||f (2o, )| E(20) + 417 (20)| E(=0)?,
if E(zo)? = fTO (z,u)dZ. Thus

B0 E(0) < VI f(z0, )| + 21 (20) | E(o)-

If we multiply by the integrating factor exp(— f 2|¥'(t)| dt) and integrate, the estimate
(6.3.6) follows.

The estimate (6.3.6) suffices to prove most of the existence theorems for nonlinear
perturbations of O in this chapter. However, it has the weakness that no estimate of u
itself is obtained, and for the proof in Section 6.6 of some more refined results when n = 3
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one also needs a more sophisticated estimate which we shall now discuss. (Alternative
proofs in Section 6.7 do not require this estimate.)

Let us first assume that ¢/* are constant and look for the variable vector fields K such
that for some variable scalar L

2(2 K'ou+ Lu)Zg’ka Opu = Za (Z T (w)K* + 2LngJk8ku)

—228 Kigik 6ku8u+ EBK —2L)Zg’k8ju8ku—QZug’kajLaku

i,k ik ik

(6.3.3)’

is an exact divergence. With the notation K’ = (8; K*) we see that cancellation requires
that
K'g+¢'K' = (D) 8K -2L)g,

which means that K is a conformal vector field with respect to the metric defined by the
dual quadratic form A. When n > 2 there are not many:

Proposition 6.3.3. If n > 2 then all smooth vector fields K such that
(6.3.7) K'g+g¢'K' =2Fg
are of the form
(6.3.8) K =2A(z,0)z — Az, z)0 + Ko

where 0 is a constant vector, F(z) = 2A(z,0) + ¢ with a cJ{@Tnt ¢, and Ky is the sum of
¢> o zj0;, a constant vector field, and a linear combination uf the vector fields

(6.3.9) (8;A(2))0% — (OeA(z))0s; 4,k=0,...,n

Proof. We may assume that g is diagonal and write ¢' instead of g*. Then (6.3.7) can
be written
8]~K’g +d' 8K =0, i#j; &K' =F.

If i, j, k are different indices (recall that we have assumed that the dimension n + 1 is at
least 3), we obtain

WO K' /gt = —0k0; K1 ' = ~0;0Ki g8 = 0,0; K*/gF = 8,0, K" /¢".
Hence 8;0; K* = 0 if 4, j, k are different indices, so 0;0; F = 0 when j # k, and
gjaj?F = gfa]?a,-Ki = —BjafI{jgi = —g'0?F = ¢*82F = —gjaj?F.
Thus F is affine linear. When K is defined by (6.3.8) with Ky = 0, then
O Kig! =200 x; — 22;0° + 2A(=,0)6;;9°

since A(z,0) = Y z;67 /g7, so (6.3.7) holds with F' = 2A(z,0). (The coordinates of =
should have been denoted by z! for consistency but that would conflict with our notation
elsewhere.) This is an arbitrary linear form. If Ko = Y g «;0; then (6.3.7) is valid with
F = 1. In view of the linearity of (6.3.7) it just remains to study the case where F' = 0,
that is,

8 Kig +0;g'KI =0, i,j=0,...,n.
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Thus 0;(K*/g") is a skew symmetric matrix Z;;, and it is constant since
0k0; K /g = —040; K7 |¢f = 8,0, K7 /¢,

which must vanish since the sign changes after three circular permutations of i, k,j. It
follows that up to a constant vector field

n n n
YN KG=) Zijzig' 0 =LY Zij(x;/¢ 6 — 2i/d' 8))g' s
3=0

§,j=0 i,j=0

which is of the form (6.3.9).

Remark. That the vector fields in (6.3.8) appear is no surprise since they are obtained
from constant vector fields by an inversion.

Now we choose L = Y ¢ 8;K*/2— F = (n — 1)(A(-,6) + ¢/2). Then the last term in
(6.3.3)" simplifies to

—-(n-1) Z 8% O u?,
0

50 (6.3.3) can be written

(6.3.3)" Q(Zn:Kiaiu+(n— 1)(A(z,8) + ¢/2)u) i 97%8; O u

i=0 J,k=0

= z": Bj(zn: T! (w)K* + (n — D((2A(z, 0)u + cu) Zgjké’ku — 67 y?)).
: k=0

ji=0 =0

The vector field Ky in (6.3.8) does not contribute much more than translations of the
origin. In the following discussion we therefore take Ko = 0. (Later on we shall let
Ko = (1,0,...,0) to take advantage also of the energy estimate (6.3.2).) The vector field
K is then in the span of the vector fields Z;; and Zp in (6.2.8) and (6.2.9) (with (6.2.8)
interpreted as (6.3.9) divided by 2 for general A). In fact, an easy calculation gives

(6.3.10) (K,0) = A(z,0)Z0+ Y _ Pz Z;;.
' 3, k=0

Note that the coefficients are linear in «. It is also remarkable and important that K
agrees with the vector field V' in the proof of Lemma 6.3.1 if the vector K there is replaced
by 8. Thus the present vector field K belongs to the closed light cone if 8 is chosen in
its interior; K () is isotropic (or 0) if and only if z is isotropic (or 0). Taking for A the

standard Lorentz form and » = = (1,0, ...,0) we shall now compute the leading term
n > . n -
(6.3.11) e= Y TIK'v=) T'K’
4,5=0 =0

which will appear when we integrate (6.3.3)" with respect to Z to derive an energy estimate.
We know already that e is nonnegative. As already observed after the proof of Lemma
6.3.1 we have

K= (234 +x2,2202y,...,200z,).
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If we write @ = (20, &), gu’ = U = (Us, U), it follows that (see (6.3.5))

e = 20 A(U, K) — Ko A(U, U) = 2Us(Uo(a} + &%) — 220(U, 2)) — (2§ + [&°)(U5 - |U)
= U3 (=3 + |#%) — 4w0(T, &) Vo + 25 |U* + |2°|U
= A(z,U)? + UZIZ|* — 200Uo(Z, U) + 23|U|” + 21210 — (&,0)°

n
= A(.’B,U)Z + %— Z (:BjUk - inUj)z.
j,k=0

If we return to v’ = AU, we obtain
e = |(z,0u)|2 + |z A A~ 0ul?.

Since Az A Ou has the components (0; A 0;u — 0; A Oru)/2, we obtain

Lemma 6.3.4. If K is defined by (6.3.8) with Ko =0 and § = (1,0,...,0), and if g is
the standard Lorentz form, then the energy form e defined by (6.3.11) can be written

e =|Zoul> + Y _ | Zjrul*
i<k
where Z;;, and Zy are defined by (6.2.8) and (6.2.9). The norm of Ou — (K, 0u) with
respect to the quadratic form e in Ou is < |z|.
Proof. The first statement was just proved, and it implies the second in view of (6.3.10).

Keeping the same assumptions on A and K we shall now prove the positivity of the
complete energy expression which comes from (6.3.3)":

Lemma 6.3.5. If n > 2 and u € C§° we have

(f (e() + (n = 1)(2eoudou — u?))dE _
[1Zoul? + 25 < 1 Z5wul + [[(n = ul? =

(6.3.12) 1/41 <

Proof, Writing 2zqudou = 2uZou — Y1 ¢;0;ju%, we obtain
2/x0u60u dz =2 / uZou di + n|u®.
Thus the numerator E(u) in (6.3.12) can be written

(6.3.13) E(u) = ||Zou+ (n — 1)u||2+2|[zjku||2,
i<k

which proves the upper bound in (6.3.12), also when n = 2. To obtain the lower bound
it suffices to establish a bound for ||u||?. With polar coordinates £ = rw we can write the
integrand in E explicitly as follows by using the second expression for e given above

(B:u)2 (8% + 2) + 4trOudru + (82 + r?)|0zul? + 2(n — 1)tudu — (n — 1u?
> —(2réyu+ (n — Du)2t? /(% +r2) + (12 + r?)(du/0r)® — (n — 1),



102 VL. NONLINEAR PERTURBATIONS OF THE WAVE EQUATION

with equality in the radial case for an appropriate choice of 8;u. (Note that we have
U = (Oyu, —Ozu).) Writing r*5 u = v to remove the factor 7"~ in the volume element,
we obtain

E > /dw/ (= 4r°10,9)* /(% + r?) + (¢ + r®)(Bv/dr + (1—mn)v/2r)® = (n — 1)v?) dr
= / dw / (72 = 12)2(r? +¢%)1(8v/0r)? + (n — 1)(n — 3)4™1(1 + 2 /r2)0?) dr,

after expansion and integration by parts. We know that this is still positive when n = 2
and v = O(r) at 0, so the integral of the first term is at least equal to [(1+¢2/r2)v? dr/4,
which proves that E > (n — 2)?||u||?/4 when n > 2. Since the inequalities

la+bl°+c <E, |B°<k’E, k=2n-1)/(n—2)<4
imply that ||a]|? = [la +& = b]| < (1 + K)[la + Bl|2 + (1 + £=1)[|5][?, hence
llall® + [1Bl1” + ¢* < (1 + &)lla + ]|> + (24 £~ H{Bl|? + ¢ < (1 + & + 262 + k) E < 41E,

the lower bound in (6.3.12) follows when a = Zou, b = (n — 1)u, ¢2 = > i<k 1 Zirull.

Remark. Tt is easy to show that no positive lower bound exists in (6.3.12) when n = 2.

When u is a solution of Ou = 0 with Cauchy data in C§° it follows from (6.3.3)" that
E(u) is independent of zy. In view of Lemma 6.3.5 we conclude that

1Zou(@o, M* + D 1Zru(zo, I? + [lu(o, )|

can be estimated for all £y by a constant times the value for zo = 0. More generally, if
Ou = f we can use the identity (6.3.3)" just as in the proof of (6.3.2) if we observe that
by (6.3.10)

n
(K, du) + (n = Dzoul = |eo(Zou + (n = 1)u) + > #x Zoyul®
1
n
< lel(1Zou + (n = Duf® + ) |Zorul?).
1

In view of (6.3.13) it follows from (6.3.3)” that
dE(zo; u)/dzo < 2||F (2o, )| E(zo; u)?

where F'(2) = |z|f(z). Hence
(6.3.14) E(wo;u)} < B(0;u)} + / IF(2, )dt.
0

Combined with (6.3.12) this gives improved control of the behavior of u at infinity when
we have additional information on the decay of f.

(6.3.14) can be extended to operators with variable coefficients Jjust as Proposition 6.3.2
extended (6.3.2). However, the hypotheses needed are far more complicated now so we shall
postpone the discussion until we are ready for an application which justifies them. Instead
we end this section with a brief sketch of how Proposition 6.3.2 leads to existence and
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uniqueness theorems for the Cauchy problem for linear second order hyperbolic equations.
Local results follow from global ones, so we consider an equation

n

(6.3.15) Lu= Z g% (x)8; Oru(z) + Z ¥ (2)0;u(z) + c(z)u(z) = f(z), 0< 2o < T,
j=0

Jj,k=0
such that all derivatives of the coefficients are bounded in [0, T]xR™ and 3 |¢7*(2)—MF¥| <

L, where - X*9;0, = 0. If My(2o) = [|u(zo, -)I| + [|v/(20, -)|l, then it follows from (6.3.6)
if u e C™® for 0 < zo < T and vanishes for large ¥ that for such z,

(6.3.16) My (zo) < C(M1(0) + /O%(Hf(t, N+ Ma(2))dt),

since

lu(zo, ) < [[u(0, )I| + / Ieu(t, lldt.

Now we can apply “Gronwall’s lemma”:
Lemma 6.3.6. If p, k and F are nonnegative, E is increasing and

t

o(t) < B(t) + / o(Pk(r)dr, 0<t<T,

then
o(t) < E(t)exp (/0 k() dT), 0<t<T.

Proof. Tt is enough to prove this when ¢ = T, and E may be replaced by E(T") then, so
we may assume that E is constant. Writing

Ft)=E+ /Ot o(T)k(r)dr

we have
F'(t) = p(t)k(t) < F(1)k(1),

since ¢ < F', hence
t .
F(t)exp (— / k(T) dT‘)) < F(0)=E,
0
which completes the proof.

(6.3.16) implies in view of Lemma 6.3.6 that with another constant Co we have

(6.3.17) S (a0, ) < Co 32 1m0, i+ [ st lee)-

lal<1 laf<1 0

We claim that, more generally, for any integer s > 0 there is a constant C such that

6318 Y lou(eo W< (X 1070+ [ X oS ldk).

laj<s+1 lal<s+1 la]<s
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(We assume that 0 < 2o < T', and all constants may depend on T .) In the proof we may
assume that s > 0 and note that

Lo%u = 0%f + [L, 0%,

where the commutator [L,8%] is of order < s+ 1 when || < s. If we apply (6.3.17) to all
such equations and write

M(f;z0) = Y 116%f(zo,-)ll,

[al<s

and similarly for u, it follows that
o
M y1(u;z0) < Co(Msy1(u; 0) + / (Ms(f;t) + Msg1(u;t)) dt).
0

By Gronwall’s lemma this gives (6.3.18). Note that if 2o has a fixed positive lower bound,
then we can estimate ), ., [[0%f(0,)|| by the integral in (6.3.18). Using the equation
Lu = f we can therefore restrict ), ,11[10%u(0, -)|| to terms of order < 1 with respect
to Zzo. ,

We may assume without restriction that the coefficient of 82 in L is identically 1, for
by our hypotheses both this coefficient and its reciprocal as well as their derivatives have
uniform bounds. Then the commutator [L, 3%] is of order < 1 with respect to zo if * has
no such derivative. Hence we obtain by repeating the proof of (6.3.18)

(6.3.18) S 116%u(eo, ey < Gl 3 19%u(0, ey + / 15y dt),

lel<1 la|<1
where
- N 1 co (PN
Iolley = (@)™ [ 10(OF+1€P)’ de)?,v e O ()
is equivalent to ), <, [[05v|| when s is a positive integer (and || - || is the L? norm). As

in Section 5.3 we denote by H,)(R") the Hilbert space of all temperate distributions v in
R"™ for which the Fourier transform % is a function such that [|v||(;y < co. The estimate
(6.3.18)' can be extended to all real s, but for the sake of simplicity we shall only do so
when s is a negative integer. Then we define U(zo, ) € S(R™) by

U(zo,-) = (1 — A)u(zo,-), thatis, u(ze, ) = (1 — A)"*U(o, ),

where A is the Laplace operator in R”. The estimate (6.3.18)' remains valid for such
functions, with s replaced by —s, which is a positive integer. Set

M(zo) = Y 10°U (2o, M=oy = D, I10%u(zo, )lcs)-
lal<1 lel<1
Then 26
M(e0) < CUMO+ [ IEUE i)
We have
f=Lu=L(1-A)*U)=(1-A)"LU + RU,
where R is a differential operator of order 1 — 2s and order < 1 with respect to zo. If we

write R =Y 8Pcopy0%07 with |B] < —s, || < —s, |a| < 1, and By = 70 = 0, we see that

IRU @, Iy < D leaps 007U, )| < CM (),
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so we obtain
LU, =5y S NFE sy + CM (D),

and (6.3.18)’ follows as before.

The importance of the estimate (6.3.18)' when s < 0 is primarily that it allows one to
prove existence theorems in the spaces H, (s) With s > 0. To show how that is done we first
observe that if s is a positive integer we can apply (6.3.18) with s replaced by —s — 1, L
replaced by the adjoint L* and zq replaced by 7" — z,. This gives

T ‘
le(2o, M=) £ Y 0% (2o, l(=s-1) < C/ IL"p(t M(=s-1ydt, 0L x0T,
lal<1 o

if o € C3°(R™!) and ¢ = 0 for 2o > T. If f € L1([0, T); H()(R™)), then

T T
I(f; <P)| = IL (f(ta ')’ QO(t, )) dtl < CA ”L*Cp(t, ')”(‘“s—l)dt)
so by the Hahn-Banach theorem we can find u € L*®([—o0,T7; H(s+1)(R")) such that
(f,9) = (u,L*p), if @(xo,T)=0"for 2o > T,

and v = 0 when 24 < 0. Thus Lu = f for 0 < 2o < T, in the sense of distribution theory.
Set Jou = v. If we single out the terms containing some factor dy, then the differential
equation gives

Oov + Zaj (2)0jv + aov € L% ([—00, T; H(s—1y).
1

If we change variables so that the characteristics dz;/dzo = aj(z) become straight lines,
integrate the equation and return to the original variables, then we see that dpu = v €
L ([~00, T]; H(s—1)), hence using the equation we find that Ofu € L®([—o0, TY; Hs_pyif
0 <k < sand f is say smooth and vanishes outside a compact set when 0 < zo <T. For
s > 2 we conclude that the Cauchy data of u when z¢ = 0 must vanish, and since (6.3.17)
extends by continuity to all  with the derivatives of order < 2in L2, the solution obtained
does not depend on s, so it is in C*. Now it follows by continuity in view of (6.3.18) that
for every f such that 6%f € L([0,77]; L?) for |a| < s there is a solution of the equation
Lu = f with 0%u € L*([0,T]; L?) when |a| < s + 1 and Cauchy data 0. A solution with
arbitrary Cauchy data is of course obtained if one chooses any function ug with the given
Cauchy data and introduces u — ug as unknown instead of u.

The existence and uniqueness theorems we have now proved imply local existence and
uniqueness theorems. In fact, if L is just given in a neighborhood 2 of the origin, with
smooth coeflicients, we can choose x € C§°(Q2) with 0 < ¥ < 1 so that ¥ = 1 in another
neighborhood of the origin. Then x(x)L(z,8) + (1 — x(2))L(0,d) will satisfy the global
hypotheses made above if the support of x is small enough, and the global existence
theorems proved above imply local existence theorems for L. If we have a solution of
- Lu = 0 in a neighborhood of 0 with vanishing Cauchy data when zy = 0, then we just
introduce zg -I—a:% +-- -+a3,% as a new variable instead of zp to guarantee that zg > 0 in the
support except at 0. If we then extend L to a global operator as just indicated we obtain
a solution of the extended homogeneous equation when 0 < zy < T' if T is small enough,
and the Cauchy data vanish when zq = 0. This gives local uniqueness of solutions of the
hyperbolic Cauchy problem. In what follows we shall take such results in the case of linear

equations for granted; they can be proved in many different ways. (See e.g. Hormander
[4, Chapter XXIII].)
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6.4. Interpolation and Sobolev inequalities. Already for the elementary existence
theorems proved at the end of Section 4.2 we needed inequalities like (4.2.17)' to estimate
the norm of composite functions. In the case of several space variables we must use L2
estimates, obtained from the energy integral method, rather than L™ estimates, so we -
need the following analogous and more general interpolation inequalities. They are special
cases of those of Gagliardo [1] and Nirenberg [1].

Theorem 6.4.1. Let 1 < r < 00,1 < ¢ < oo, and let m be an integer > 2. If
u € LY(R") and 8%u € L (R™) when |o| = m, then 9%u € LP((R") for |a| < m, if

(6.4.1) m/p(e) = (m = |a])/q + |al/r;
moreover, if || - ||s denotes the L° norm, then

642)  sup [[%ulley < 41D sup [joull,)! T fm 1.
la|=7

la|=m

The general result will follow from the special case m = 2, n = 1. We begin with a
simple lemma.

Lemma 6.4.2. Let I be a finite interval on R of length |I|, and let u € L(I), u" €
L7(I) for some q,r € [1,00]. Then u' € LP(I), 1 < p < o0, and

(643 ol 1177 < sl 1172477+ Al 2]

Proof. Since the inequality is invariant under affine changes of variables, we may assume
that I = (—%,1). It is then obvious that the strongest case of (6.4.3) is obtained when
r =q=1and p=co. Assume that

maxu/'(z) = / | |dz +M
for some M > 0. Then u'(z) > M in I, and it follows that for some zo € R

fu(z)| > Mo —zol, z €,

where z¢ € I if u has a zero in I, and zg < —% (€0 > 1) ifu>0 (u<0)in]. Now

2/|m——:co|dx:/(Ix—mol—}-|a:+:co|)da:22/|x|d:c:1/2,
I I g

hence [ |u|dz > M/4, which proves the lemma. (The estimate (6.4.3) is easily seen to be
optimal when r = ¢ = 1 and p = oo, but the estimate derived in Lemma 6.4.3 does not
contain the best possible constants.)

Lemma 6.4.3. Let u € LY(Ry), v’ € L"(Ry) where ¢,r € {1, o). If2/p=1/r+1/q,
it follows that v’ € LP(R4) and that

(6.4.4) llw'llp < 4(01u" || lleellg)®

Proof. In an interval I C Ry where the two terms in the right-hand side of (6.4.3) are
equal, we can write (6.4.3) in the form

(6.4.4Y e llp.r < 41"l 1llullg,1) %,
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where the norms are taken in I, for 2—1/r—1/q = 2 -2/p by hypothesis. If E is a disjoint
union of intervals I; for which (6.4.4) holds, then

[ A ST 1 A o O SO Y e O 0

by Holder’s inequality, for p/2r + p/2¢q = 1. Hence (6.4.4)' is valid with I replaced by E.
(This is obvious when p = ¢ = r = 00.) If we consider intervals I with given left end point
a, then the first term in (6.4.3) is the largest one if |1] is large (unless ' = 0 in (a,0)),
for otherwise

llw'llp,r < 8lfullg,r|I[*/P~2/971 — 0 as |I] — oo,

since 1/p—1—1/g=(1/r—2-1/q)/2 < —%. Whenever the first term is the largest one
then ,

10 lp, 117277 < 2l [l r]2) 17,
Hlullg,r| 1179 <l flr 117217,

which implies u(a) = «/(a) = 0 if I can be arbitrarily small. If 0 is not a critical value of u
this can never happen, so we get a sequence of intervals I; = [aj, @j41) for which (6.4.4)'
holds because the two terms in the right-hand side of (6.4.3) are equal. a; — oo since u and
u’ would vanish at an accumulation point by the argument just given. This proves (6.4.4)
when 0 is not a critical value of u. Now the set of critical values of e?u(z) is of measure 0,
and if ¢ is not a critical value then 0 is not a critical value for u(z) —ee~*. Hence (6.4.4)
holds with u(z) replaced by u(z) — ee~® for a sequence of values of ¢ converging to 0,
which proves (6.4.4) in general.

Proof of Theorem 6.4.1. Assuming at first that n = 1 we set
M; = [[u|ps)-
If all M; with 0 < j < m are finite, then it follows from (6.4.4) that
Mj < 4(Mjy1M;-1)%,

hence A;? < Ajdjq if Aj = 4 2Mj. This logarithmic convexity implies that 4; <
A{n/mAgm_j)/m and gives (6.4.2). If we do not already know that u() € LPU) we can
at least by standard regularization reduce the proof to functions with u() € L*® for
all j. Choose x € C§° with 0 < x < 1 and x = 1 in a neighborhood of 0 and set
ue (z) = x(ex)u(z). Then

luellg < llullg,  [1u™ ]l < ™|l + O =) = O(1) as € — 0.

Hence we conclude from the first part of the proof that u() € L) and that (6.4.2) holds.
When the number n of variables is larger than 1, we conclude from Holder’s inequality
- as in the proof of Lemma 6.4.3 that (6.4.2) holds if all derivatives are taken with respect to
the same variable zy. By repeated use of that result we find that %u € L*(%) for |a| < m.
If we now introduce
Mj = sup [|0%ul|p(a)
la}=j

and repeat the arguments used above in the one dimensional case, the estimate (6.4.2)
follows in general.
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Corollary 6.4.4. If u,v € L*®(R"™) and 8°u,0% € L"(R") when |a| = m, then
8%(uv) € L"(R™) when |a| = m, and

(6.4.5) > o)l SCm( > le%ulllolloo + llulleo |I3°‘vllr)-

|aj=m |al=m |a|=m

Proof. 8*(uv) consists of 2™ terms of the form d°ud7v with |8] + |y| = m. With the
notation in Theorem 6.4.1, ¢ = oo, we have 1/p(8) + 1/p(y) = 1/, so the L norm of
each term is at most 16/AIN BIAI/mC1Yl/m  where B and C are the two expressions on the
right-hand side of (6.4.5). Hence we obtain (6.4.5) with Cr, = gmom” (mEn=1),

m

Remark. A more general version of the preceding estimates is sometimes useful: If
v1,...,v € L®(R"™) and 8%vy,...,0%;j € L"(R"), then

J

6.4.5) 8%, - 0% v;lly < 20™°/2 max villoo sup ||0%villr, if a;| =m.
a5y Nooton-w ol <20 o Tl el sup 105l i€ 3l

Again by Theorem 6.4.1 we have

. 2 . —\:
0% villepa, S 2™ PANBITY, A= sup [|0%illr, Bi = |luilloo,

jol=m

where \; = |og|/m, thus 0 < A; and 3_X; = 1. Holder’s inequality gives the bound
2im?/2T] A} B}~ for the left-hand side of (6.4.5)". This convex function of A in a simplex
takes its maximum at a vertex, that is, when one A; = 1 and the others are 0, which proves

(6.4.5).
Corollary 6.4.5. Let u € L°(R",R"), let F € C™(RY), and assume that 0%u €
L"(R™) when |a| = m. Then 0°F(u) € L"(R™) when |a| = m, and

646)  sup [0°F(@ll- < Cm sup [FOw)llu)~* sup [16%ull,
1<jy|€m o

lo)=m j=m

if m > 0, while for m =0
|17 (u) = FO)lI- < M|Jul-,

if M is a Lipschitz constant for F' in the range of u.

Proof. It suffices to prove the estimate when u is smooth. We assume that m > 0, for
the statement is obvious when m = 0. It is clear that *F(u) is a linear combination of
terms of the form

F(")(u)a"‘luil - .6ajuij,

where oy |+ -+ ;] = |, lag| > 0 for k=1,...,7, |y| = j. By (6.4.5)' the L" norm of
such a term can be estimated by

C sup | FO)(u)|uf 1~ Sup [10%ull-,

which proves (6.4.6).
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Remark. Note the somewhat surprising fact that the estimate is linear in the norms of
the derivatives of u of order m once a bound for u is known. We shall actually need a
more general version of (6.4.6) where F' € C™(R"*™) also depends on z,

(6.4.6)’ S [10%(F (2, u(z)) — F(z,0))l-

<Ch sup sup  [0POYF(z,0)|lulll 0%,
1<ILla] |v|Llu]leo
al+|fl=m

+Cy, sup  sup  |020, F(z,v)|[|u|l,-
la|=m |v|<]julleo
The terms in 0%(F(z, u(z)) — F(z,0)) where no derivative falls on u are estimated by the
last expression, and for the others the estimates in the proof of (6.4.6) can be applied with
m replaced by m — |B] if 8 acts directly on the first argument of F.
We shall also need Sobolev’s lemma. The followmg version (see Aubin [1]) is very precise
and of great geometrical interest.

Proposition 6.4.6. Ifu € £&'(R™) and 9;u € L*(R™), j = 1,...,n, then it follows that
u e LM (=1)(R™) and that

’ 1
(6.4.7) /|u|"/("' Vdz ) <c/ Z|a uf?) e

Here C,, = (wn/n)("“l)/"/wn where w,, is the area of the unit sphere S”~1.

Proof. When n =1 this is just the obvious statement that |u| < ||u’||;/2, so we assume
that n > 1. By a regularisation we can reduce the proof to the case where u € C$°. Then
|u| is Lipschitz continuous and |u’| = [|u|’| almost everywhere. Hence it is no restriction
to assume that v > 0. This will imply (6.4.7) even if d;u are only measures. In that
generality the geometrical meaning is more clear: if u is the characteristic function of a set
E with C?! boundary, then u’ is the unit normal to 8E multiplied by the surface measure
do, so (6.4.7) means that

(m(B)/(wn/n) " < 0(0E) fuon,

which is the isoperimetric inequality stating that among all sets with given volume the ball
has the smallest boundary area. To prove (6.4.7) in general for 0 < u € C$° we denote by
Xt the characteristic function of {z;u(z) > t}. Then u = [ x:dt, so Minkowski’s inequality
gives

““”n/(n—1)S/”thln/(n_l)dt.

When t is not a critical value of u, then y; is the characteristic function of a set with
smooth boundary and, as just observed, the isoperimetric inequality gives

Idinsn-1y < Co [ i da,

where the right-hand side should be understood as the total mass of a measure. Now
= H(u —t) where H is the Heaviside function, so x; = u'6(u — t). Thus

[ ide= [ 1w1s(u~1)da

Since the set of critical values of u is closed and of measure 0, we obtain (6.4.7) now by
integrating over the complement, for [ §(u —t)dt = 1.

To complete the proof we digress to give a beautiful proof of the Brunn-Minkowski
inequality, following Federer [1]:
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Proposition 6.4.7. If A and B are compact subsets of R™ and A+ B denotes the sum
{z+y;z € A,y € B}, then

(6.4.8) m(A + B)Y"™ > m(A)Y™ + m(B)H".
Proof. Tt suffices to prove this when A and B are unions of finitely many disjoint inter-
vals, that is, sets of the form {z € R";o; < z; < f; forj=1,.. .,n}. This can be done

by induction over a + b if @ and b are the number of intervals which constitute A and B.
In fact, if A and B are both intervals, with side lengths a;, bi, i = 1,...,n, then
n n n n n
m(A)m £ m(BY™ =T a™ + T[67" < Qe+ b)/n=1=]](a; + )"/
1 1 1 1 1

by the inequality between geometric and arithmetic means, if a; + b; = 1 for every j.
By homogeneity reasons this gives (6.4.8) in general if A and B are both intervals. Now
assume that @ > 1. Then there is a plane z; = constant separating two of the intervals
defining A. In view of the translation invariance it is no restriction to assume that it is
the plane z; = 0, and that

m(A4)/m(A-) = m(By)/m(B-),
if Ay and By are the intersections of A and B with the half spaces defined by z; > 0 and

zj < 0 respectively. These are constituted by at most @ — 1 and at most b intervals, so by
the inductive hypothesis

m(A + B) > m(A; + By) + m(A- + B-)
> (m(A)Y™ +m(By) )"+ (m(A)Y" 4 m(B-))
= (m(A)"/" + m(B)!/")"
which completes the proof.
If we take for A a set with C? boundary and for B the unit ball, then
m(A + rB) = m(A4) + ra(0A) + O(r?),
hence '
m(A +rB)!/" — m(A)Y" = ra(8A)m(A)=" fn + O(r?), >0,
and when r — 0 it follows from (6.4.8) that o(94) > nm(A)"~D/"m(B)!/", which is the
isoperimetric inequality.

Returning to Sobolev’s inequality we apply (6.4.7) to a power lu|"t! where r > 0. (We
assume that u is smooth with compact support in the calculation.) This gives ‘

(n—-1)/n
(/|U|("+1)"‘/("‘1)dm> < Cn(1+7°)/|U'||u|rd:L‘.

Set ¢ = (r 4+ 1)n/(n — 1) and apply Holder’s inequality with the exponents p and ¢/7,
where

1/p+r/qg=1, thatis, 1/p—1/¢=1/n.
Note that the condition » > 0 means that p > 1. Then we obtain

llullg¥! < Ca(L+ r)llw[lpllully,

that is,

(6.4.9) lully < Cng(l = 1/n)||u'llp, if 1/p=1/¢g+1/n, 1 <p < g < o0,
Tteration of this inequality gives the Sobolev estimate

(6.4.10) lullg < Crimg >, 110%ullp, if 1/p=1/g+m/n, 1 <p< g<oo.

lal=m
Hence u € & and %u € L? for |a| = m implies u € L? then. When p > n the estimate
(6.4.9) is no longer applicable but there is a Holder estimate instead:
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Proposition 6.4.8. Ifu € LP(R™) and p > n, then u is a continuous function and

(6.4.11) |u(z) — u(y)] < Caple — y|'~F||u'|],.

Proof. By a regularization we reduce the proof to the case where u € C*°. In view of
the homogeneity under scale changes we may also assume that | — y| = 1 in the proof.
First we shall prove that

(6.4.12) |u* p(x) — u(z) / P(y)dyl < Cp,nllellooll’|lp,

if p > n and ¢ vanishes outside the unit ball. It is sufficient to do so when z = 0. With
polar coordinates r,w we have to estimate

= //(u(rw) — u(0))p(—rw)r*~! dr dw.
Let 0®(r,w)/0r = r*~1p(—rw) and ®(r,w) = 0 when 7 > 1. Then |®| < ||¢||co, and
—/ Ou(rw)/0r ®(r,w) dr dw.

Now . )
1
Wl > ([ [ 1oworprn=aran)™”,
0

so Holder’s inequality gives

! 1/q
1< W lplills ([ f 7= ar o)

where 1/¢+1/p =1, hence 14 (1 — n)q/p =q¢—ng/p=4q(p—n)/p>0if p> n. Thus the
integral converges then and (6.4.12) is proved. Since

(wx @) = [u'* ol < llellgllwllp,  hence Jux p(z) —u* ()| < |z — ylllllyllw[lp,

it follows from (6.4.12) if ¢ is fixed with integral equal to 1 that for some other constant
|u(z) — w(¥)l < Conllwllp, ifJe—yl=1,

and this completes the proof.

Corollary 6.4.9. If m is a positive integer and n/m < p < co, then 8%u € LP(R™) for
|a| < m implies that u is a continuous function and that

la]<m

Proof. 1t suffices to prove the estimate in the unit ball. Choose x € C§°(R") equal
to 1 in the unit ball and set v = yu. Then v = u in the unit ball and 8% € LP for
|| < m, with the norms estimated by the right-hand side of (6.4.13). If p > n it follows
from Proposition 6.4.8 that v is continuous and that (6.4.13) is valid for v, which proves
the corollary for m = 1. If m/n > 1/p but p < n, we can choose § < p so tha.t m/n>1/p.
Then 8%v € L? for |a| < m, and if 1/qg = 1/p — l/n it follows from (6.4.9) that 9%v € L¢
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for |a| < m — 1, with the norms estimated by the right-hand side of (6.4.13), and we have
1/q < (m —1)/n. Hence the corollary follows by induction with respect to m.

We shall often refer to (6.4.9), (6.4.10) and Corollary 6.4.9 as Sobolev’s lemma. Note -
that (6.4.13) applied to x(z)u(Rz) where x € C§°({z;|z| < 1}) and x(0) = 1 gives the
frequently useful estimate

1/
|0%u(z)|P da:) p, if n/m<p<oo.

(6413 R7Iu(0)| < Chpm 3. RB( /

lal<m lzl<R

If T is an open cone we even have for the same exponents p

1
6.4.13)" RYP(0)| < Clpr S R oeu(@)P do)
( P,

It suffices to prove this when || < R in supp u, for u can be replaced by x(-/R)u(-). With
polar coordinates z = rw, where r > 0 and |w| = 1, we have
R
u(0) = (-1)™ / rm= oM u(rw)dr /(m — 1)1,
0

hence R
w(0) / dw = (=1)™ / / P18 () dr duo [ (m — 1)),
wel’ wel Jo

With 1/p+ 1/p’ = 1 it follows from Hdélder’s inequality that

B 1/ R : 1/p'
lu(0)] < C</eF/0 |07 u(rw) et drdw) p(/EF/O p(m=n/p)p "ldrdw) p7

which proves (6.4.13)". (One can also deduce (6.4.13)” from (6.4.13)".) When p =1 we
can take m = n: if Q is the parallelepiped {z €e R*;0 < z; < a;},j=1,...,n, then

n

(6.4.13)" » Haj sup |u] < Z aa/ |0%u(z)| de.
Q Q

1 al,...,anE{O,l}
This is an immediate consequence of the one dimensional case which follows by integrating
the inequality |u(z1)| > supjg 4,1 |ul = Jo [/ ()] dt from 0 to a;.
Remark. From Proposition 6.4.8 one also obtains Holder continuity of order v > 0 if
v < m —n/p and v is not an integer. We leave the verification as an exercise.

We are now prepared for the proof of local existence and uniqueness theorems for so-
lutions of nonlinear hyperbolic equations. Uniqueness for solutions with sufficiently high
regularity is easily reduced to the linear case:

Theorem 6.4.10. Let u € C3 be a solution of the differential equation
(6.4.14) F(z,u,u',u") =0

in a neighborhood of 0 € R1*" which is hyperbolic at the origin with respect to the plane
zo = 0, that Is, assume that

3™ (0, u(0),4(0), w06y

§ k=0
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is hyperbolic in the direction of the &, axis if Fj; = OF/du;x, u" = (uji). Let F € C2.
Then any other solution v € C® of (6.4.14) with 8%u = 0%v when 2o = 0 and |a| < 2 is
equal to u in a neighborhood of 0.

Proof. By Taylor’s formula we can write

F(z,u, v u") — F(z,v,v',v") = Z ao(z,u, v, ..., v")0%u —v),
lal<2

where a, € C! as a function of z,u,...,v"”. Hence u — v satisfies a linear differential

equation with C? coefficients which by hypothesis is hyperbolic with respect to the plane
zo = 0 at 0. Since the Cauchy data are 0 it follows from the results on linear equations
proved in Section 6.3 that u — v = 0 in a neighborhood of 0. (See the remarks at the end
of Section 6.3.)

Remark. The regularity condition used here is not minimal. For example, if the equation
1s quasilinear, that is, linear in the highest derivatives, the same proof works if u,v € C2.

To prove local existence theorems we shall argue essentially as in Section 6.3 for the
linear case, using the interpolation inequalities above. Again we state a result which
is global in the space variables but implies an existence theorem which is local in all
the variables. For the sake of simplicity we just consider a quasilinear equation at first.
Extensions and consequences will be discussed after the proof.

Theorem 6.4.11. Consider the Cauchy problem

(6.4.15) Ou + Z v E (2, u,u)0;0pu = fz,u,u),
j,k=0
(6416) u(O, ) = Up, 80'&(0, ) = Uy, If.'L‘o = 0,

where v9¥ and f are C™® functions, 7% =0, f(z,0,0) =0, 3" |7/*| < 1/2. We assume that
f and all derivatives of f or of ¥/* are bounded. If uy € H(,11)(R") and u; € H(R™)
for some integer s > (n + 2)/2, then the Cauchy problem has for some T > 0 a solution

(6.4.17) u € L((0, 7); Hoy(R™)) 0 COX([0, T Heo(R™))

Here C%! denotes the space of Lipschitz continuous functions so the second condition
means that dou € L*([0,T]; H,y). This implies that u € C%([0,T] x R") and that 8%u
is bounded when |a| < 2. The supremum of all such T is equal to the supremum of all
T such that the Cauchy problem has a C? solution with 0%u bounded for 0 <t < T and
lof < 2.

Proof. We shall solve the Cauchy problem by successive approximation starting from
the solution u° of Ju® = 0 with Cauchy data (6.4.16). Since

a’(t, &) = dio(€) cos(t|é]) + @1 () sin(té])/|¢]

and (1 -+ |€]2)3]sin(t|é])] < ([t€]% + [€[2)3 = |€](1 +¢2)3, it is clear that (6.4.17) holds for
u®. The arguments will be simplified by assuming during the proof that ug,u; € S, but
only the norms corresponding to (6.4.17) will be used in our estimates.

By the results on linear equations in Section 6.3 we can define u” inductively by solving
the Cauchy problem for

n
(6.4.18) Ou” + Z ¥z, Ju?"1)0; 00" = f(x, Ju~Y),
j,k=0
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with the boundary condition (6.4.16). Here Jiu = (u, 8u) = (u, dou, .. ., Onu) denotes the
1-jet of w in all the variables. Apart from that we shall only work with smoothness in the
space variables. All derivatives of every u” are continuous functions of ¢ with values in
Hy,) for arbitrary s. We shall estimate them for 0 < ¢ < T assuming that we already know
uniform bounds for the derivatives of order < 2,

(6.4.19) Yoo, ) <M, 0<t<T.
lal<2

We shall then prove that (6.4.19) follows inductively for small T' and large M. After that
we shall prove convergence of the sequence.

There is of course no difficulty in choosing M and T so that (6.4.19) holds when v = 0.
To estimate

My () = [l (¢, My + 10w (& o) = 110", o),

we shall apply the a priori estimate (6.3.6) to the equations obtained when 02 is applied
to (6.4.18) for all a with |a] <'s. This yields the equations

@+ > 7 (e, 1w ™1)8;0:) 05w’ = 07 (=, Jiu )
(6.4.20) ik |
= 3102, ¥ * (=, Jyu?1)]0; 0’

ik

The terms in the sum on the right are linear combinations with bounded coefficients of
terms of the form

(0% 0,7y (2, Jyu?~1))(82" 8z 0u”), |o/|+ o = |a|-1< s - 1.

Here we have used that v°° = 0. For 0 < ¢ < T it follows from (6.4.19) with v replaced by
v — 1 and the remark after Corollary 6.4.5 that

10:77* (2, Tu”~leo < C(M); 1185 (¥ (2, 1w" ™) = 77* (2, 0))ll2 < C(M)Mi -1, || <.
Corollary 6.4.4 applied to 8,y ¥ (z, Jiu”~') and 8;8u”, with m = s—1, now shows that the
L2 norm of the sum in the right-hand side of (6.4.20) can be estimated by C(M)(M,(t) +
M,-1(t)). By the remark after Corollary 6.4.5 we have

165 f(z, Jiu" "Dz < C(M)M, -1, || <5,

so an application of the energy estimate (6.3.6) yields, again by using (6.4.19),

(6.4.21)  M,(t) < Ce“M (M, (0) + C(M) /0 t(M,,(‘r) + M,_i(r))dr), 0<t<T.

Here M, (0) = My(0) is independent of v. By Gronwall’s lemma we conclude that
M, (1) < Ce®M*(My(0) + C(M) /Ot M,_1(7)dr) exp(tCC(M)eCMY).

Let A > CM(0) and let A > Mo(t), 0 < t < T. We can then choose Ti, 4 with
0 < Tar,4a < T so that Mo(t) < A, 0<t< T a4, and

M,(t)< A, 0L<t<Tpma,
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if this is true with v replaced by v — 1. Now Sobolev’s lemma (Corollary 6.4.9) shows that

Y 10wt ) < C(A) i My (2) < A,
Je|<2

for s > n/2 + 1 so we can estimate the maximum of J;u” and 05 (J1u”), and O3u is then
estimated using (6.4.15). With M = C(A) and T replaced by Ty, 4 the estimate (6.4.19)
1s therefore also proved inductively, so we have found M and T' > 0 such that for all v we
have (6.4.19) and :

(6.4.22) M,(t)< A, 0<t<T
We shall now prove that u” converges in
C([0, T]; Hy(R™)) n CH([0, T]; Ho)(R™))

to a limit u which must then automatically satisfy (6.4.15), (6.4.16), (6.4.17). To do so we
subtract two successive equations (6.4.18) and obtain

(D + Z'ij(m, Jlu”)ajak)(u"“ - u”) = Z(?’]k(-’ﬂ, Jluu—l)
gk ik
- jk(x’ Jlu"))ajaku" -+ f(x,Jlu”) —_ f(x, Jlu”‘l),

Recall that we have uniform bounds for the derivatives of u” of order < 2 for all ». The
L? norm of the right-hand side can therefore be estimated by a constant times

my (1) = [l (¢, ) — w7t Ml + 10w (2, ) = w718 Wlleoy = (2w = w12, )]l

We have uniform bounds for the derivatives of 7/¥, so (6.3.17) yields
t )
(6.4.23) My (t) < C / my(r)dr, 0<t<T,
0

since the Cauchy data of u?*! — u” vanish. Hence we obtain inductively
m,(t) < (Ct)” supmg/v!.

which completes the existence proof when the Cauchy data are in §. This condition is
eliminated by a standard approximation argument.

Let T} be the supremum of all T" such that the Cauchy problem has a solution satisfying
(6.4.17). By Sobolev’s lemma (6.4.17) implies uniform Holder continuity with respect to z
of Jiu and 8y Jiu when 0 <¢ < T, and the differential equation then shows that d2u(t, -)
is also uniformly Holder continuous. This implies that %u is uniformly continuous and
uniformly bounded for 0 <t < T if 0 < |e| < 2. What remains is therefore to show that
there is no uniform bound for 0 <t < T;. Assume the contrary, so that we have (6.4.19)
for a fixed M and every T' < T,. Then the inequality (6.4.21) holds for 0 < t < T, with
M, (t) = M(t) independent of v, for we can take the sequence u” constantly equal to the
solution of the exact Cauchy problem. But then it follows from Gronwall’s lemma that
M (t) is uniformly bounded for 0 < ¢ < T;. As we have just seen it follows that u has a
C? extension to 0 <t < T, and we have u(T},-) € Hs 41y, 0:u(Ts,-) € H(s). Hence the
Cauchy problem has a solution with these data when t = T}, satisfying (6.4.17) up to some
time T > T, which contradicts the definition of T, and completes the proof.
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Remark 1. The proof of Theorem 6.4.11 remains valid with an obvious modification if
we replace the hypothesis f(z,0,0) = 0 by the assumption that the support is compact.
This observation is useful because it allows one to deduce a general local existence theorem

for an equation
n

Z ¢ (x,u,u")8;Opu = f(z,u,u')

7,k=0

which is hyperbolic with respect to the plane zo = 0 at 0, for the given Cauchy data.
After a linear change of variables preserving the plane zo = 0 the equation is then of the
form (6.4.15) with 4% = 0 at 0. Cutting 4% and f off in a suitable way in all variables
z,u,u’ we obtain an equation satisfying the hypotheses of Theorem 6.4.10 as weakened at
the beginning of this remark.

Remark 2. Using the equation (6.4.15) we can get bounds in L? for all derivatives of u
of order < s+ 1 and not only for those which are of order < 1 with respect to . In fact,
if || + k < s we can write %8 u as a linear combination of terms of the form

a(z, Ju)02 Jiu. .. .00 Jyu, loa|+ -+ loj] <ol + k.

This follows if we keep replacing 02u by the expression given by the equation (6.4.15) until
all terms are of order at most equal to 1 with respect to t. Using (6.4.5)" we can then
improve (6.4.17) to

9*u e L®([0,T}; L?), le|<s+1.

Remark 3. The proof of Theorem 6.4.11 shows that given T we have a solution of the
Cauchy problem for 0 < t < T satisfying (6.4.17) provided that [|uo||(s+1) and [Jul]¢s)
are small enough, for some s > (n + 2)/2. The relations between the size of the Cauchy
data and the lifespan will be the subject of Section 6.5. Here we observe that in view of
the finite propagation speed for solutions of hyperbolic equations it follows easily that the
unboundedness of second order derivatives proved in Theorem 6.4.11 when t approaches
the lifespan 7 for a solution satisfying (6.4.17) does not occur at infinity. Thus the solution
does not have a C? extension beyond the time T at some point. From the discussion of
first order systems in Chapter II and the reduction of second order equations in one space
variable to first order systems given in the introduction, we see that in general first order
derivatives may remain bounded up to the time 7.

Remark 4. Theorem 6.4.11 and the preceding remarks remain valid if u takes its values
in a finite dimensional vector space RV, the coefficients v/* are diagonal N x N matrices
and f takes its values in RY. In particular, we can apply this remark to find a solution of
a fully non-linear equation

(6.4.15) Ou = F(z,u,u’,u")

with Cauchy data (6.4.16). For the sake of simplicity we assume again that u is just a real
valued function, and by solving for 82u we can attain that 83 only occurs in Ou. Differenti-
ation of the equation (6.4.15)" with respect to z; gives a quasilinear equation for u; = dju,
j=0,...,n, which together with (6.4.15)" can be considered as a quasilinear system of
equations for (u,8ou, . ..,8,u). (The second order derivatives occurring as arguments of
F in (6.4.15)', for example, are just first order derivatives of our new unknowns u;.) From
the given Cauchy data for u and the differential equation we can calculate Cauchy data
for all u;. If we assume one derivative more for the initial data than in the quasilinear case
we therefore get a solution to our new system, and a vector valued version of Theorem
6.4.10 shows that u; = ;u for the solution obtained. Thus Theorem 6.4.11 remains valid
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in the fully non-linear case if we require s > (n + 4)/2; the supremum of all T' such that
a solution satisfying (6.4.17) exists in [0,77] is equal to the supremum of all T such that
there is a C? solution with *u bounded for 0 < ¢ < T and |a| < 3.

If one is content with existence in a time interval depending on bounds for a larger
number of derivatives of ug and u;, then a much more elementary argument can be used,
as pointed out by Klainerman [3]. We shall use his idea in the proof of global existence
theorems to avoid the more intricate interpolation inequalities which would otherwise be
needed then since one cannot confine oneself to discussing regularity in the space variables
for fixed time. As a preparation we shall now present the idea as an alternative proof of
Theorem 6.4.11.

With a positive integer s to be chosen later we shall try to establish uniform bounds for

(6.4.24) My(t)= ) [o*u(t, ),

loa]<s+1

when 0 <¢ < T. Note that we now consider all derivatives of order < s+ 1. By Sobolev’s
inequality, applied for fixed ¢, it follows that

(6.4.25) 10%u”(t, )] < CM,(t), |al+x<s+]1,

if £ is the smallest integer > n/2. This estimate is applicable to all & with |a| < 2 if
s > k+ 1. We want to prove inductively that

(6.4.26) M,t)<M, 0<t<T

Assume that this is already known with » replaced by v — 1, and consider (6.4.20) again,
now with 9 replaced by any 9 with |a| < s. In the last sum there is no term where J,u”
or Jyu’~! is differentiated more than s times. If N is an integer with 2IN+1)>s+1,
that is, 2NV > s, then no term contains two factors where Ju” or Ju”~! is differentiated
more than N times. Thus (6.4.25) can be used in all factors except one if N + & < s,
so we conclude that the L? norm of the right-hand side of (6.4.20) can be estimated by
C(M)(M,(t) + 1), and the energy estimates give

M, (t) < Ce“Mi(M,(0) + C(M) /0 t(M,,(T) + 1)dr).

When v > s the derivatives of 8%u”, |a| < s, are equal to the derivatives of the formal
solution of the Cauchy problem when t = 0, hence independent of v, and we conclude
using Gronwall’s lemma that

M, (t) < Ce®MH (M, (0) + C(M)t) exp(tCC(M)eMY), 0<t<T.

It M > CM,(0) and T is small enough it follows that (6.4.26) is valid, and the proof is
finished as before.

The conditions N + £ < s < 2N imply N > & and s > 2«, so to estimate u” we must
in this approach assume bounds on about twice as many derivatives of the initial data as
in Theorem 6.4.11 . However, we shall use it all the same in the following section because
of the simplicity of the argument.

6.5. Global existence theorems for nonlinear wave equations. In this section
we shall study the Cauchy problem in R1*”

n

(6.5.1) D G (W8 0hu = f(u),

7,k=0
(6.5.2) u(0,z) = euog(z), Oou(0,z) = cuy(z).
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or rather use t = xg, ¢ = r — z¢, and w as new variables. Note that this makes the light
cone a coordinate plane ¢ = 0. The vector fields (6.2.8) with j,k # 0 annihilate ¢ and
¢ and preserve homogeneity, so they can be regarded as vector fields in S”~!. Since the
orthogonal covectors are spanned by dr and dt, they span the vector fields in the unit
sphere. Let us denote this set of vector fields by . The remaining vector fields (6.2.8),
(6.2.9) are .

n
Zor, = 200k + 2500, 0<k<n; and Z,= ijaj.
0

Since 0/0r becomes 0/0q and 8/0xo becomes /8t — §/dq in the new coordinates, we
obtain

D wiZox =18/0q + (t +)(8/0t — 8/dq) = (¢ + q)0/0t — 48/dq.
1 |

The radial vector field Zo is t3/0t + ¢3/0q with these coordinates. It follows that in the
conic neighborhood of A where t/2 < |z| < 3t/2 we have

t0/0t = acZo+ Y arZor, q0/0q=boZo+ Y bpZox, 8/8q= > w;d;,
1 1 1

where ay,, b, and of course w; are homogeneous of degree 0. Writing u(t, z) = v(t, ¢,w) we
obtain

oy /t2I(qa/aq)a(a/aq)ﬁ(3/3w)7v(t,q)w)lqudw
(6.5.4) atprplen <2

<C Y0 2%, )P,

HESY

where N = (n + 2)/2, for the Lebesgue measure becomes r"~ldrdw = (t + ¢)*~'dgdw.
Taking o = 0 we conclude using Sobolev’s lemma that t*~1|v(¢, ¢,w)|? can be estimated
by the right-hand side if |¢| < /4. (We can use local coordinates on the unit sphere, and
t > 2/5 since |¢|+t > 1 and |z| < 3t/2.)

Let x € C§°((-1/2,1/2)), x(0) = 1, and set

Va(t, ¢,w) = x((¢ — Q)/Q)v(t, ¢, w)
for some @ with 1 < |Q] < /4. We have Vy(t,Q,w) = v(t,Q,w), and |g — Q| < |Q|/2,
hence |Q[/2 < |¢] < 3|Q|/2 < ¢/2 in the support. Hence the square of the L2 norm of

(Q0/09)*(8/0w) Va(t, q,w) = (%qa/aqy(ﬁ/aw)”x((q = Q)/Q)v(t, ¢, w),

can be estimated by a constant times the sum in the left-hand side of (6.5.4) with 8 = 0
when a + |y| < N, for

(¢6/09)((¢ — @)/Q) = 4/Q, (¢8/99)(Q/q) = —Q/q,

are uniformly bounded in the support. Taking ¢/Q as a new variable instead of ¢ we obtain
another factor () from the integration element, and Sobolev’s lemma gives

P QWP <C 3 117 ()P

l71<(n+2)/2
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%

or rather use t = zg, ¢ = 7 — 2o, and w as new variables. Note that this makes the light
cone a coordinate plane ¢ = 0. The vector fields (6.2.8) with j, k # 0 annihilate ¢ and
¢ and preserve homogeneity, so they can be regarded as vector fields in S*=. Since the
orthogonal covectors are spanned by dr and dt, they span the vector fields in the unit
sphere. Let us denote this set of vector fields by Q. The remaining vector fields (6.2.8),
(6.2.9) are .

n
Zop = xo0k +250p, 0<k<n; and Zy= ijaj.
0

Since 8/0r becomes 0/8¢ and §/0zo becomes 8/8t — 8/0q in the new coordinates, we
obtain

Y wrZop =0/8q + (t +)(8/0t — 8/9q) = (t + q)8/0t — 48/
1

The radial vector field Zg is t0/0t 4 ¢0/0q with these coordinates. It follows that in the
conic neighborhood of A where t/2 < |z| < 3t/2 we have

t0/0t = aoZo+ 3 axZor, 90/0q=boZo+ S biZor, 0/0q= > w;d;,
1 1 1

where a,, b, and of course w; are homogeneous of degree 0. Writing u(t, z) = v(t, q,w) we
obtain

-1 Z / . 2l(q6/6Q)“(6/3q)ﬁ(8/aw)7v(t,q’w)IQ dq dw
(6.5.4) atp+ly<n Nal<t/

<C Y 2", P,

HE3Y

where N = (n + 2)/2, for the Lebesgue measure becomes r"~ldrdw = (t 4+ ¢)*~dgdw.
Taking o = 0 we conclude using Sobolev’s lemma that t~1|v(t, ¢,w)|? can be estimated
by the right-hand side if |¢| < #/4. (We can use local coordinates on the unit sphere, and
t>2/5 since |x|+¢ > 1 and |z| < 3¢/2.)

Let x € C§°((—1/2,1/2)), x(0) = 1, and set

VQ(t’ Q)w) = X((q - Q)/Q)U(t7 q’w)

for some @ with 1 < [Q] < t/4. We have Vy(t,Q,w) = v(,Q,w), and |g — Q| < |Q|/2,
hence |Q|/2 < |¢| < 3|Q|/2 < t/2 in the support. Hence the square of the L? norm of

(Q0/89)%(8/0w) Vot q,w) = (%45/891)“(5/%)%(((1 = Q)/Q)(t, ¢, w),

can be estimated by a constant times the sum in the left-hand side of (6.5.4) with 8 =0
when a + |y| < N, for '

(90/09)((¢ — @)/Q) = 4/Q, (48/09)(Q/q) = —Q/q,

are uniformly bounded in the support. Taking ¢/Q as a new variable instead of ¢ we obtain
another factor () from the integration element, and Sobolev’s lemma gives

tn-lggv(t,Q,w)ch > N2 g, )2

<(n+2)/2
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This completes the proof.

Remark. If u is a solution of the homogeneous unperturbed wave equation with Cauchy
data in C§°, then we know from (6.3.2) that |Z1!(t, -)|| is uniformly bounded for any I,
for 1Z1u = 0, too. (See Section 6.2.) By Proposition 6.5.1 this implies

sup(1 + |¢) T (1 4 ||| = [t ¥ o/ (t, @)] < o0.

The weak Huygen’s principle gives u(t,z) = 0 if |z| — |t| > constant, so it follows that

sup(L + [t])*F (1 + l|2] = [t]) "% |u(t, @)| < oo

From Section 6.2 we know that these estimates have the right order of magnitude near the
boundary of the light cone, that is, when |z| — |¢] is bounded. However, the best bounds
are

sup(L+ [t) “F (1 + llz] = [T (ut, @) + [u'(t, 2)]) < o0,

and they cannot be obtained from L2 estimates of Z7u. Fortunately this flaw will not affect
the following existence theorems much since the critical estimates concern the immediate
neighborhood of the boundary of the light cone.

Theorem 6.5.2. The Cauchy problem (6.5.1), (6.5.2) with u; € C§°(R") has a C*°
solution for t > 0 if n > 4 and ¢ Is sufficiently small.

Proof. We know from Theorem 6.4.11 that the set of all T such that a smooth solution
exists for 0 <t < T is open. The theorem will be proved by establishing estimates of the
solution which are independent of T' and imply that this set is also closed.

As at the end of Section 6.4 we choose positive integers s and N with

(6.5.5) N 4+ k < s < 2N,

where & is the smallest integer > n/2. We want to prove that there is a constant M such
that for small €

(6.5.6) My(t)y=>_ 12"/t )| < Me, H0<t<T
HEE

This is true for small T if M is large enough. We shall prove that for sufficiently large M
the estimate (6.5.6) implies the same bound with M replaced by M/2. By “continuous
induction” we may then conclude that (6.5.6) holds.

By Proposition 6.5.1 it follows from (6.5.6) that

(6.5.7) (14 )5 |27/ (t,0)| < CMe, H0<t<T, |I|+&<s.

Since N + k < s we can use this estimate when |I| < N. To estimate ||Z7u/(t,-)|| when
lI| < s we apply ZT to (6.5.1) and obtain (cf. (6.4.20)), with the notation vE) =
g*(u') — g*(0),

O+ Zyjk(u')ajak)ZIu =Z1f(')+ 0, 72" u
ik
=S A0 0ku - Y ¥ ()2, 050k ]u.

J.k ik

(6.5.8)
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From (6.5.7) we obtain in particular

¥ ()| < CMe(1+1)"7" < CMe,

so the hypotheses of the energy estimate (6.3.6) are fulfilled for small e. Moreover, if
vi¥(u') is considered as a function of ¢,z we have with the notation used there

(6.5.9) v ()] < CMe(1 + [t]) 5™

This is an integrable function when n > 3, which motivates this condition in the theorem.
The L? norm of the last sum in (6.5.8) can be estimated by CMe(1 + )" =" M,(t), for
[Z1,0;0x) is a linear combination of operators Z79; with |J| < s since [Z, §;] is always
either 0 or equal to +0; for some k. We can write

(27, 77* (4/)]0; O

as a sum of derivatives of /¥ multiplied by components of
Z7 - 27l 7% 8;0,u

where |J1|+---+|Jr| +|K| < 8, J; # 0 for every 7, and r # 0. At most one of the positive
integers |Ji|, ..., |Jr|,|K]+ 1 can be larger than N since 2(N + 1) > s+ 1 by (6.5.5), so
we can estimate all factors except one using (6.5.7). There are at least two factors. For
small ¢ it follows that the L? norm of the first sum of commutators in (6.5.8) can also

be estimated by CMe(1 + £)*3" M, (t). Since f vanishes of second order at 0, we can by
Taylor’s formula write

F') =" fir(w)0;udiu

ik

with smooth f;x, and a similar estimate is then obtained for this term. Finally

[D,ZI]: Z CI’JZJDU
|71<i1]

with constant ¢y, s, for [0, Z] is equal to 0 or 200 for each factor. We express Z Tau by
means of the equation (6.5.1),

Zlou=27f(u') - 2’7 Z'yjk(u’)ajaku.
ik

Since |J| < s all terms obtained are of the form already discussed. Hence it follows from
(6.3.6) when ¢ is small that

t
102" u(t, ) < 310210, Y|+ OMe [ (140 F M (r)dr, [T1< s,
0

for the exponential factor in (6.3.6) will be close to 1 by (6.5.9). We can write Z79; as
a linear combination of 8;Z”7 with |J| < |I| by an argument used a moment ago, so it
follows that

(6.5.10) M.(t) < C(M,(0) + Me /0 t(l +7)5% M, (r) dr).
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In view of Gronwall’s lemma 1t follows that
t
(6.5.11) M, (t) < CM,(0)exp (/ CMe(l+ 1) dr).
0

Choose M so that 3CM;(0) < Me. Then we have attained that (6.5.6) holds for small T
and for any T implies the same estimate with M replaced by M/2 if ¢ is small enough.
Thus (6.5.6) follows by continuous induction for every T such that the Cauchy problem
has a solution for 0 <t < T, so this set is closed. Since it is open by Theorem 6.4.11 the
global existence follows.

Remark. The proof works if we just prescribe small Cauchy data such that Z7u/(0,-) €
L? for |I| < s for some s > 2«, and ||Z7/(¢,-)|| is then bounded when |I| < s. If the
support is compact this follows at once from the preceding proof. Otherwise one can
choose x € C$°(R") equal to 1 in a neighborhood of 0 and note that the bounds for the
solution with Cauchy data u;x(6-) are independent of 6 as 6§ — 0.

If n < 3 the proof of Theorem 6.5.2 does not break down completely. Firstly, the
existence proof remains valid if the perturbation vanishes of sufficiently high order and
n > 1. Assume that ¥/*(u') and f(u') vanish of order p and p + 1 respectively at 0. Then
we get at least p factors for which we can use the estimate (6.5.7), and it follows that
there is global existence for small ¢ if p(n — 1) > 2. When n = 3 it is therefore only the
quadratic terms that can cause difficulties. Secondly, even if the perturbation is just of
second order we get an estimate for the lifespan of the solution by just looking carefully
at the exponential factors which appear in (6.3.6) and in the application of Gronwall’s
lemma. Assume that for some small § > 0 we have

) T
(6.5.12) 5/ (1+ 1) dr <.
0

Then (6.5.10) is modified by a factor e“? in the right-hand side, and (6.5.11) is replaced
by
M,(t) < Ce®® M,(0) exp(CMe®?5).

Choose M as before so that 3CM,;(0) < Me. When § is so small that
e exp(CMeC?6) < 3/2,

we conclude that (6.5.6) holds for small T' and always implies the same estimate with M
replaced by M/2, if T satisfies (6.5.12) and ¢ is small. Hence we have proved

Theorem 6.5.3. The Cauchy problem (6.5.1), (6.5.2) with u; € C§°(R") has for small
¢ a solution for 0 <t < T, if

TE l-n
s/ (1+t)Fdt =,
0

where ¢ > 0 depends on ug,u;. Equivalently, with some other ¢, a solution exists for
0 <t <T. where for some c> 0

els, ifn=3,
T. =4 c/e?, ifn=2,
cle, ifn=1

If the perturbation vanishes of order p + 1 as above and p(n — 1) < 2, then we get
existence for 0 <t < T, if

T.
e”/ (14 t)PA-™/241 < ¢
0
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for a sufficiently small constant c. When n = 2 this gives “almost global existence” if
p = 2. However, the most interesting problem is to determine how quadratic perturbations
influence the lifespan T.. When n = 1 we know this from (6.1.5). We shall now prove
that for n = 2 or n = 3 there is at least a similar lower bound for T,. The main point is
that one can construct an approximate solution with an error which is small compared to
¢ as long as it exists. This will make the exponential factors controlled by (6.5.12) in the
preceding proof harmless even if é is not small. For the sake of brevity we assume that
f = 0. The extension to general f was prepared in Lemma 2.3.1 though, and it will be
carried out at the end of the section.

Assuming at first that n = 3 and that uo, u; € C§°(R3), we shall look for an approximate
solution to (6.5.1), (6.5.2) of the form

u(t,rw) = er U (w,elogt,r —t), |w|=1,7>0.

This is motivated by the asymptotic formula er—! Fo(w, r — t) for the solution of the un-

perturbed wave equation given in (6.2.6) and the hint from Theorem 6.5.3 that nonlinear

effects start to be important when €logt attains a certain value essentially independent of

g. Since ‘
Ou = T_l((at - 8,,)(8t + 6r) - r”2Aw)ru,

with A, denoting the Laplacian in $?, the main term in Ou is obtained when 8; + 9, acts
on the argument s = ¢logt and 8; — 0, acts on ¢ = r — ¢, which gives

—2¢*(tr) " ULy (w, 5, 9).

Writing as in the introduction.

(6.5.13) gy = ¢*(0) + D gHou+ O([u'?),
=0

we find that the main nonlinear terms in the equation (6.5.1) are

e2r 2 G(w)U, Uy,

where
n .
(6.5.14) G(w) = Z ¢Ho;opa; @ = (-1,w1,wz,ws) = ¢
J,k,1=0

Thus it is natural to choose U so that

U (w,5,9) = GW)Ul(w,5,9)Uly(w,5,9).

If U vanishes for large ¢ this is equivalent to
(6.5.15) 40U (w, 5, 9)/0s = G(w)(8U (w, 5, ¢)/0q)?.

When t is large but €logt is still small, the nonlinear effects should not yet be important,
so 1t 1s natural to require the initial condition

(6.5.16) U(w,0,q) = Fo(w,9),

where Fj is the Friedlander radiation field in (6.2.6). This Cauchy problem is easy to solve:
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Lemma 6.5.4. The Cauchy problem (6.5.15), (6.5.16) has a unique C* solution for
0 < s < A where

(6.5.17) A = (max 3G(w)d* Fo(w, 0)/9¢") ™",

but the second order derivatives are unbounded when s — A if A < oo, which is true
unless G = 0 or (ug,u1) = 0.

Proof. If we set u = O0U/8q the equation (6.5.15) implies that u satisfies Burgers’
equation with parameters

(6.5.15) 20u(w, s,q)/0s = G(w)u(w, s, ¢)0u(w, s,9)/dq.

We have [u(w,s,q)dg = 0 for all (w,s) since this is true when s = 0, and |g| < M when
(w,s,q) € suppu if |y| < M when y € supp up Usupp u;. Thus dU/8¢ = u for a unique
U with such support, and U satisfies (6.5.15). The lemma is now a consequence of the
discussion of the lifespan of solutions of Burgers’ equation in Section 2.3; it applies with
no change when the parameters w are present. (The lemma could also have been proved
using the Hamilton-Jacobi integration theory.) That A < co except in the trivial cases
listed follows from Theorem 6.2.2, for the second order derivative of a function of compact
support which is not identically 0 takes both positive and negative values.

We have now found a good approximation when t is fairly large, but it does not have
the correct Cauchy data so we piece it together with the solution ewg of the homogeneous
wave equation with Cauchy data (6.5.2). To do so we choose x € C*°(R) decreasing, equal
to 1 in (=00, 1) and equal to 0 in (2,00), and we set for 0 < et < e4/*

(6.5.18)  we(t,z) =w(t,z) = s(x(ét)wo(t, z) + (1 — x(et))r~'U(w, e log(et), r — 1)).

Thus we shift when 1 < et < 2 from the solution of the homogeneous wave equation to the
approximation constructed for large ¢. The initial conditions (6.5.2) are of course satisfied
by w, and we shall now estimate how well (6.5.1) is fulfilled (with f = 0).

Lemma 6.5.5. With w defined by (6.5.18) and

(6.5.19) R= ) ¢*(w')d;0w,
7,k=0

we have R,w € C® when t < e/, where A is defined by (6.5.17). If (t,z) € suppw we
have

|lz| — t| < sup{|yl; ¥ € supp uo U supp u;}.
For fixed B € (0, A) we have for small ¢ and all I ifelogt < B

(6.5.20) |ZTw(t, )| < Crpe(1 +1)71,
(6.5.21) |ZIR(t,z)| < Crpe®(1+ )21 +et)™ L.

Proof. If w is replaced by the solution cwq of the wave equation with initial data cuy,
guy, then (6.5.20) follows from (6.2.10). To prove (6.5.20) when et > 1 and ¢logt < B
we note that Z7x(et) is uniformly bounded for any I when |¢| < t + C, that Zlog(et) is
homogeneous of degree < 0, and that Zq is either homogeneous of degree 0 or else equal
to —w;gq, if Z = z;0; +t0;. This implies that Z! applied to the second term in (6.5.18) is
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a sum with bounded coefficients of derivatives of U multiplied by functions homogeneous
of degree < —1 and powers of ¢ = r — ¢, which is bounded in the support. This proves
(6.5.20).

To prove (6.5.21) we distinguish three different cases:

1) When et < 1 we have w(t, z) = ewg(, ), and

R=) (¢ (') - ¢7*(0))0;0kw
ik
since Owg = 0. Hence (6.5.21) follows from (6.5.20), for the factor 1 + €t plays no role.

ii) Now consider the transition zone where 1 < et < 2. In addition to the arguments in
case 1) we must then also estimate

Ow = O(w — ewp)
= e(((1 — x(et))O — 2ex/(et)d; — €2X"'(et)) (r~ 1 U (w, elog(et), r — t) — wo(t, 2))).

In the term where x is differentiated twice the desired bound O(e*) is immediately clear.
In the term where x is differentiated once we use that

r~N(U(w,elog(et),r —t) — Fo(w,r — 1)), 77 Fo(w,r —1t) — wo(t, )

are O(er—1) and O(r~2) respectively, and that such bounds still hold after multiplication
by any ZT. In the first case this follows from the proof of (6.5.20) since 0 < log(et) < log 2;
in the second case it follows from (6.2.11). What remains is to study

e(1 — x(et))r ™1 ((8 — 8- )(8: + 8r) — 7 2AL)U(w, e log(et), r — ¢).

Here 0; + 0, must act on ¢log(et), producing a factor €/¢, which gives the desired bound
if we recall the proof of (6.5.20) once more.
iii) Let 2/ <t < eB/¢. Then

Ow = er ((8; — 8,)(8: + 8,) — r2A,)U(w, elog(et), r — t),
and as just observed 0; + 9, must act on elog(et), which yields a factor ¢/t. Writing
s = elog(et) and ¢ = r — ¢, we obtain
|Ow + 2e2r~ 11U (w, 5, 4)| < Cet™2.
With the notation in (6.5.14) we have
|0%w — er~1o28l*1U(w, 5, q)| < Cer~?,
n

l 3 (¢7F (W) - g7*(0))0; Bpw — e2r2GW)ULUL | < Cerrs.

3,k=0
Recalling that 2U], = G(w)U,U,, we conclude that |R| < Cet=3, for 1/t — 1/r = O(1/t?).
This proves (6.5.21) when I = 0, and using (6.5.20) we obtain (6.5.21) for arbitrary I too.

We shall write the solution u of (6.5.1) (with f = 0) and (6.5.2) in the form u = v + w
where w is the approximate solution studied in Lemma 6.5.5. Then the Cauchy problem
is restated as

(6.5.1) Z @* (' 4+ w')d;0kv + R+ Z (¢ (v + ') — ¢7*(w'))d; 06w = 0
jrk:O j,k:O
(6.5.2) v=0v=0 whent=0.

Here R is defined by (6.5.19).
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Lemma 6.5.6. Assume that (6.5.1)', (6.5.2)" has a C*° solution for 0 <t < T where
elogT < B < A, with A defined by (6.5.17). If 0 < € < 8p, it follows that

(6.5.22) 127" (¢, )|l < Cr,pe’log(l/e), 0<t<T,

where ép and Cr p are independent of T' and €.

Proof. The proof is parallel to that of Theorem 6.5.2. We shall estimate Z'v' by ap-
plying the standard energy estimate (6.3.6) to the equation obtained when (6.5.1) is
multiplied by ZZ. By Lemma 6.5.5 we have

(6.5.23) IZTR(t, || < Crpe?(1+1)7(1 4+ et) 2,

- for the measure of the support is O(1 + t)%, and we shall use that
oo
(6.5.24) / (1481 Q +et)"tdt = (e — 1) loge.
0

From (6.5.1)" and (6.5.2)' we also find that ZTv = O(?) for every I when t = 0.
Choose s and N satisfying (6.5.5) and assume that

(6.5.25) Ny(t)= Y |1Z7' (¢, )| <6, 0<E<T,
1l<s

where the equality is of course a definition. If we prove (6.5.22) under this assumption
then we see that for small ¢ we actually have (6.5.25) with ¢ replaced by ¢/2, so (6.5.25)
and (6.5.22) will follow by “continuous induction”. By Proposition 6.5.1 it follows from
(6.5.25) that

(6.5.26) 1Z10'(t, )| < CN,(#)(1 +8)" ' < Ce(1 +t)7!, 0<t<T, |I|<N.
Combining (6.5.20) and (6.5.25), (6.5.26) we obtain for some constant C’

125! (¢, )|| < C’e, 0<t<T, |I|<s,

(6.5.27) ! )
|27/ (t, )| < C'e(1+1)™, 0<t<T, [I[<N.

When |I| < s we are now ready to estimate the right-hand side of the equation for Z%v
obtained from (6.5.1)

n 4
Z gjk(ul)ajakZI’U = ZRj’

k=0 0 \.
Ry = ——ZIR, R = [l:l, ZI]’U, Ry = Z['}’jk(u'), ZI]ajBkv,
R3 = nyjk(u')[aj(?k,ZI]v, Ry=-71 Z(gjk(v' + w') ~ g?*(w'))0; B w.
As before the hardest term is Ry, which is a sum of derivatives of 4/* multiplied by

components of
JALT TR ~ZJ’u'ZK3j6kv

where |J1| +---+ |J-| + |K| < s, J; # 0 for every %, and r # 0. Estimating the last factor
using (6.5.25) or (6.5.26) and the others by means of (6.5.27) we obtain

[|B2(t, )| < Ce(1+2)7 N, (2).



GLOBAL EXISTENCE THEOREMS FOR NONLINEAR WAVE EQUATIONS 127
s

For R3 and R4 the same estimate is pbtained even more easily if we use Taylor’s formula
to write ¥/*(u’) and ¢g7*(v' + w') — g?¥(w’) as scalar products with u’ and v’ respectively.
After writing

Ry = Z 1,027 0v
|71<11]

and substituting the expression for Clv given by (6.5.1)', we have the same estimate for R;
too, and Ry was estimated in (6.5.23), (6.5.24). Now it follows from (6.5.27) that with the
notation in (6.3.6) we have '

T T
/ lv'(¢)] dt < C’e/ dt/(1+1t) =Celog(1+T) <2CB, ifelogT < B.
0 0
Recalling that the Cauchy data of Z/v are O(e2), we obtain using (6.3.6)

||6ZIv(t, I < 0(62 log(1/¢) + /0 eN,(r)dr/(1+ T))

This implies with another C, depending on B, that

N,(t) € C(e? log(l/e) +A eNy(r)dr/(1+ 7)),

hence by Gronwall’s lemma
t
N,(t) < Ce?log(1/€) exp (/ Cedr/(1+ 7')) < Ce’log(1/¢) exp(2CB).
\Jo

This completes the proof of (6.5.22).

From Lemma 6.5.6 and the local existence theorem it follows at once that for small ¢
the Cauchy problem (6.5.1)', (6.5.2)" has a solution satisfying (6.5.22) when ¢ < exp(B/e¢),
if B < A. By Proposition 6.5.1

[/ (t,2) = w'(t, 2)] = |o'(t, )] < C(L+ &) (1 + [lal — )& log(1/e), 0 <t < ePle.
Since v(t, ) = 0 when || — [¢t| > constant it follows that
e 1+ t)|u(t, 2) — w(t, z)] < C(1+ ||z| - |t])2elog(l/e), 0<t < eBle.
When ¢t = e*/¢ and z = (¢ + q)w, |w| = 1, we have
tw(t,z) = eU(w,s +eloge, q)t/(t + q)

when ee®/¢ > 2, so we have proved:

Theorem 6.5.7. The Cauchy proBIem (6.5.1) (with f =0), (6.5.2) with u; € C*(R3)
has a C*° solution u. for 0 <t < T, where

(6.5.28) lim elog 7. > A = (max 3G(w)0*Fy(w, 0)/80%) .
w,e

e—0

Here w € S? and G is defined in (6.5.14) while eF, is the Friedlander radiation field of
the solution of the Cauchy problem for the unperturbed equation. If U is the solution of
(6.5.15), (6.5.16), then

(6.5.29) 5“les/su€(es/€, (63/€ + o)w) —U(w,s,0) = 0, ase—0,
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locally uniformly in S? x (0, A) x R;; in fact, the difference is locally uniformly O(e log¢).

When ¢’* only depend on du/8t and the Cauchy data are rotationally symmetric, then
John [2] has proved that for the lifespan T, of the solution one can replace lim in (6.5.28)
by lim and inequality by equality. The idea of the proof is that in polar coordinates one
actually has a problem with just one space variable where one can use a modification of the
proof of Theorem 4.3.1. For the details of the proof we refer to John [2] or Hérmander [1].
The latter paper also contains Theorem 6.5.7, which was proved independently by John
[3] with a different argument. Theorem 6.5.2 was proved by Klainerman [1} when n > 6
~ with a far more complicated proof. The proof given here is essentially that of Klainerman
[3] who proved the theorem for n > 4 and also proved Theorem 6.5.3 which had been
established somewhat earlier for the critical dimension n = 3 by John and Klainerman [1].
In Hormander [1] the analogue of Theorem 6.5.7 for n = 2 was also proved with essentially
the same arguments. The only additional complication is that the Friedlander radiation
field does not have compact support in the radial variable, but that is compensated by its
symbol properties. Thus we have the following result also:

Theorem 6.5.8. The Cauchy problem (6.5.1) (with f = 0), (6.5.2) with u; € C°(R?)
has a C*° solution u. for 0 <t < T, where

(6.5.30) limey/T. > A= (rBasz(w)azFo(w, 0)/00%) L.

e—0

Here w € S and G is defined by the analogue of (6.5.14), while eFy is the Friedlander
radiation field of the solution of the Cauchy problem for the unperturbed wave equation.
If U is the solution of (6.5.15), (6.5.16) then

(6.5.31) se2u (s /e, (s2/e® + ow) — U(w, 5,0) = 0, ase— 0,

locally uniformly in S* x (0, A) x R; in fact, the difference is locally uniformly 0(6%).

When G(w) = 0 Theorems 6.5.7 and 6.5.8 suggest a much better order of magnitude
for the lifespan. In fact, Christodoulou [1] and Klainerman [4] have then proved global
existence for small £ when n = 3. This will be done in Sections 6.6 and 6.7 here.

We shall now outline an extension of Theorem 6.5.7 to the case where the function f in
(6.5.1) is not identically 0. In analogy with (6.5.13), (6.5.14) we introduce

(6.5.13) F') =" ¥ 8udpu+ O(lu'f),
ik
(6.5.14) Flw)=Y f*aon; &= (=1,w,wa,ws).
J.k )

We get new nonlinear terms dominated by F(w)Uq’Z, and with the notation v = Uj as in
the proof of Lemma 6.5.4 this gives instead of (6.5.15)' the modified Burgers’ equation

(6.5.32) 20u(w, 5,9)/0s = G(w)u(w, s, 9)0u(w, s,9)/8g — F(w)u(w, s, q)?,

which is of the form studied in Lemma 2.3.1. Again we solve this equation with the initial

condition u(w, 0, q) = 0Fy(w, q)/0q. The solution exists for 0 < s < A where (see Lemma
2.3.1)

(6.5.33) A = (max (G(w)d* Fo(w, 0)/80* — F(w)0Fo(w, g)/&g))—1
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is finite unless (G, F) = 0 or (uo, u1) = 0. It is no longer true that [ u(w,s, ¢) dg vanishes
for s # 0; in fact,

2% / w(w,s,q)dg=— / F(w)u(w, s, ¢)%dg,
which is hardly ever zero. We define U(w, s, ¢) as the solution of 8U/dq = u which vanishes

for ¢ > M if M is an upper bound for |y| when y € supp ug Usupp u;. When ¢ < —M it
is a function U_(w, s) independent of ¢, and we have

(6.5.34) 2Uy, = G(w)U, Uy, — F(w)U; 2.

To avoid singularities when r = 0 we must cut off by taking a function (¢, z) in C* which
is homogeneous of degree 0, equal to 1 in a conic neighborhood of the light cone and equal
to 0 in a conic neighborhood of the ¢ axis. We keep the definition (6.5.18) of w with U
replaced by ¥U. When ¢ < —M this is equal to 1(t, z)U_(w, € log(et)), so we have

16%(4(t, 2)U- (w, elog(et)))] < Cas(1+t)71¢1 ifet > 1, clogt < B.
This proves that (6.5.20) remains valid. When ¢ < —M we find that
|Z'0w| < Crpe(1+41)™3 ifet > 1, elogt < B,
so (6.5.21) remains valid too, with
R=> " ¢*(w)d;0w — f(w').
However, the measure of the support of R is now only O(1 +1)3, so0 (6.5.23) is replaced by
|ZIR(t, || < Crpet™3/% ifet > 1, elogt < B,

and the integral of this from 1/¢ to co is O(¢%/?). In (6.5.1) we now obtain another term
f(v' +w') — f(w') in the right-hand side, which gives another error term

Rs = Z'(f(v' +w') - f(w'))

in the subsequent argument. It is estimated just as the others after writing f(v' + w') —
f(w')) as a scalar product with v/, so we obtain

CN,(t) <Ce¥? o<t <ePlE,

Hence we have proved that

Theorem 6.5.9. The Cauchy problem (6.5.1), (6.5.2) with u; € C§°(R3) has a C*

solution u, for 0 <t < T, where

limelogT, > A

e—0
with A now defined by (6.5.33). Here w € S? and F, G are defined by (6.5.14), (6.5.14)’
while ¢ Fy is the Friedlander radiation field of the solution of the Cauchy problem for the
unperturbed wave equation. If U is the solution of (6.5.34), (6.5.16) vanishing for ¢ > 0
then (6.5.29) holds locally uniformly in S? x (0, A) x R; in fact, the difference is locally
uniformly O(e?).

Remark 1. Theorem 6.5.9 was extended in Hérmander [7] to fully non-linear perturba-
tions of the wave equation

(6.5.35) Ou = f(u',u")
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where f vanishes of second order at (0,0). The new problem posed by this generalization
of (6.5.1) is that (6.5.32) is replaced by a more general equation of the form

du/ds = a(w)(Ou/dq)? + 2b(w)udu/dq + c(w)u?.

The lifespan of solutions of the Cauchy problem for this equation can still be determined
explicitly, but the formula for it is fairly complicated so the expression for A in the extension
of Theorem 6.5.9 is somewhat involved.

Remark 2. If one wants to apply the methods of this section to the equation
(6.5.36) Ou = f(u,u’,u"),

where f vanishes of second order at (0,0, 0) but may depend on u, there is another difficulty.
The energy integral method gives naturally only an estimate of ||u/(%, -)||, and one must
expect to lose a factor ¢ when passing to an estimate for |Ju(t,-)|]. For n > 5 this will
suffice to prove a global existence theorem for small ¢ using the proof of Theorem 6.5.2,
and the result was extended to n = 5 by Li and Chen [1]. In Hormander [8] it was proved
that if there is no u? term, that is, f(u,0,0) = O(u®), then (6.5.36), (6.5.2) has a global
solution for small ¢ when n > 4, and that the lifespan T, is > e/ V% for some ¢ > 0
when n = 3; this was improved to T, > e¢/¢ by Lindblad [2]. For arbitrary f it was also
proved by Hormander [8] that 7. > e®/¢ for some ¢ > 0 when n = 4; this was improved
to T. > e¢/ * by Li and Zhou [1]. When n = 3 it was already proved by John [4] for the
equation CJu + u? = 0 that €27 lies between two positive bounds for small . Lindblad [1]
proved that the limit as € — 0 exists and gave a description of it.

Remark 3. Even if it is hard to doubt that (6.5.28) and (6.5.30) always give the precise
asymptotic lifespan of the solutions there are no proofs except for the rotationally sym-
metric three dimensional case studied by F. John [2] and the recent study by Alinhac [3]
of some very special equations and data with two space dimensions. Theorems 6.5.7 and
6.5.8 only show that if the lifespan should be much longer then the asymptotics would
be of a different kind. However, Alinhac [1, 2] has given a more precise lower bound for
the lifespan in the case discussed in Theorem 6.5.7 and proved very refined results on the
asymptotic behavior close to this time which reinforce the belief that Theorem 6.5.7 is
fairly precise. (See also the bibliographies in these references.)

6.6. The null condition in three dimensions. In the main results of this section
the number n of space variables will be equal to 3, but at first we allow any n > 3. We
shall consider a quasilinear second order equation

(6.6.1) > g F(u, u)0;0ku = f(u, ) |
i, k=0

with small Cauchy data

(6.6.2) u(0,2) = euo(z), Oou(0,z) = euy(x),

where u; € C§°(R"). We shall often write ¢t = ¢ and & = (z1,...,2,). We assume that

u = 0 is a solution of (6.6.1) and that the linearisation of (6.6.1) there is the wave equation,
that is,

> ¢*(0,0)0;0, =0, f=4df =0at (0,0).
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Definition 6.6.1. The equation (6.6.1) is said to satisfy the null condition if

n
¢ (u,w) = Y g0+ O(lul + )7,

=0

flu, ') = Z F%0;udku + O([u| + |'])?,

7,k=0
where
n ) n .
(6.6.3) PHEEE =0, D F*6 =0 when € -€2—...—¢2 =0.
3,k,1=0 7,k=0

Thus the null condition requires that the quadratic terms are independent of u and
that with the notation used in Theorem 6.5.9 we have G(w) = 0 and F(v) = 0. We
shall improve Theorem 6.5.9 when A = oo to the following result of Chrlstodoulou [1] and
Klainerman [4] (see also Hérmander [6]):

Theorem 6.6.2. If (6.6.1) satisfies the null condition, n = 3, u; € C§°(R3), and ¢ is
sufficiently small, then the Cauchy problem (6.6.1), (6.6.2) has a C* solution for t > 0.

The proof will occupy the entire section. The main change of the methods used in
Section 6.5 is that we shall use energy estimates of the form (6.3.14). To do so we must
examine the relation of the null condition to the vector fields (6.2.8), (6.2.9) and the
constant vector fields. These suggest using the following norm on covectors

(6.6.4) I€lo = (D Zin(e,6)* + Z0(,€)? +252) (14'(2) AER/4+ (2,€) + )2,

i<k

where the norms are Euclidean and A(z) = 22 — 2% — --- — z2. The following lemma is

perhaps clarified by allowing A to be any nondegenerate real quadratlc form.

Lemma 6.6.3. Let G be a k linear form on R'*". Then
" (6.6.5) G, M S COU+ 1) e e - [€F)s; €, € R,
if and only if, with B denoting the dual quadratic form of A,

(6.6.6) G(&,...,6)=0 when ¢ € R™", B(¢) =0.

Proof. Let ¢! = ... = &% = A’'(z) where A(z) = 0 but z # 0. Then it follows from
(6.6.4) that |¢/];y; = |A’(:c)| so the right-hand side of (6.6.5) with z replaced by tz is
O(1/t) ast — co. This proves that (6.6.5) implies (6.6.6). Now assume that (6.6.6) holds,
and let |¢7]; = 1 for all j. Then |¢7] < 1 so (6.6.5) is obvious if |z| < 1. Write

& =1l +1;A(2)
where 17 is orthogonal to A’(z) in the Euclidean sense. Then

&7 AA ()] = |9 A A ()] = ||| 4/ (2),
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so we have a bound for |r¥|(|z| + 1) + |¢; A'(z)| + [tj A(z)]. It follows that all terms in the

expansion of G(¢!,. .., &%) containing some r/ can be estimated by C/(1+ |z|). It remains
to estimate

t1 - tG(A'(2),. .., A'(z))
when |z| > 1. By (6.6.6) we have |G(¢, . ..,€)| < C|¢[¥~2|B(¢)|, hence
G(A'(2), ..., A'(£)] < ClA'(2)[*2|B(A'(z))| = 4C|A'(2)|**|A(2)].
Since t; A(z) and t;|A’(z)| have fixed bounds we obtain
[t -t G(A (), ..., A'(2))] S ACt1 - ]| A(2)||A'(2)[F =2 < C'/ e,

which completes the proof.

We shall use Lemma 6.6.3 for £ = 2 and for k = 3. For k£ = 3 a closely related estimate
of the quadratic term in (6.6.1) is also required: \

Lemma 6.6.4. If g¢'% satisfy the null condition (6.6.3), then

(6.6.7) | Z gH9; pu | < C(1 + |2])" 1|av|m§:;aaku|m

J,k,1=0 k=0

Proof. We may assume that |z} > 1 and that Y g |89kul, = 1, |8v], = 1. Write
Ov(z) = V(z) +tA(z), 08u(z) = U*(z)+ ;A (z),

with V(z), U¥(z) orthogonal to A’(z). Then we have a bound for

2|V ()] + [te| + [EA@)] + D ellUR@) + D ltezl + > lteAl2)l, $
k=0 k=0 k=0

as in the proof of Lemma 6.6.3. As there we must estimate

M = Z gjkltkaA/al‘jtaA/awl.

i,k,1=0

For v =0,...,n we have

t:0A/02, +UF = 8,00u =1,04/0x; + UY, . hence
MoA/dx, =1,t)  g'*0A/02,0A/0x;0A/0z+ Y ¢ (U} — UF)0A/0w;tA/ 0.
J.k1 ikl
The second sum is bounded and the first sum is < C|A(z)||z| by (6.6.3). Hence M|z| is

bounded and the lemma follows.

The next lemma describes how the vector fields (6.2.8), (6.2.9) act on expressions such
as that estimated in Lemma 6.6.4.
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Lemma 6.6.5. Let G be a k linear form on R'*", and let k = ky + - - - + k, where k;
are positive integers. Then

GV, .. u)),  u; e CERI),

is well defined by extension of the k linear form to the tensor products. If Z is a vector
field with affine linear coefficients, Z(z,9) = >y Z;(2)0;, and u; € C*+1(R'*™), then

ZGW{, . ul)) = G((Zu)®), .. w4
+G, ., (Zu)E) + G (D ),

where
Gi(&,...,6) ={2(z,8),G(¢,....0)} = =) _07/0x;0G(¢, ..., €)/8;.
0

Here {,} denotes the Poisson bracket. If G(¢,...,&) = 0 when &2 — - .- — €2 = 0 then this
follows for G, too if Z is one of the vector fields (6.2.8), (6.2.9) or a constant vector field.

Proof. By Leibniz’ rule we must let Z act separately on each of the ugkj ), and

Z0% = 0°Z + Qa(d), where Qa(¢)=—> 087(x,€)/0z;06%/0¢;.
0

The formula for G; follows by another application of Leibniz’ rule, now for the Poisson
bracket. If Z is one of the vector fields (6.2.8), say Z(z,€) = Ajz;€r — Apziéj, then

> " 072/02:8/06 = A Mi(Ae€rd/0E; — X;€;0/08k),

=0

and if Z is the vector field Zg in (6.2.9) we obtain the same vector field in the £ variables.
They are all tangent to the light cone, and when Z is a constant vector field we obtain
the zero vector field, so G1(¢,...,&) = 0 on the light cone if G(£,...,€) = 0 there. This
proves the last statement. -

We shall now discuss the modifications of the energy identity (6.3.3)"” which are required
when the coefficients are variable but close to constants. Thus consider an equation of the
form

(6.6.8) Y ¢ (2)00u = f,

i,k=0

where n > 3and )7 o ¢7F(2)0;0 =0+ 37 107 (2)0; 0% with 47* small. We shall use
the same vector field K as in Lemma 6.3.4 apart from an addition of §/0t to get control
of the conventional energy form. Thus we set

Lu= L'8u+ (n — Daou,
(6.6.9) 20: (n=L)zo

L=(L°...,L") = (1422 + &%, 22021, . .., 2202n),
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and shall derive a modification of (6.3.3)",

(6.6.10) 2Lu Z ¢?*0;0hu = Za (Z T! (w) L' + (n — 1)(2a:0ngJk8ku 07 u?)) - R,
3,k=0 j=0 1=0

where 6 = (1,0,...,0) and T/ is defined by (6.3.4). We shall write down the error term

R later on. The energy integrand, that is, the 0 component of the vector field in the
divergence on the right, now becomes

ZT,.O(U)L" +2(n — Dzou Z g% du — (n — 1)u?

= 2Zg0k8kuZL O;u — Zg’ka upuL® + 2(n — 1)m0u2g°k6ku ~(n—1)u?

gk

so for the energy F(u) defined by integration over Z, we have if Eqo(u) denotes the same
energy for the unperturbed wave operator,

E(u) Eo(u) = /(QZyokakuZLau

6.6.11
( ) — (14 22 + 2% Z v1*8;ubpu + 2(n — 1)mouzn:7°k6ku) dz
3,k=0 k=0
By Lemma 6.3.4
(6.6.12) (L, &) < O+ )l
If we assume that
(6:6.13 Y @G| <60+l el X

3,k=0

for some small §, then the integral of the middle sum in (6.6.11) is O(6 Eo(u)), for it follows
from Lemma 6.3.5 that

6618)  1/a1.< Bo)/ (2ol + S Nzpeul?+ 10+ n — ) <2
i<k

When r; = §;; it follows from (6.6.13) that
n .
(6.6.13)" | v @) | < O+ [eh) el
j=0

which combined with (6.6.12) proves that also the first and the third sum in (6.6.11) are
O(8Eo(u)). Hence

(6.6.15) (1 = C8)Eo(u) < E(u) < (1+ C6)Eo(u)

which shows the equivalence of E(u) and Fo(u) when é is small.
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%

Next we shall prove that the error term R in (6.6.10) is equal to Z? R; where

=2 7*0,u(0;L)0u — Z(a L) nyﬂ@ uBju,

J.kyi
Ry=2) L'6u) (87*)0u, Rs=-— Z(Lz&-'ﬁk)ajua]gu,
(6.6.16) i ik i,k |
Ry=2(n-— l)uZ'yOk@ku, Rs =2(n— 1)z Z'y’kajuaku,
k ik

Re =2(n— )zou Y _(8;7%)8u.
ik

To do so we shall consider successively the terms where 9; acts on the various terms and
factors in the divergence expression in (6.6.10).

i) The terms where 8; acts on a derivative of u in T’ (u) occur on the left of (6.6.10).

ii) When §; acts on L’ we obtain a quadratic form in Ju which is the sum of that in
the unperturbed case and R;. _

iii) When 9; acts on the components of ¢ in T} (u) we obtain the error terms R, and
Rs.

iv) If 0; acts on Oru in the last sum in (6.6.10) we obtain the remaining part of the
left-hand side of (6.6.10).

v) If 0; acts on zo we obtain the term R4 in addition to the term 2(n — 1)udpu which
occurs in the unperturbed case.

vi) If §; acts on ¢/ we obtain the term Rs.

vii) If 9; acts on u we obtain the term Rj5 in addition to the quadratic form in du which
occurs in the unperturbed case.

viii) If §; acts on the last term —(n — 1)67 u? we obtain the term —2(n — 1)udyu.

In the unperturbed case we know from (6.3.3)"” that the terms not accounted for in the
left-hand side of (6.6.10) or in R cancel out, which proves (6.6.10).

The error terms R;, R4 and Rs can be estlmated using (6.6.13). From (6.6.9) we obtain
>0 8L =2(n+ 1)zo and

S o &, when j =0
.6.17 :0; L' =
(6.6.17) ZE { 2(&oj + &jxo), when j #0.

These sums are bounded by 2|£|x, so it follows from (6.6.13) and (6.6.13)’ that
(6.6.18) [Bal -+ [Ral + [ Rs| < CO(1+ o)~ ([0wf2 + |ul|Oul,).
Now we add to (6.6.13) the hypothesis
(6.6.19) |3 &) < 800+ 1el) Kl
Jik=0

By (6.6.12) the estimate (6.6.18) is then also valid for B¢ and R3. To obtain such a bound
for R3 we also require
(6.6.20) ' Z (L 7% () gjgk‘ < (1 + |e))~ )2,

) 1,7,k=0

Then we have the estimate (6.6.18) for all R;, and we have proved
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Proposition 6.6.6. Let u € C? be a solution of (6.6.8) vanishing for large |Z| when ¢
is bounded, and assume that (6.6.13), (6.6.19) and (6.6.20) hold. If § is sufficiently small
it follows that the energy E(u; o) at time x¢ obtained by integrating (6.6.10) with respect
' to & satisfies

6621)  1/50 < Bw)/(1Zoull® + 3 1 Zisull® + 3 1050l +1i(n — 1)ul]?) < 3.
We have
0B (u; 20)/ 00| < 0(5(1 + 20) "L B(u; 20)

(6.6.22) . 1
(/(1 + 2o + |&])2|f (0, £)|? dE) * B(u; xo)g),

Here we have used (6.6.12) when estimating the left-hand side of the energy identity
(6.6.10) and of course used that the integrals of the terms on the right with j # 0 are equal
to 0.

After introducing E(u;20)? as a new unknown in (6.6.22) and multiplication of both
sides by (1 4 2¢)~¢® we can integrate and obtain

Bluseo)? < (1420 (50

(6.6.23) +c/ (1+t)-06dt(/(1+t+|fl) £, D) ad)?).

We shall use (6.6.22) instead of (6.3.6) when we study the equation (6.6.1). The first
order terms in ¢/* will then have the special properties in Definition 6.6.1. To apply
Proposition 6.6.6 we need the following

Lemma 6.6.7. Suppose that

(6.6.24) yk(z) = igj How(z) + o * (),
=0

)

where ¢/¥! are constants satisfying the null condition (6.6.3) and

(6.6.25) A+ Y 1Z7w(@) <6 (1+]2))? > 12T (@) < 6,

<2 <1

where Z! is any product of |I| vector fields of the form (6.2.8), (6.2.9) or 0/0x;. Then
(6.6.13), (6.6.19) and (6.6.20) are valid with & replaced by a constant times 6.

Proof. This is obvious when 7/* = ¢/* if we recall (6.6.12) when verifying (6.6.20). We
may therefore assume that ¢/¥ = 0. To prove (6.6.13) we use that by Lemma 6.6.3

n
| gMomgn| < O+ el ul gl Irl
j,k,1=0
and that |0w|, < C8(1 + |z|)~! by (6.6.25). By Lemma 6.6.4

\ Z £:0; 7% (x) |—\ Z ng162w/(9x18x]£kl<C(1+|:1:|) 1|5|$Z|aa,w|w,

7,k=0 7.k, 1=0



THE NULL CONDITION IN THREE DIMENSIONS 137
R v

which proves (6.6.19). To prove (6.6.20) we write, now with L = Y5 L?8/dz;,

n

S Erhgg = Y dGaadn+ Y @HgaIL 0.

§,k=0 3k 1=0 3k 1=0

By Lemma 6.6.3 the first sum can be estimated by
C(L+ |z él210Lw]s,

and |8Lw|, < C6 by (6.6.12) and (6.6.25). Since [0y, L] = 27 and [6;, L] = 2Z¢; for | # 0,
we have by (6.6.25)
[, Or]w| < C&1 + |z[)~H,

which completes the proof of (6.6.20) also.

We shall need an analogue of Proposition.6.5.1 involving L' norms, which also follows
from Sobolev’s inequality. For the sake of simplicity we assume from now on that n = 3.
(See also Hormander [3] for general n > 3.)

Lemma 6.6.8. Ifu € C* and Ou = F in [0,t] x R?, and the Cauchy data of u are 0
when t = 0, then

(6.6.26) (1'+t+ |Z])|u(t, £)] < C//o > 12" F(s, )| dsdg/(1+ s + |§]),

where Z! is any product of |I| vector fields of the form (6.2.8), (6.2.9) or 8/8z;.

Proof. We shall first prove a homogeneous version of (6.6.26): if F' vanishes in a neigh-
borhood of the origin then

!
(6.6.26)’ (t +|Z)|u(t, &)| < C > 12" F(s, )l ds dig/ (s + |§),
0<e<tn<2

with summation only over products of vector fields of the form (6.2.8), (6.2.9) which
preserve homogeneity. A change of scales shows that it suffices to prove (6.6.26)" when
t=1.

The solution u of the wave equation is given by the retarded potential

u(t, ) = (47)~ ! »/|‘

]<tF(t_ |9, & — §) dg/|9-

The difficulties in the proof come from the fact that the integration only takes place over
a hypersurface and that the denominator |§] vanishes when ¢ = 0.

i) Let us first assume that supp F C {(s,%);|§] < 3s}. In this set the vector fields Z
used in (6.6.26)’ span all vector fields, and we conclude that

(6.6.27) Y seorF(e, )| dz d/s

0<s<1 [O(|<2

! T -
<C > 12 F (s, §)| dsdi/ (s + 7).
0<8<1|I|52
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We may assume in the proof of (6.6.26)’ with ¢ = 1 that |Z] < 1 since u(1, %) = 0 otherwise.
When |§] > 3 we use the estimate

1
\F(L—|§,3 - )] < / (1F(s, %= )|+ |F!(s, & — §)]) ds,
0

and 1/|7] < 2 then. When |§] < 1 we use instead the similar estimate

1
FO-17,8-DI< [ @IFGE-Dl+IFsE-D)ds
3
which avoids small values of s, and then we apply the estimate

/ 9] g/l < L / /(@) dF, g€ CLRY),

which follows by introducing polar coordinates and observing that integration by parts
gives ,

/ |G(r)|rdr < %/ |G'(r)|r?dr, G € C3(R).
0 0

Summing up, we have proved that

amlu(1,7)| < 2 / / (IF (s, DI+ |F'(s,5)| + s|Fly(s, §)]) ds dg,
0<s<1

which gives (6.6.26)" when combined with (6.6.27).
ii) Assume now that supp F' C {(s, 9); |9] > 1s}. By Sobolev’s lemma (see (6.4.13)")

M(t,7) = sup |F(t,rw)| < C Z"/ (27 F)(t, rw)]| dw,
fwi=1 jwl=1

11<2

where the summation only contains products of the vector fields (6.2.8) corresponding to
Euclidean rotations. Hence

"
(6.6.28) // M(S,Q)QdeQSC// Y 17" (s, )| ds d/(s + |F]).
0<s5<1,0>0 0

Replacing f by M will increase the retarded potential, so |u| < U where OU = M and U
has Cauchy data zero. It is clear that U is rotationally symmetric in the space variables,
and expressing [0 in polar coordinates we have

(02 — 9%yrU(t,r) = rM(t,7),

which implies that
(2 < v, <4 [ M(s, e)eds de.
0<s<1,p>0

Combined with (6.6.28) this proves (6.6.26) when |&| > 1.
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N
We shall now give a different proof when |Z| < . If (1 — ||, Z — ) € supp F we have
3|€ — 9] > 1~ |¢], hence 4|7] > 1 —3|Z| > 1 and

(6.6.29) 4rlu(l, £)| < 16 |F(1-|9],% — §)| d7.
1/16<|7l<1

We shall now use that we control the radial derivative ZyF of F'. To do so we write
o(r,9) = 7(1 — |§],& — §) where 1/16 < |§] < 1 and 1 < 7 < 16/15. The Jacobian
(1 — (&, 9)/|¥]) is bounded below by 3/4, and we have

[ireamiars [ (181F (p(r, )] + [0 (o(r,)/r1) dr 3.

1/16<|7l<1,1<7<16/15

Since OF (¢(7,%))/01 = (Zo F)((7,§))/T, we obtain by changing to the integration vari-
ables ¢(7, §) and combining the estimate with (6.6.29) that

lu(1,3)| < C / / (1F(s, )| + | ZeF(s,9)) dsdf, |&| < 1,
0<s<1,|y'|<2

which completes the proof of (6.6.26)" in this case.

Choose 3 € C5°(R?®) so that |§] < 1 in the support of ¥ and |§] > 1/3 in the support
of 1 —¢. Then ¥(y/s)F(s,¥) and (1— (§/s))F(s,§) satisfy the hypothesis in i) and ii)
respectively. Since the operators Z in (6.6.26)" applied to 1(¥/s) give a function which is
homogeneous of degree 0, hence bounded, the estimate (6.6.26)' follows from the two cases
proved above.

If supp F' C {(s,%); s + |§] > 1}, then the same inclusion is true for supp u, so (6.6.26)
is valid in that case. On the other hand, if s + |§] < 2 in supp F(s, §) we obtain (6.6.26)
by applying the case already proved to a translation such as F'(s,y1 + 3,y2,y3). (The
translation introduces the constant vector fields.) Combining the two cases by a partition
of unity yields (6.6.26) in full generality.

Proof of Theorem 6.6.2. Let k be an integer > 5, and assume ‘that we already have a
C* solution of (6.6.1), (6.6.2) for 0 < zq < T such that for such 2y and small ¢

(6.6.30) 1+l Y 12%u(@)] < G,
<k
(6.6.31) S 12%(e0, )l < Co(1 +20)% Y 1127u(0, )]l
[T|<k+4 [I|<k+4

Let Co be so large that (6.6.30) holds with Cy replaced by Co/3 if u is replaced by the
solution eu® of the wave equation with Cauchy data (6.6.2). We shall then prove for ¢
smaller than some number depending on C; and C, that

1) (6.6.30) is valid with Cy replaced by Cy/2;

ii) (6.6.31) is a consequence of (6.6.30) for suitable Cj.
By the local existence theorem (Theorem 6.4.11) it will follow that a solution exists for all
zg > 0 if ¢ is small enough.

i) Since the Cauchy data of Z7u — Z7eu® are O(?), it suffices by Lemma 6.6.8 to prove
that for small ¢

Z Z //0<t<T 1270z u(t, 7)| ditdE/(1+ t) < Ce®.

HI<k|T1<2
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We can write 27027 as a sum of terms of the form ZE¥Ou with |K| < |J|+ |I| < &k + 2,
so it suffices to prove that

(6.6.32) Z // |ZEOu(t, )| dtdZ/(1 +t) < Ce>.

|K|<k+2 0<t<T

To do so we write (6.6.1) in the form

(6.6.33) Ou=— Y v¥(u,u)0;0cu+ fu,u').

§,k=0

When we apply Z¥ to (6.6.33) we obtain a number of terms containing products of deriva-
tives of u of order < k + 4, and two factors can never be of order > k& since each such
factor requires k — 1 factors Z acting on u” or k factors Z acting on (u, u'), thus altogether
k—1+%k > k+ 2 factors Z. Apart from the quadratic terms we can factor so that we
must have three factors Zfu. We estimate the two factors with highest |I| using the L2
estimate (6.6.31) and the others by means of (6.6.30). This shows that the L! norm can
be estimated by Ce3(1 + ¢)2¢2¢~1. For the quadratic terms

ZK Z gjklajaku 81u, ZK Z fjkajuaku

gkl gk

we first use Lemma 6.6.5 to obtain a sum of terms of this form with the factors Z next to
u. We can then apply Lemma 6.6.3 or Lemma 6.6.4 together with the L? estimate (6.6.31).
It follows that

/ 175 0ut, B dF < Oe*(1 40,

|K|<k+2
and this implies (6.6.32) when 2C5¢ < 1.

ii) To prove (6.6.31), assuming (6.6.30) known, we shall apply the energy estimates in
Proposition 6.6.6 to the equations obtained when (6.6.1) is multiplied by Z for |I| < k+3,

4
(6.6.34) Z ¢ *(u, w7 u = Zf}, 5
J,k=0 i=
where
fI - [D Zl]u’

f} is asum of terms of the form G((ZJu)’ (Z%w)") with |J]+|K| < |I|, |K| < |I], and
a trilinear form G satlsfylng the null condition (cf. Lemma 6.6.5);

[} =Y crik (27 % (u, u')) 2K 0;8ru with the same conditions on J and K, and ¢/*
vanishing of second order at 0; R

Vi is a sum of terms of the form F((ZBuw),(Z7u)") with |J| + | K| < |I| and a bilinear
form H satisfying the null condition (cf. Lemma 6.6.5);

[t = Z'R(u, ') where R vanishes of third order at 0.
We shall consider ¢7%(u,u’) as a function of x when we apply Proposition 6.6.6. It follows
from (6.6.30) and Lemma 6.6.7 that the hypotheses of Proposition 6.6 are then fulfilled
with é equal to a constant times €. Let

Fr(u;z0) = Z E(Z u; x0)
[|<k+3
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with E defined as in Proposition 6.6.6; by (6.6.21) this is equivalent to the square of
left-hand side of (6.6.31). We shall prove that

&
(6:635) [ (1420 +18)4f (20, HIPdE < C?Ey(w;20), 1| <k+3,0<j <4

To estimate f{ we note that no term can contain more than one factor Z7u with |J| > k,
for such a factor is only obtained when at least k£ — 1 operators Z act on 8;9xu or at least
k of them act on (u, ), and this would add up to at least 2k — 1 > k + 3 operators. (This
1s where we need that k > 5.) We factor terms vanishing of second or third order using
Taylor’s formula. In each term we can estimate all factors except one using (6.6.30). For
the third order terms fZ and f7 this gives a factor < Ce?(1 + 2o + |:c|) 2 in addition to a
factor with norm square O(Ej(u; zo)). For the second order terms f} and f§ we obtain in
addition to the factor ¢/(1+ |z]) from (6.6.30) a factor (1 + |z|)~! by using Lemmas 6.6.3
and 6.6.4 as in part i) of the proof. To estimate f?, finally, we write

O, ZI Z crrZ’0u
[71<11]

and replace Ou by the expression in (6.6.33). The terms then obtained are similar to

those already discussed in f] with j # 0 but they contain one derivative less, which proves
(6.6.35).
From (6.6.35) and Proposition 6.6.6 it follows that

OEx(u; 0)/0z0 < Ce(1 + z0) "L Ex(u; z0),

hence that
Er(u;z0) < (1 4+ xQ)CEEk(u;O).

This proves that (6.6.31) follows from (6.6.30) with constants independent of z; which
completes the proof.

6.7. Global existence theorems by the conformal method. Suppose that in
some open subset of Minkowski space we have a C? solution of a differential equation

(6.7.1) Ou+ f(u,v,v")=0

where f vanishes of second order at the origin. This means that u = 0 is a solution
where the linearization is the wave operator in Minkowski space. In Section A.4 of the
appendix we have defined a conformal isomorphism ¥ between a bounded part of the
Einstein universe R x S™ and the Minkowski space R!*" with the Lorentz metric. (See
(A.4.2) and Theorem A.4.1.) On the inverse image in the Einstein universe of the domain
of u we define a function # by

(T, X) = QT, X) = u(¥(T, X)),
and obtain using (A.4.3) and (A.3.7), with n replaced by n +1 and e¥ = cos T + Xy = Q,
(@ = S(n — 1)/4n)ii = Q=3 (Qu) o ¥

where O is the d’Alembertian on R x S™ and S is the scalar curvature there, that is,
S = —n(n —1) by (A.2.10). Hence (6.7. 1) is equivalent to

(6.7.2) @+ (n— 1)2/4)ii + Q=" f(u, ', u") 0 ¥ = 0.
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Here we should interpret u o ¥ as Q"5 % and express the differentiations using (A.4.6),
(A.4.6)". In view of (A.4.7) this means that every component of u’ (resp. u") is the product
of Q%5 and a sum with analytic coefficients of derivatives of & of order < 1 (resp. < 2).
By Taylor’s formula f can be written as a quadratic form in (u,w’,u") with coefficients
which are C* functions of (u, u’,u"). Any product 8%udPu, 0 < |a| < 2,0 < |B] < 2, gives
the product of 27~! and a quadratic form with analytic coefficients in the derivatives of
4. Ifn—1—(n+3)/2> 0, that is, n > 5, and n is odd, it follows that (6.7.1) is equivalent
to

(6.7.3) @+ (n-102/0a+ f(T, X, 4@, 4") = 0,'

where f is an analytic function of T', X and U = (&, @', @) for small U, vanishing of second
order when U = 0.

For even n > 4 we encounter half integer powers of €2, and it is easy to see that we get a
C® (analytic) function f precisely when f is odd. This is of course far less useful than the
case of odd n, so we shall now look in more detail at what happens when n = 3. If f vanishes
of third order at (0,0, 0), then f has no singularity for Q@ = 0if 3(n—1)/2 > (n+3)/2, that

is, n > 3. It is therefore sufficient to examine for which quadratic forms f in (u,u’, u"),

f= Y fapdfudl u

lal,1B1<2

that the quadratic form f in (@, d’, @) defined by

F=07° 3 fapdie(Q) 0 ,(Q)

lal,1B1<2

has regular coefficients also when © = 0. Expressing the derivatives by (A.4.6), (A.4.6)
and using (A.4.7) we see at once that G(4, %, 4") = Q f has analytic coefficients which as
functions of T are trigonometric polynomials of degree < 4. Now an analytic function ¢
on R x S3 which is a trigonometrical polynomial in 7' can be written ¢ = Qd for some d of
the same class if (and only if) c= 0 on X = {(T, X);cos T+ X0 = 0,0 < T' < 7}. In fact,
a trigonometrical polynomial is the sum of a polynomial in cosT and such a polynomial
multiplied by sin T, so polynomial division gives

c=Qd+cisinT 4+ ¢y
where ¢; and ¢y are analytic functions on S3. If c = 0 on ¥ then

e1(X)4(X, X) = e2(X)%, X = (X0, X) € S™.

This remains true for small complex values of X when Xy = /1 — (X, X) which gives a

contradiction when X is close to a zero # 0 of (X, X) unless ¢; and c, vanish identically
on $3, for (X, X) vanishes simply on a complex hypersurface whereas ¢;(X)? and ¢3(X)?
must have zeros of even order or vanish identically.

Thus it is sufficient to determine the conditions for all coefficients of G to vanish at X.
It follows from (A.4.7) that the restriction of G(%) to ¥ depends only on the restriction
of % to X.. In particular, we can check this using functions @ satisfying the homogeneous
conformal d’Alembertian and having Cauchy data vanishing near the pole at infinity, that
is, functions % corresponding to solutions u of the wave equation in R* with Cauchy
data in C§°(R3). It follows from (6.2.15) that apart from a change of variables and a
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fixed factor the restriction of & to X is then the Friedlander radiation field F'. Now the
radiation field F'(w, ¢) can have an arbitrary Taylor expansion of order 2 at a given point,
for if F(w,p) is a radiation field, then so is F(w, g + go) for constant go, 8F(w, 0)/0¢
and w;0F(w, 0)/0p for any j. Starting from a radial radiation field this allows us to find
another with given Taylor expansion at a chosen point. To check whether G(&, %', 4”)
vanishes on 3 it is thus sufficient to use such functions. That G vanishes on ¥ means that
flu, ', u") = o(Q?) = o(t=?) if £ = (t + o)w and t — co. By Theorem 6.2.1 with n = 3

aﬁxu(t’ z) = t_lwaﬂﬂ(w’ o) + O(t_z)

where @ = ¢/ = (—1,w), and Fj(w, 0) = &/ F(w, 0)/8¢’ where F is the Friedlander radiation
field of . Thus we arrive at the condition

(674) Z faﬂ‘:’a+ﬁﬂa|(wy Q)Flﬁl(w) Q) =0.
laf,|81£2

Since Fjq|(w, @) can be given arbitrary values at a given point and the rays generated by
the vectors w cover the boundary of the light cone, this means that

(6.7.4) D fapt®tP =0, i - -E-E=0 0<j<k<2
' || =j,161=k

(We have assumed here that f,3 = fsa Which is no restriction. When j = 0 this means
that v can only occur in a term cOwu, and u is then easily removed from the equation
(6.7.1) if we divide by (1 + cu) which we can do for small u.) We sum up the condition
encountered in the following definition:

Definition 6.7.1. When n = 3 we say that f(u,u’, u"”) satisfies the null condition if f
vanishes of second order at (0,0,0) and the quadratic part f, satisfies the condition

(675) f2(a0,a1€1a2£ ®‘$) = 0) if a; € RJ Eg - 5% _fg - Eg =0.

Here £ ® ¢ = %63((([3,5)2). The condition (6.7.5) is of course just another way of
writing (6.7.4), (6.7.4)". It is an extension of the null condition in Definition 6.6.1, due to
Christodoulou [1] and Klainerman [4] who only consider quasilinear equations and required
u to be absent in the quadratic terms. As already pointed out, the latter extension is quite
trivial though. The following result was proved in Christodoulou [1] in the quasilinear
case using the same method as here; an alternative proof using L? estimates in Minkowski
space due to Klainerman [4] was presented in Section 6.6.

Theorem 6.7.2. The differential equation (6.7.1) in R!*™ has a global C*° solution
for arbitrary small Cauchydata in S(R™) if f € C* vanishes of second order at (0,0, 0)
and n is odd and > 3 or n = 3 and f satisfies the null condition. For the solution we have

lu(t, 2)] < C((1+ (Je] - )*)(1 + (2] +1)*)

1—n
2

Proof. The Cauchy problem is equivalent to the Cauchy problem for the equation (6.7.2)
where the non-linar term is analytic, depending on (T, X) also, and the Cauchy data are
small in C°(S™). The existence of a solution for 0 < T' < 7 follows from Theorem 6.4.11
and Remarks 3 and 4 after its proof.

Theorem 6.4.11 yields a much more precise existence theorem. Let the Cauchy data be

(6.7.6) u=ug, Opu =uy; whent=0.



144 V1. NONLINEAR PERTURBATIONS OF THE WAVE EQUATION
For the equation (6.7.3) we then have the Cauchy data

(6.7.6)' =1, Optt = ﬁl when T = 0,

where

=1

_n
2

fio(X) = Q(0, X) T ug(¥(0, X)), @ (X) = 10(0,X) 77 u(¥(0, X)), X € S™.

Recall that derivatives in S™ for T' = 0 can be expressed as linear combinations of products
of the operators

Zik = x;0/0xy — 21 0/0xj; j,k=1,...,n;
Ly = 3(1 - |2|*)8/0zi + 21 (x,0/0x).
(The operators Ly occur in the right-hand side of (A.4.10).) We have
00, X)"F =25 (14217,

which is annihilated by all Z;; whereas application of Ly to this factor is equivalent to
“multiplication by (n — 1)z /2 since

Le(1+ [2]?) = (1 = [e’)zr + 2x2lel’ = (1 + |z]*)zs.

A product of k operators Z;; and L; is of the form

> aa(2)0°,

1<]al <k

where ao is a polynomial of degree < k + |a|. This follows by induction over . If we now
recall that the spherical surface measure is 27(1 + |2|?)~" dz by (A.4.11), which almost

compensates for the factor (0, X)'~", we find that if uo € H%‘;j_l)(R") and uy € HE‘;?(R")

where s is a positive integer, then

(677) ||’L~l,0||:(23+1) <C Z / ‘BO‘UO(CE)P(:{ + |x|2)s+|a| dez, .
lel<s+1 N
(6.7.8) lasllfy <C / 101 (2)|P(1 + ||y ol dar,
la|<s

In the quasilinear case it follows from Theorem 6.4.11 and Remark 3 after its proof that
(6.7.1) has a global solution satisfying (6.7.6) provided that the right-hand sides of (6.7.7)
and (6.7.8) are well defined and small enough when s = (n + 3)/2. This is a result of
Christodoulou [1]. For the fully non-linear case we obtain the same result with s = (n+5)/2
by Remark 4 there. Note that the finiteness of these norms requires that

luj(2)| < C(L+ |2))~*9="/2, j=0,1, z €R"





