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Introduction. We will consider the Cauchy problem in R+ ×R3

(0.1) u = ∂2
t u−

3∑

i=1

∂2
xi

u = G(u, u′, u′′), u = εu0, ∂tu = εu1 when t = 0,

where u0, u1 ∈ C∞0 and G is a smooth function of u, {u′j}3j=0 and {u′′jk}3j,k=0

vanishing to second order at the origin. In case G(u, u′, u′′) = G(u′, u′′) it was
proved in John-Klainerman [7] that the equation (0.1) will have a C∞ solution u
for 0 ≤ t < Tε, where Tε satisfies

(0.2) log Tε ≥ c/ε,

when ε is sufficiently small. ”Without loss of generality” they assumed in addition
that G(u′, u′′) was linear in u′′. It was mentioned without proof that (0.2) should
also hold if G(u, u′, u′′) =

∑3
0 ∂jHj(u, u′). Here we shall show that (0.2) holds in

the case when G(u, u′, u′′) also depends on u and satisfies G′′uu(0, 0, 0) = 0. We
shall also show that in general, when G′′uu(0, 0, 0) 6= 0, then

(0.3) Tε ≥ c/ε2.

Actually, in case G(u, u′, u′′) = u2 +H(u′), where H is a positive definite quadratic
form, nothing better holds. (See John [5] and Lindblad [11].)

In section 1 we state some well known results of Hörmander and Klainerman.
The new results here that will enable us to get control of the L2 and L∞ norms of
u are provided by Proposition 1.8 and Proposition 1.9. Also Lemma 1.10 will be
useful. In Section 2 we give the theorems on the lifespan. L. Hörmander’s L1−L∞

estimate is so important in this paper that we give a new and simplified proof, due
to L. Hörmander, in an appendix.

1. L2 and L1−L∞ estimates for the wave operator. For (t, x) ∈ R1+3 denote
∂t by ∂0 and ∂xj by ∂j for j = 1, 2, 3. Let

(1.1) Zjk = λjxj∂k − λkxk∂j , 0 ≤ j < k ≤ 3,
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where λ = (1,−1,−1,−1) and x0 = t, which all commute with . Let

(1.2) Z00 =
3∑
0

xj∂j

which satisfies [ , Z00] = 2 . Set Zjk = 0, if j ≥ k > 0. We will write ZI for
a product of |I| of the vector fields (1.1), (1.2) and ∂j , j = 0, 1, 2, 3. Let Z̃I be
defined by ZI = Z̃I , which means that Z̃I differs from ZI only in that Z00

should be replaced by Z00 + 2. We note that [∂i, Zjk] is either 0 or else equal to
±∂l for some l. We will write |u′|2 = |∂u|2 =

∑3
0 |∂ju|2. It follows that

(1.3) |ZI∂ju| ≤ C
∑

|J|≤|I|
|∂ZJu|

Introduce the usual polar coordinates r2 = |x|2 =
∑3

1 |xj |2, ω = x/|x| and ∂r =∑3
1 ωj∂j . Let E be the fundamental solution of . For the solution of v = f ,

with initial data 0, where f ∈ C([0, T )×R3), we extend f to be 0, when t < 0 and
write v = E ∗ f .

The operators {Zjk}3j,k=0 span the tangent space at every point where t 6= |x|.
But when t = |x| they only span the tangent space of the cone t = |x|, which
explains the Lemma 1.1 below. (The 1 in the left-hand side of (1.4) is due to the
fact that ∂j , j = 0, ..., 3, are included in the right5-hand side.) Lemma 1.2 then
gives an inequality for L2 norms which will be used together with (1.4) to estimate
L2 norms of products; see Lemma 1.10. Inequaliy (1.5) shows that (1.4) can be
improved when t + |x| if we also have an estimate for a derivative which is not
tangential to the cone t = |x|. Such an estimate can be obtained from a bound of

u; see Lemma 1.7.

Lemma 1.1. Let u ∈ C1([0, t]×R3). Then

(|t− |x||+ 1)2|∂u|2 ≤ 4
∑

|I|=1

|ZIu|2,(1.4)

(t + |x|)|∂u| ≤ 2
(
2|x||∂tu|+

∑

j,k

|Zjku|),(1.5)

∑

0<j<k

|Zjku| ≤
√

6|x|
t + |x|

∑

j,k

|Zjku|.(1.6)

Proof. (1.4)–(1.6) are implied by the rotationally invariant estimates

(t− |x|)2
3∑

j=0

|∂ju|2 ≤
∑

j,k

|Zjku|2,(1.7)

(t2 + |x|2)
3∑

j=0

|∂ju|2 ≤ 2
(
4|x|2|∂tu|2 +

∑

j,k

|Zjku|2),(1.8)

∑

0<j<k

|Zjku|2 ≤ |x|2
t2 + |x|2

∑

j<k

|Zjku|2.(1.9)
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In fact when proving (1.4) we may assume that |t−|x|| ≥ 1. We note that t2+|x|2 ≥
(t + |x|)2/2 so (1.5) and (1.6) follow from (1.8) and (1.9). When proving these
estimates we may assume that x2 = x3 = 0, t > 0 and x1 > 0. Then

t2|x|2
3∑

j=2

|∂ju|2 = t2
∑

0<j<k

|Zjku|2 = |x|2
3∑

k=2

|Z0ku|2,

which proves (1.9) and shows that

(1.10) (t2 + |x|2)
3∑

j=2

|∂ju|2 =
∑

0<j<k

|Zjku|2 +
3∑

k=2

|Z0ku|2,

With Z00 = t∂t + x1∂1 and Z01 = t∂1 + x1∂t we have

(t2 − |x|2)∂tu = tZ00u− x1Z01u, (t2 − |x|2)∂1u = −x1Z00u + tZ01u.

Hence
(t− |x|)2(|∂tu|2 + |∂1u|2) ≤ (|Z00u|2 + |Z01u|2),

which in view of (1.10) proves (1.7). We also have

(t2 + |x|2)∂tu = tZ00u− x1Z01u + 2|x|2∂tu,

(t2 + |x|2)∂1u = x1Z00u + tZ01u− 2tx1∂tu.

Hence

(t2 + |x|2)2(|∂tu|2 + |∂1u|2)
≤ 2|tZ00u− x1Z01u|2 + 8|x|4|∂tu|2 + 2|x1Z00u + tZ01u|2 + 8t2|x|2|∂tu|2.

It follows that

(t2 + |x|2)(|∂tu|2 + |∂1u|2) ≤ 2
(
4|x|2|∂tu|2 + |Z00u|2 + |Z01u|2

)
,

which in view of (1.10) proves (1.8). ¤
Lemma 1.2. If u ∈ C1([0, t]×R3) and t− |x| ≥ −ρ, in supp u then

(1.11) ||u(t, ·)/(|t− r(·)|+ 1)||2 ≤ C||∂ru(t, ·)||2, where r(x) = |x|.

Proof. We claim that if |x| < R in supp u, then

∫ |u(x)|2
(R− |x|)2 dx ≤ 4

∫
|∂ru|2 dx.

In fact if we introduce polar coordinates this is implied by

∫ R

0

|u|2r2

(R− r)2
dr ≤

∫ R

0

|∂ru|2r2 dr,
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for every ω. If we set v = ru and note that
∫

(v′2 − r2u′2) dr =
∫

u(u + 2ru′) dr =
∫

d(ru2) = 0,

this inequality reduces to Hardy’s inequality
∫ R

0

v2

(R− r)2
dr ≤ 4

∫ R

0

v′2 dr,

proved immediately by a partial integration. ¤
Below are some further standard results. Proposition 1.3 states the most classical

energy estimate, Lemma 1.4 shows the decay of solutions of the wave equations,
and Proposition 1.5 is a Sobolev type of lemma; it gives a bound for the L∞ norm
in terms of L2 norms. Proposition 1.6, on the other hand, gives the L∞ norm of
u in terms ofL1 norms of u. In Lemma 1.7 we also use a bound of u to
get control of the L∞ norm of |∂u|. Bounds of u can the be otained using the
equation for u.

Proposition 1.3. Let u ∈ C2 satisfy

u = f, 0 ≤ t < T

and assume that u = 0 for large x. Then it follows for 0 ≤ t < T that

||u′(t, ·)||2 ≤ (||u′(0, ·)||2 +
∫ t

0

||f(s, ·)||2 ds).

Lemma 1.4. Let w be the solution of

w = 0

with initial data w(0, x) = w0(x), w′t(0, x) = w1(x) ∈ C∞0 such that |x| ≤ R in
supp wj, j = 0, 1. Then

||w(t, ·)||2 ≤ CR||∂w(0, ·)||2,(1.12)

(R + t)||w(t, ·)||∞ ≤ CR2||∂w(0, ·)||∞.(1.13)

Proof. Since |t− |x|| ≤ R in supp w it follows from Lemma 1.2 and Proposition 1.3
that

||w(t, ·)||2 ≤ CR||∂w(t, ·)||2 ≤ CR||∂w(0, ·)||2,
which proves (1.12). The proof of (1.13) is an immediate consequence of Kirchoff’s
formula

w(t, x) = t

∫

|ω|=1

(
w1(x + tω) + 〈w′0(x + tω), ω〉) dS(ω) +

∫

|ω|=1

w0(x + tω) dS(ω),

where dS(ω) is the normalized surface measure on S2. In the support of the inte-
grand we have |x + tω| < R, hence |ω + x/t| < R/t, which means that the measure
is ≤ CR2/(t + R)2. Since |w0| ≤ R sup |w′0|, we get the bound

CR2(t + R)−2(t + R) sup |w′(0, .)|.
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Proposition 1.5. There is a constant C such that

(1 + t + |x|)(1 + ||t| − |x||)1/2|w(t, x)| ≤ C
∑

|I|≤2

||ZIw(t, ·)||2,

for w ∈ C2
0 in [0, t]×Rn, say.

Proof. See Klainerman [8]. ¤
Proposition 1.6. Let g ∈ C2([0, t]×R3) and assume that g(t, x) = 0 for large |x|.
Let v be the solution of

v = g, t ≥ 0,

with initial data 0. Then

(1.15) |v(t, x)|(1 + t + |x|) ≤ C
∑

|I|≤2

∫ t

0

||(ZIg)(s, ·)/(1 + s + r(·))||1 ds,

where r(x) = |x|, and

(1.16) ||v(t, ·)||1 ≤ (1 + t)
∫ t

0

||g(s, ·)||1 ds.

Proof. (1.15) follows from Hörmander [2]. (See also the appendix, Klainerman [8]
and Hörmander [4].) Since |v| = |E ∗ g| ≤ E ∗ |g| we may assume that g ≥ 0 and
hence v ≥ 0. Then

∂2
t

∫
v(t, x) dx =

∫
v(t, x) dx =

∫
g(t, x) dx,

which proves that
∫

v(t, x) dx =
∫ t

0

(t− s) ds

∫
g(s, x) dx. ¤

Lemma 1.7. If u ∈ C2
0 ((0, t]×R3) then

(1.17) (t + |x|)|∂u| ≤ 2
∑

j,k

|Zjku|

+ 4
∫ t

0

(
||r(·) u(s, ·)||∞ +

√
6

∑

j,k,l,m

||(ZjkZlmu)(s, ·)/(s + r(·))||∞
)

ds,

where r(x) = |x|.
Proof. We have

(∂2
t − ∂2

r )(ru) = r u + r−1
∑

0<j<k

Z2
jku.

Regarding this as a two dimensional Cauchy problem and using (1.6) we obtain

|∂t(ru)| ≤
∫ t

0

(
||r(·) u(s, ·)||∞ +

√
6

∑

j,k,l,m

||(ZjkZlmu)(s, ·)/(s + r(·))||∞
)

ds.
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Hence the lemma follows from (1.5).

Proposition 1.3 together with Proposition 1.5 will give us the L2 and L∞ norm
of u′. To get hold of the L2 and L∞ norms of u we have Proposition 1.8 and
Proposition 1.9, which are the main technical inovations of this paper. It turns out
to be important that Proposition 1.8 does not involve any estimates of |∂f | and
that, in Proposition 1.9 we can put all derivatives on one factor. To motivate these
propositions let us give some idea of how they are going to be used. (This will be
explained in more detail in the beginning of section 2.)

u =
∑

aj∂ju
2 +

∑
bjk(∂ju)(∂ku),

with initial data εu0, εu1 into three parts w1, w2 and w3:

w1 =
∑

aj∂ju
2, w2 =

∑
bjk(∂ju)(∂ku), w3 = 0,

where w1 and w2 have initial data 0 and w3 has the same initial data as u. Propo-
sition 1.8 will the give us estimates for w1 and Proposition 1.9 gives estimates for
w2. Finally, w3 can be estimated by Lemma 1.4.

Proposition 1.8. Suppose that f ∈ C4([0, t] × R3) and t − |x| ≥ −ρ in supp f .
Let v be the solution of

v =
3∑
0

aj∂jf, aj ∈ R,

with initial data 0. Then there is a constant C depending on ρ and aj such that

||v(t, ·)||2 ≤ C(
∫ t

0

||f(s, ·)||2 ds + ||f(0, ·)||2),(1.18)

(1 + t)||v(t, ·)||∞ ≤ C

∫ t

0

||f(s, ·)||∞(1 + s) ds + C
∑

|I|≤4

∫ t

0

||ZIf(s, ·)||1 ds

(1 + s)2
.

(1.19)

Proof. Let u be the solution of
u = f,

with initial data 0 and let g be the solution of

g = 0,

with initial data g(0, x) = 0, ∂tg(0, x) = f(0, x). Then

v =
3∑
0

aj∂ju− a0g.

Hence
||v(t, ·)||2 ≤ |a|(||∂u(t, ·)||2 + ||g(t, ·)||2).
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Since |t−|x|| is bounded in the support of g it follows from Lemma 1.2 and Propo-
sition 1.3 that

||g(t, ·)||2 ≤ C||∂g(t, ·)||2 ≤ C||f(0, ·)||2.
Again by Proposition 1.3 we have

||∂u(t, ·)||2 ≤
∫ t

0

||f(s, ·)||2 ds,

which proves (1.18). By Proposition 1.6 we have

(1 + t)||v(t, ·)||∞ ≤ C
∑

|I|≤2

3∑

j=0

∫ t

0

||ZI∂jf(s, ·)||1 ds

1 + s
,

which proves (1.19) if f ∈ C∞0 ([0, 2)×R3), say. On the other hand if f ∈ C∞0 ((1, t]×
R3) then v =

∑3
0 aj∂ju. Note that ZIu = ZIE ∗ f = E ∗ (Z̃If), where Z̃I differs

from ZI only in that Z00 should be replaced by Z00 +2. Then if we use Proposition
1.6 to estimate ||ZIu(t, ·)||∞ it follows from Lemma 1.7 that

(t + |x|)|∂u| ≤ C

t + 1

∑

|I|≤3

∫ t

0

||ZIf(s, ·)||1 ds

1 + s

+ C

∫ t

0

||r(·)f(s, ·)||∞ ds + C

∫ t

0

( ∑

|I|≤4

∫ s

0

||ZIf(v, ·)||1 dv

1 + v

) ds

(1 + s)2
.

If we note that r(x) ≤ C(1+ t) in supp f and change the order of integration in the
last integral (1.19) follows. In general we obtain (1.19) by writing

f(t, x) = χ(t)f(t, x) + (1− χ(t))f(t, x),

where χ ∈ C∞0 is equal to 1 when 0 ≤ t < 1 and t < 2 in supp χ. ¤
Proposition 1.9. Assume that uj ∈ C2([0, t]×R3) and let v be the solution of

v = |u1u2|,
with initial data 0. Then
(1.20)

(1+t)2||v(t, ·)||2∞ ≤ C

∫ t

0

( ∑

|I|≤2

||ZIu1(s, ·)||2
)2 ds

1 + s

∫ t

0

( ∑

|I|≤2

||ZIu2(s, ·)||2
)2 ds

1 + s

and

(1.21) ||v(t, ·)||22 ≤ C

∫ t

0

( ∑

|I|≤2

||ZIu1(s, ·)||2
)2 ds√

1 + s

∫ t

0

||u2(s, ·)||22
ds√
1 + s

.

proof. By Cauchy-Schwarz’ inequality and the positivity of the fundamental solu-
tion ,E, we have v2 = (E ∗ |u1u2|) ≤ (E ∗ u2

1)(E ∗ u2
2) so (1.20) follows from (1.15)

in Proposition 1.6. In the same way with

v1(t, x) = u1(t, x)(1 + t2 + |x|2)1/8 and v2(t, x) = u2(t, x)/(1 + t2 + |x|2)1/8,
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we obtain
v2 =

(
E ∗ |v1v2|

)2 ≤ (E ∗ v2
1)(E ∗ v2

2).

Hence
||v(t, ·)||22 ≤ ||E ∗ v2

1(t, ·)||∞||E ∗ v2
2(t, ·)||1,

and thus by (1.15) and (1.16) of Proposition 1.6 we have

||v(t, ·)||22 ≤ C

∫ t

0

( ∑

|I|≤2

||ZIv2
1(s, ·)/(1 + s + r(·))||1

)
ds

∫ t

0

||v2(s, ·)||22 ds.

Since
|ZI(1 + t2 + |x|2)1/8| ≤ CI(1 + t2 + |x|2)1/8,

this proves (1.21). ¤

Lemma 1.10. Suppose that vj ∈ C∞, j = 1, 2, with t− |x| ≥ −ρ in the supports.
Then

||(∂jv1)v2(t, ·)||2 ≤ Cρ

∑

|I|=1

||ZIv1(t, ·)||∞||∂v2(t, ·)||2.

Proof. By Lemma 1.1 and Lemma 1.2 we have with r(x) = |x|

||(∂jv1)v2(t, ·)||2 ≤ C
∑

|I|≤1

|||ZIv1(t, ·)| v2(t, ·)
|t− r(·)|+ 1

||2 ≤ C
∑

|I|≤1

||ZIv1(t, ·)||∞||∂v2(t, ·)||2. ¤

Proposition 1.11. Let u ∈ C2 satisfy

u +
3∑

j,k=0

γjk(t, x)∂j∂ku = f, 0 ≤ t ≤ T,

and assume that u = 0 for large x. If

|γ| =
∑

|γjk| ≤ 1
2
, 0 ≤ t ≤ T,

it follows for 0 ≤ t ≤ T that

||u′(t, ·)||2 ≤ 2(||u′(0, ·)||2 +
∫ t

0

||f(s, ·)||2 ds) exp
( ∫ t

0

2|γ′(s)| ds
)
,

where
|γ′(t)| = sup |∂iγ

jk(t, ·)|.

Proof. See Klainerman [10]. ¤
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2. The lifespan estimates. We will start by proving the estimate (0.2) for the
lifespan of the solution of

u = G(u, u′) =
∑

aj∂ju
2+

∑
bjk(∂ju)(∂ku), u = εu0, ∂tu = εu1 when t = 0,

in Theorem 2.1. This will be done with a continuity argument. We will assume
that we have bounds

(2.1) ||∂ZIu(t, ·)||2 ≤ M1ε, ||ZIu(t, ·)||2 ≤ M2ε
√

t + 1, for |I| ≤ k,

and

(2.2) (1 + t)||∂ZIu(t, ·)||∞ ≤ N1ε, (1 + t)||ZIu(t, ·)||∞ ≤ N2ε, for |I| ≤ k − 4,

where k is an integer such that 2(k − 5) ≥ k. Then we use the differentiated
equations ZIu = Z̃IG(u, u′) to obtain bounds for the the quantities in (2.1) and
(2.2) in terms of integrals of these quantities for smaller values of t, which will be
used to show that the estimates (2.1) and (2.2) for smaller values of t implies the
same estimates diveded by 2 if ε log (t + 1) is sufficiently small. It follows from the
beginning of section 1 that we can write
(2.3)

ZIu = Z̃IG =
∑

2|I1|, |I2|≤|I|
cjI1I2∂j(ZI1uZI2u)+

∑

2|I1|, |I2|≤|I|
bijI1I2(∂iZ

I1u)(∂jZ
I2u).

To get hold of ||∂ZIu(t, ·)||2, for |I| ≤ k, we shall use the energy integral method,
Proposition 1.3. This involves estimates of ||Z̃IG(u, u′)(t, ·)||2. which by Lemma
1.10 can be estimated by ||∂ZI1u(t, ·)||∞ and ||ZI1u(t, ·)||∞for |I1| ≤ [k/2] + 1
multiplied by ||∂ZI2u(t, ·)||2 for |I2| ≤ k, (for ∂j acts on at least one factor in every
term in Z̃IG). To get hold of ||ZIu(t, ·)||2, for |I| ≤ k, we first note that E ∗ (Z̃IG)
only differs from ZIu by the solution of v = 0 with the same initial data as
ZIu, and for this Lemma 1.4 gives an estimate. To estimate E ∗ (Z̃IG) we apply
Proposition 1.8 to the first sum in (2.3) and Proposition 1.9 to the second. By
the same propositions we get an estimate for ||ZIu(t, ·)||∞, for |I| ≤ k − 4 and the
estimate for ||∂ZIu(t, ·)||∞, for |I| ≤ k − 4, follows from Proposition 1.5.

In Theorem 2.2 we shall show the shorter lifespan estimate, (0.3), when u2 is
present in G. In Theorem 2.3 we shall generalize these results to the case when
G(u, u′, u′′) is any smooth function vanishing to second order at the origin. The
principle will be the same (see the discussion before Theorem 2.3).

Theorem 2.1. Let u0, u1 ∈ C∞0 . Then there exist constants δ and ε0 such that for
ε < ε0

(2.4) u =
∑

aj∂ju
2 +

∑
bjk(∂ju)(∂ku)

has a C∞ solution with initial data εu0, εu1 for 0 ≤ t < Tε = exp(δ/ε).

Proof. Let k be an integer such that 2(k− 5) ≥ k. From the local existence theory
(see e.g. John [6] or Klainerman [10]) we know that it suffices to prove that if a
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solution exists for 0 ≤ t < T there are bounds

M1(t) =
∑

|I|≤k

||∂ZIu(t, ·)||2 ≤ M1ε,(2.5)

M2(t) =
∑

|I|≤k

||ZIu(t, ·)||2 ≤ M2ε
√

t + 1,(2.6)

N1(t) =
∑

|I|≤k−2

||∂ZIu(t, ·)||∞ ≤ N1ε/(t + 1),(2.7)

N2(t) =
∑

|I|≤k−4

||ZIu(t, ·)||∞ ≤ N2ε/(t + 1),(2.8)

for 0 ≤ t < T , which are independent of T if ε log T ≤ δ. (In fact then the solution
can be continued for some further time.) Again by the local existence theory this is
clear when T is small if the constants are large enough. We will use (2.4) to prove
that these bounds will imply the same bounds divided by 2 for t ≤ T ≤ exp (δ/ε)
if ε and δ are sufficiently small and the constants M1, M2, N1, N2 are sufficiently
large. Hence by continuity we conclude that (2.5)–(2.8) hold.

From the discussion in the beginning of section 1 we know that ZI∂j may be
written as a linear combination of ∂kZJ for |J | ≤ |I|. Hence if we apply ZI to both
sides of (2.4) we obtain
(2.9)

ZIu =
∑

2|I1|, |I2|≤|I|
cjI1I2∂j(ZI1uZI2u) +

∑

2|I1|, |I2|≤|I|
bijI1I2(∂iZ

I1u)(∂jZ
I2u),

where the sums are also over all i, j = 0, 1, 2, 3. If |I| ≤ k then |I2| ≤ k and
|I1| ≤ k/2 < k − 4 by assumption. Hence

||(∂iZ
I1u)(∂jZ

I2u)||2 ≤ N1(t)M1(t)

It follows from Lemma 1.10 that

||∂j

(
(ZI1u)(ZI2u)

)
(t, ·)||2 ≤ ||(ZI1u∂jZ

I2u)(t, ·)||2 + ||((∂jZ
I1u)(ZI2u)

)
(t, ·)||2

≤ ||ZI1u(t, ·)||∞||∂jZ
I2u(t, ·)||2 + C

∑

|J|≤1

||ZJZI1u(t, ·)||∞||∂ZI2u(t, ·)||2

≤ C ′N2(t)M1(t),

since 1 + |I1| ≤ 1 + k/2 ≤ k − 4, by assumption. Hence by Proposition 1.3

||∂ZIu(t, ·)||2 ≤ ||∂ZIu(0, ·)||2 + C

∫ t

0

(N1(s) + N2(s))M1(s) ds.

It follows that

(2.10) M1(t) ≤ C

∫ t

0

(N1(s) + N2(s))M1(s) ds + M1(0).

Since by (1.3) |ZI∂jv| ≤ C
∑
|J|≤|I| |∂ZJv| it follows from Proposition 1.5 that

(1 + t)|∂jZ
Iu| ≤ C

∑

|J|≤2+|I|
||∂ZJu(t, ·)||2
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Hence

(2.11) (1 + t)N1(t) ≤ CM1(t).

It we convolute (2.9) with the fundamental solution E, we obtain

ZIu =
∑

2|I1|, |I2|≤|I|
cjI1I2E ∗ (

∂j(ZI1uZI2u)
)
+

∑

2|I1|, |I2|≤|I|
bijI1I2E ∗ (

(∂iZ
I1u)(∂jZ

I2u)
)
+wI ,

where wI is the solution of wI = 0 with the same initial data as ZIu. Hence by
Proposition 1.8, Proposition 1.9 and Lemma 1.4 we have

||ZIu(t, ·)||2 ≤ C ′
∑

2|I1|, |I2|≤|I|

( ∫ t

0

||ZI1uZI2u(s, ·)||2 ds + ||ZI1uZI2u(0, ·)||2
)

+C ′
∑

2|I1|, |I2|≤|I|

( ∫ t

0

( ∑

|J|≤2

||ZJ∂jZ
I1u(s, ·)||2

)2 ds√
1 + s

∫ t

0

||∂jZ
I2u(s, ·)||22

ds√
1 + s

)1/2

+ C ′||∂ZIu(0, ·)||2.

It follows that
(2.12)

M2(t) ≤ C

( ∫ t

0

N2(s)M2(s) ds + N2(0)M2(0) +
∫ t

0

M1(s)2
ds√
1 + s

+ M1(0)
)

.

Finally by the same propositions

||ZIu(t, ·)||∞(1 + t) ≤ C ′
∑

2|I1|, |I2|≤|I|

( ∫ t

0

||ZI1uZI2u(s, ·)||∞(1 + s) ds

+
∑

|J|≤4

∫ t

0

||ZJ (ZI1uZI2u)(s, ·)||1 ds

(1 + s)2

+
( ∫ t

0

( ∑

|J|≤2

||ZJ∂ZI1u(s, ·)||2
)2 ds

1 + s

∫ t

0

( ∑

|J|≤2

||ZJ∂ZI2u(s, ·)||2
)2 ds

1 + s

)1/2
)

+ C ′||∂ZIu(0, ·)||∞.

If we take |I| ≤ k − 4 it follows that
(2.13)

N2(t)(1+t) ≤ C

( ∫ t

0

N2(s)2(1 + s) ds+
∫ t

0

M2(s)2
ds

(1 + s)2
+

∫ t

0

M1(s)2
ds

1 + s
+N1(0)

)
.

If we use (2.5)–(2.8) it follows from (2.10), (2.12) and (2.13) that

(2.14)

M1(t) ≤ C(N1 + N2)M1ε
2 log (t + 1) + M1(0),

M2(t) ≤ C
(
N2M2ε

22
√

1 + t + N2M2ε
2 + M2

1 ε22
√

1 + t + M1(0)
)
,

(1 + t)N2(t) ≤ C
(
(N2

2 + M2
2 + M2

1 )ε2 log (t + 1) + N1(0)
)
,
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and for N1(t) we have the estimate (2.11). Choose M1, M2 and N2 such that

(2.15) M1ε ≥ 4M1(0), M2ε = CM1ε ≥ 4CM1(0), N2ε ≥ 4CN1(0),

and set N1 = CM1. Then for ε log (t + 1) ≤ δ we have

(2.16)

M1(t) ≤
(
Cδ(N1 + N2) + 1/4

)
M1ε,

M2(t) ≤
(
Cε3N2 + 2CεM2

1 /M2 + 1/4
)
M2ε

√
1 + t,

(1 + t)N2(t) ≤
(
C(N2 + M2

2 /N2 + M2
1 /N2)δ + 1/4

)
N2ε.

Hence the assertion follows if δ and ε are chosen sufficiently small. ¤
Theorem 2.2. Let u0, u1 ∈ C∞0 . Then there exist constants µ and ε0 such that
for ε < ε0

(2.17) u =
∑

|α|,|β|≤1

cαβ(∂αu)(∂βu)

with initial data εu0, εu1 has a C∞ solution for 0 ≤ t < Tε = µ2/ε2.

Proof. Let 2(k − 3) ≥ k and let M1(t),M2(t)N1(t) be defined as in the proof of
Theorem 2.1 except that we sum now over |I| ≤ k − 2 also in N2(t). We are going
to show that there exist ε0 and µ such that if ε < ε0 and ε

√
t + 1 ≤ µ then

(2.18) Mi(t) ≤ Miε, (1 + t)Ni(t) ≤ Niε. i = 1, 2.

We have

(2.19) ZIu =
∑

|α|,|β|≤1, 2|I1|, |I2|≤|I|
cαβI1I2(∂

αZI1u)(∂βZI2u).

Hence it follows from Proposition 1.3 that

(2.20) M1(t) ≤ C

∫ t

0

(N1(s) + N2(s))(M1(s) + M2(s)) ds + M1(0)

It follows from (2.19) that

(2.21) ZIu =
∑

|α|,|β|≤1, 2|I1|, |I2|≤|I|
cαβI1I2E ∗ (

(∂αZI1u)(∂βZI2u)
)

+ wI ,

where wI is the solution of wI with the same initial data as ZIu. It follows from
Proposition 1.9 and Lemma 1.4 that

(2.22) M2(t) ≤ C
( ∫ t

0

(M1(s) + M2(s))2
ds√
1 + s

+ M1(0)
)
.

We have
(1 + t)Ni(t) ≤ CMi(t), i = 1, 2.
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In fact this follows in the same way as for i = 1 in the proof of Theorem 2.1. If we
use (2.18) in (2.20) and (2.22) we obtain

(2.23)
M1(t) ≤ C(N1 + N2)(M1 + M2)ε2 log (1 + t) + M1(0),

M2(t) ≤ C(M1 + M2)2ε22
√

1 + t + CM1(0).

Let ε log (t + 1) ≤ δ and ε
√

1 + t ≤ µ and choose Mi, i = 1, 2 such that

M1ε ≥ 4M1(0), M2ε = CM1ε ≥ 4CM1(0), Ni = CMi, i = 1, 2.

Then

(2.24)
M1(t) ≤ (C(N1 + N2)(1 + M2/M1)δ + 1/4)M1ε,

M2(t) ≤ (C(M1 + M2)(M1/M2 + 1)2µ + 1/4)M2ε.

Hence the theorem follows if we choose δ and µ sufficiently small. ¤

In Theorem 2.3 we shall generalize the results in Theorem 2.1 and Theorem 2.2
to the case when G(u, u′, u′′) is any smooth function vanishing to second order
at the origin. Below we shall briefly discuss the generalization of the case when
G(u, u′) is a quadratic form without the u2 term to the case when G′′uu(0, 0, 0) = 0.
The principle will be the same but we must take extra care of the terms in Z̃IG,
when |I| = k, that contain ∂αZJu, with |α|+ |J | = 2 + k, as a factor because these
can not be estimated by the quantities in (2.1) and (2.2). We must also estimate
third order terms, but that will be easy because by (2.2) we then have an extra
factor ε/(1+t) which means that in places where we used to have ∂ZJu we at worst
instead have

√
εZJu/

√
1 + t and by (2.1) the L2 norms of these will be smaller than

the L2 norm of ∂ZJu. The terms in Z̃IG, for |I| = k that contain ∂αZJu, with
|α| + |J | = 2 + k, as a factor are (∂G/∂u′′ij)∂i∂jZ

Iu so we can use Proposition
1.11, with γij = −(∂G/∂u′′ij), instead of Proposition 1.3 to get an estimate for
||∂ZIu(t, ·)||2 for |I| = k. Since G′′uu(0, 0, 0) = 0 we can write

G(u, u′, u′′) =
3∑

i=0

∂iGi(u, u′) + G4(u′, u′′) + G5(u, u′, u′′),

where Gi for i = 0, ..., 4 are quadratic forms and G5 is a smooth function vanishing
to third order at the origin. If |I| < k the estimate for ||ZIu(t, ·)||2 follows as
before but when |I| = k we must take care of the terms in Z̃IGm, for m = 4, 5, that
contain ∂αZJu, with |α|+ |J | = 2 + k, as a factor. These are (∂Gm/∂u′′ij)∂i∂jZ

Iu
which is the same as

∂i

(
(∂Gm/∂u′′ij)∂jZ

Iu
)− (∂i(∂Gm/∂u′′ij))∂jZ

Iu.

If we convolute with the fundamental solution E, and use Proposition 1.8 we see
that the first term can be estimated by means of the quantities in (2.1) and (2.2).
To the second term we can apply Proposition 1.9.
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Theorem 2.3. Let u0, u1 ∈ C∞0 and let G(u, u′, u′′) be a smooth function of u,
{u′j}3j=0 and {u′′jk}3j,k=0 vanishing to second order at the origin. Then there exist
constants δ and ε0 such that for ε < ε0

(2.25) u = G(u, u′, u′′),

with initial data εu0, εu1 has a C∞ solution for 0 ≤ t < Tε, where

Tε =δ/ε2, if G′′uu(0, 0, 0) 6= 0,(2.26)

Tε =exp(δ/ε), if G′′uu(0, 0, 0) = 0.(2.27)

Proof. First we shall prove (2.27). Let k and l be positive integers such that
k − 4 ≥ l ≥ [k/2] + 1. Set

(2.28)

M1(t) =
∑

|I|≤k

||∂ZIu(t, ·)||2, N1(t) =
∑

|I|≤l

||∂ZIu(t, ·)||∞,

M2(t) =
∑

|I|≤k

||ZIu(t, ·)||2, N2(t) =
∑

|I|≤l

||ZIu(t, ·)||∞,

M3(t) = M1(t) + M2(t), N3(t) = N1(t) + N2(t).

As before it sufficies to prove that if the solution exists for 0 ≤ t < T then there
are constants Mi, Ni, i = 1, 2, 3 and δ, which are independent of T such that if
ε log (1 + T ) ≤ δ then
(2.29)
M1(t) ≤ M1ε, Mi(t) ≤ Miε

√
1 + t for i = 1, 2, (1+t)Ni(t) ≤ Niε, for i = 1, 2, 3.

We know that there are constants Mi, Ni, i = 1, 2, 3, such that (2.29) is true for
small t.

From the discussion at the beginning of section 1 it follows that

ZIu = Z̃I( u) = ZI( u) +
∑

|J|<|I|
dJZJ( u),(2.30)

ZI∂α = ∂αZI +
∑

|J|<|I|,|β|=|α|
dβJ∂βZJ .(2.31)

We can write

(2.32) G(u, u′, u′′) =
3∑

i=0

∂iGi(u, u′) + G4(u′, u′′) + G5(u, u′, u′′),

where Gi for i = 0, ..., 4 are quadratic forms and G5 is a smooth function vanishing
to third order at the origin. In what follows I1, I2 and αi, βi for i = 1, 2 will always
denote indices such that

(2.33) |I1|+ |I2| ≤ |I|, |I1| ≤ |I2|, and |αi| ≤ 2, |βi| ≤ 1 for i = 1, 2.

We start with the estimate for ||∂ZIu(t, ·)||2. If we use (2.30) and (2.31) we see
that Z̃I

∑3
i=0 ∂iGi(u, u′) and Z̃IG4(u′, u′′) consist of terms

(2.34) (∂α1ZI1u)(∂α2ZI2u), with |α1|+ |α2| > 0.
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If |I| ≤ k then |I1| ≤ [k/2] ≤ l− 1 by assumption. If in addition |I2|+ |α2| < k + 2
we claim that

||(∂α1ZI1u)∂α2ZI2u(t, ·)||2 ≤ CN3(t)M3(t).

For the proof recall that ∂j , j = 0, 1, 2, 3 belong to the family of operators ZI , so
if |α2| > 0 this is obvious and if |α2| = 0 then we can use Lemma 1.10. By (2.29)
|∂α0ZI0u| ≤ N3ε/(1 + t) if |α0| ≤ 2 and |I0| ≤ l − 1 so a term in Z̃IG5 is either
bounded by a term of the form (2.34) or bounded by

(2.35)
Cε

1 + t
|(ZI1u)(ZI2u)|.

By Lemma 1.2 ||ZI2u(t, ·)||2 ≤ CM1(t)(1 + t) so the L2 norms of these terms are
also bounded by a constant times N3(t)M1(t). Hence if |I| < k it follows that

||Z̃IG(u, u′, u′′)(t, ·)||2 ≤ CN3(t)M1(t),

which implies

(2.36) ||∂ZIu(t, ·)||2 ≤ ||∂ZIu(0, ·)||2 + C

∫ t

0

N3(s)M1(s) ds,

by Proposition 1.3. If |I| = k then the L2 norm of the terms in Z̃IG that contain
∂α2ZI2u as a factor with |I2|+ |α2| = 2 + k can not be estimated by CN3(t)M3(t).
By (2.30) and (2.31) these terms are

∑3
i,j=0 (∂G/∂u′′ij)∂i∂jZ

Iu and we have instead

||(Z̃IG−
3∑

i,j=0

(∂G/∂u′′ij)∂i∂jZ
Iu

)
(t, ·)||2 ≤ CN3(t)M1(t).

To get an estimate for ||∂ZIu(t, ·)||2 in this case we are going to use Proposition
1.11, with γij = −(∂G/∂u′′ij), instead of Proposition 1.3. Now if (2.29) is true then

(2.37)
3∑

i,j=0

|γij(u, u′, u′′)| ≤ C(N1 + N2)ε < 1/2,

if ε is sufficiently small. Moreover, with |γ′(t)| defined as in Proposition 1.11, we
have

(2.38) 2
∫ t

0

|γ′(s)| ds ≤ CN1δ ≤ log 2,

if ε log (t + 1) ≤ δ and δ is sufficently small. It follows from Proposition 1.11 that
(2.36) holds with an extra factor 4 on the right-hand side. Hence

(2.39) M1(t) ≤ C ′
∫ t

0

N3(s)M1(s) ds + K1ε.
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When estimating ||ZIu(t, ·)||2 for |I| ≤ k we are going to use one of the three
following estimates to treat the three kinds of terms in (2.32). By Proposition 1.3

(2.40)
||∂iE ∗ f(t, ·)||2 ≤ C

∫ t

0

N3(s)M3(s) ds, if |f | ≤ |(∂β1ZJ1u)∂β2ZJ2u|,
where |J1| ≤ l, |J2| ≤ k, and |βi| ≤ 1 for i = 1, 2.

(In fact v = E ∗ f is the solution of v = f with initial data 0.) By Proposition
1.9 we have
(2.41)

||E ∗ ∣∣(∂iZ
J1u)∂jZ

J2u
∣∣(t, ·)||2 ≤ C

∫ t

0

M1(s)2
ds√
1 + s

, if |J1|+ 2 ≤ k, |J2| ≤ k,

and
(2.42)

||E∗
∣∣ (∂β1ZJ1u)∂β2ZJ2u

1 + s

∣∣(t, ·)||2 ≤ C

∫ t

0

M3(s)2
ds

(1 + s)3/2
, if

{ |J1|+ 2 ≤ k, |J2| ≤ k,

|βi| ≤ 1 for i = 1, 2
,

where s in the convolution denotes the time variable t.
Let |I| ≤ k. Now by (2.30) and (2.31) we can write

Z̃I
3∑

i=0

∂iGi =
3∑

j=0

∂jHj , where Hj =
∑

i=0,...,3, |J|≤|I|
cijJZJGi.

We have

ZIu =
3∑

i=0

∂iE ∗Hi + E ∗ (Z̃IG4) + E ∗ (Z̃IG5) + v

where v is a solution of v = 0 with the same initial data as ZIu−∂0E ∗H0, and
for this Lemma 1.4 gives an estimate ||v(t, ·)||2 ≤ Kε.

The terms in Hi for i = 0, .., 3 are of the form

(2.43) (∂β1ZI1u)∂β2ZI2u, with |βi| ≤ 1, i = 1, 2.

Since |I2| ≤ k and |I1| ≤ [k/2] ≤ l we can use (2.40) to estimate ||∂jE ∗Hj(t, ·)||2
for j = 0, ..., 3. The terms in Z̃IG4 are

(2.44) (∂α1ZI1u)∂α2ZI2u with |αi| > 0, i = 1, 2.

Here |I1| ≤ [k/2] ≤ k−3 by assumption so if |α2|+ |I2| < 2+k we can use (2.41) to
estimate these terms. By (2.29) |∂α0ZI0u| ≤ N3ε/(1+ t) if |α0| ≤ 2 and |I0| ≤ l−1
so the terms in Z̃IG5 are bounded by expressions of the form

(2.45)
Cε

1 + t
|(∂α1ZI1u)∂α2ZI2u|,

and for these we can use (2.42) if |α2|+ |I2| < 2 + k.
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If |I| < k then |α2| + |I2| < 2 + k and the above estimates directely give an
estimate
(2.46)

||ZIu(t, ·)||2 ≤ C

∫ t

0

N3(s)M3(s) ds+C

∫ t

0

M1(s)2
ds√
1 + s

+C

∫ t

0

M3(s)2
ds

(1 + s)3/2
+Kε.

When |I| = k we must first subtract the terms in Z̃IGm, m = 4, 5 which contain
∂α2ZI2u, with |α2| + |I2| = 2 + |I|, as a factor. By (2.30) and (2.31) these terms
are

∑3
i,j=0 (∂Gm/∂u′′ij)∂i∂jZ

Iu, m = 4, 5, and we can write

(∂Gm/∂u′′ij)∂i∂jZ
Iu = ∂i

(
(∂Gm/∂u′′ij)∂jZ

Iu
)−

∑

|α|≤2

(∂2Gm/∂u(α)∂u′′ij)(∂i∂
αu)∂jZ

Iu.

For m = 4, 5 let

Fm = Z̃IGm−
3∑

i,j=0

(∂Gm/∂u′′ij)∂i∂jZ
Iu−

3∑

i,j=0

∑

|α|≤2

(∂2Gm/∂u(α)∂u′′ij)(∂i∂
αu)∂jZ

Iu,

and for j = 0, .., 3 let

(2.47) Fj = Hj +
∑

m=4,5, i=0,...,3

(∂Gm/∂u′′ij)∂iZ
Iu.

Then

(2.48) ZIu =
3∑

j=0

∂jFj + F4 + F5,

and hence

ZIu =
3∑

j=0

∂jE ∗ Fj + E ∗ F4 + E ∗ F5 + vI ,

where vI is the solution of vI = 0 with the same initial data as ZIu− ∂0E ∗F0.
Now we can estimate ||E ∗Fm(t·)||2 by (2.41) if m = 4 and (2.42) if m = 5. In fact
in F4 we have subtracted the terms which could not be estimated by (2.41) and
add new terms which can be estimated by (2.41) since |(∂2G4/∂u(α)∂u′′ij)| ≤ C. In
the same way the terms in F5 can be estimated by (2.42) since |(∂2G5/∂u(α)∂u′′ij)| ≤
C(|u|+|u′|+|u′′|). ||∂jE∗Fj(t, ·)||2 can still be estimated by (2.46) since |(∂Gm/∂u′′ij)| ≤
C(|u| + |u′| + |u′′|), for m = 4, 5. Since as before ||vI(t, ·)||2 ≤ Kε it follows that
(2.46) also holds for |I| = k and hence
(2.49)

M2(t) ≤ C

∫ t

0

N3(s)M3(s) ds+C

∫ t

0

M1(s)2
ds√
1 + s

+C

∫ t

0

M3(s)2
ds

(1 + s)3/2
+K2ε.

When estimating ||ZIu(t, ·)||∞, for |I| ≤ l, we are going to use one of the three
following estimates to estimate the three different sorts of terms in (2.32). By
Proposition 1.8

(2.50) (1 + t)||E ∗ (
∂j

(
(∂β1ZJ1u)∂β2ZJ2u)

)
(t, ·)||∞ ≤

C
( ∫ t

0

N3(s)2 (1 + s)ds +
∫ t

0

M3(s)2
ds

(1 + s)2
)
, if

{ |Ji| ≤ l, |Ji|+ 4 ≤ k,

|βi| ≤ 1 for i = 1, 2
.
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By Proposition 1.9 we have
(2.51)

(1+t)||E∗∣∣(∂iZ
J1u)∂jZ

J2u
∣∣(t, ·)||∞ ≤ C

∫ t

0

M1(s)2
ds

1 + s
, if |Ji|+2 ≤ k, for i = 1, 2,

and

(2.52)
(1 + t)||E ∗ ∣∣ (∂β1ZJ1u)∂β2ZJ2u

1 + s

∣∣(t, ·)||∞ ≤ C

∫ t

0

M3(s)2
ds

(1 + s)2
,

if |Ji|+ 2 ≤ k, and |βi| ≤ 1 for i = 1, 2,

where s in the convolution denotes the time variable t.
We have

(2.53) ZIu =
3∑

i=0

E ∗ (∂iHi) + E ∗ (Z̃IG4) + E ∗ (Z̃IG5) + wI ,

were wI is the solution of wI = 0 with the same initial data as ZIu, and for this
Lemma 1.4 gives

(2.54) (1 + t)||wI(t, ·)||∞ ≤ Kε.

Let |I| ≤ l, where l ≤ k− 4 by assumption. The terms in Hi are of the form (2.43)
with |I1| ≤ |I2| ≤ |I| so for the first terms in (2.53) we have the estimate (2.50).
The remaining terms in (2.53) are either of the form (2.44) or of the form (2.45)
with |αi| ≤ 2. Since |I1| ≤ |I2| ≤ k − 3 and ∂j , for j = 0, .., 3 are in the family of
operators ZI we can use (2.51) or (2.52) to estimate these terms. Hence we get an
estimate for (1 + t)||ZIu(t, ·)||∞, for |I| ≤ l ≤ k − 4 by adding the estimate (2.54)
and the estimates (2.50)–(2.52). It follows that
(2.55)

(1+t)N2(t) ≤ C ′
( ∫ t

0

N3(s)2 (1 + s)ds+
∫ t

0

M3(s)2
ds

(1 + s)2
+

∫ t

0

M1(s)2
ds

1 + s

)
+K4ε.

Assume that (2.29) holds. Then (2.37) and (2.38) are true if ε is sufficiently
small so we obtain by (2.39), (2.49) and (2.55)

M1(t) ≤ C ′N3M1ε
2 log (t + 1) + K1ε,(2.56)

M2(t) ≤ C ′(N3M3 + M2
1 + M2

3 )ε22(
√

1 + t− 1) + K2ε,(2.57)

(1 + t)N2(t) ≤ C ′(N2
3 + M2

3 + M2
1 )ε2 log (t + 1) + K4ε.

(2.58)

By Proposition 1.5 and (1.3) we also have

(2.59) (1 + t)Ni(t) ≤ CMi(t), for i = 1, 2, 3.

It follows that we can choose

M1 = 2K1, M2 = 2K2, N2 = 2K4, N1 = CM1, M3 = M1+M2, N3 = N1+N2.
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Then (2.56)–(2.58) implies the estimates (2.29) with strict inequality as well as
(2.37)–(2.38) for ε < ε0 and ε log (t + 1) ≤ δ if ε0 and δ are sufficiently small.

In case G′′uu(0) 6= 0 then (2.39) and (2.49) remains true with M1(s) in the right-
hand side replaced by M3(s). If we use (2.59) in (2.39) and (2.49) we obtain

M3(t) ≤ C ′
∫ t

0

M3(s)2
ds√
1 + s

+ K3ε,

which proves that

M3(t) ≤ 2K3ε, if C ′K38ε
√

1 + t ≤ 1

and ε is so small that (2.37) and (2.38) holds with Mi = M3, Ni = CM3 for
i = 1, 2. ¤
3. Appendix. Here we give a new proof, which is also due to L. Hörmander, of
the first part of Proposition 1.6. Recall that E denotes the fundamental solution
of .

Lemma 3.1. Let X = (t, x), Y = (s, y) ∈ R1+3 and let L(X,Y ) = ts − 〈x, y〉.
Assume that f ∈ C1([0,∞)×R3) and set u = E ∗ f . Then if L(X, X) > 0 we have

(3.1) u(X) =
1
4π

∫

ΛX

(Z00f + 3f)(Y )
dY√

D(X, Y )
,

where
D(X, Y ) = L(X, Y )2 − L(X,X)L(Y, Y ) ≥ 0,

Z00 = t∂t +
∑3

i=0 xi∂i and ΛX is the backward light cone, (with interior), from X.

Proof. Since E(X) = δ(L(X,X))H(t)/2π, where H(t) = 1 when t ≥ 0 and H(t) =
0 otherwise, we have

(3.2)

u(X) =
∫ 1

0

d

dτ
τu(τX) dτ =

∫ 1

0

(Z00u + u)(τX) dτ =
∫ 1

0

E ∗ (Z00f + 3f)(τX) dτ

=
∫ 1

0

1
2π

∫
δ
(
L(τX − Y, τX − Y )

)
H(τt− s)(Z00f + 3f)(Y ) dY dτ.

Now

(3.3) L(τX − Y, τX − Y ) = τ2L(X,X)− 2τL(X, Y ) + L(Y, Y )

= L(X, X)
(

τ − L(X,Y ) +
√

D(X, Y )
L(X, X)

)(
τ − L(X,Y )−

√
D(X, Y )

L(X, X)

)
.

Here D(X,Y ) ≥ 0 since L(X, X) > 0. (See Lemma 3.2 below.) The largest zero of
(3.3) corresponds to Y being on the backward light cone from τX so
∫ 1

0

δ
(
L(τX − Y, τX − Y )

)
H(τt− s) dτ = H

(
L(X−Y, X−Y )

)
H(t−s)/(2

√
D(X, Y )),

and the lemma follows if we change the order of integration in (3.2). ¤
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Lemma 3.2. Let X,Y, D(X, Y ) and L(X,Y ) be as in Lemma 3.1 and set |X|2 =
t2 + |x|2. Then if L(X,X) ≥ a|X|2, with 0 < a < 1, we have

(3.4) D(X, Y ) ≥ a|X|2|y − s

t
x|2

and if we also have L(Y, Y ) ≤ b|Y |2, with −1 < b < a, then

(3.5) D(X, Y ) ≥ a(a− b)2|X|2|Y |2/16

Proof. For reasons of homogeneity we may assume that s = t = 1. Since the
discriminant D(X,Y + qX)) is independent of q and since L(X − Y, X − Y ) =
−|x− y|2 it follows that

D(X, Y ) = D(X, Y −X) ≥ L(X,X)|x− y|2 ≥ a|X|2|x− y|2,
which proves (3.4). If we subtract the inequalities

a(1 + |x|2) ≤ 1− |x|2, b(1 + |y|2) ≥ 1− |y|2,
which imply |x| < |y| since b < a, and add a(|y|2 − |x|2) to both sides, we obtain

(a− b)(1 + |y|2) ≤ (1 + a)(|y|2 − |x|2) ≤ 4|Y |(|y| − |x|).
Hence

|y − x| ≥ |y| − |x| ≥ (a− b)|Y |/4,

and (3.5) follows ¤
Lemma 3.3. If g ∈ C1

0 (R3) then∫
|g(y)| dy/|y| ≤

∫
|g′(y)| dy/2.

Proof. In polar coordinates this just means that∫ ∞

0

|g(rω)|r dr ≤
∫ ∞

0

|∂rg(rω)|r2 dr/2

which follows at once by a partial integration. ¤
Lemma 3.4. Let f ∈ C2([0,∞)×R3). Then

(3.6) |x||E ∗ f(t, x)| ≤ C
∑

|I|≤2

∫∫

0<s<t

|ZIf(s, y)|/|y| ds dy,

where we only have the vector fields of the Euclidean rotations in the sum.

Proof. By Sobolev’s lemma

M(t, r) = sup
ω
|f(t, rω)| ≤ C

∑

|I|≤2

∫

|ω|=1

|ZIf(t, rω)| dS(ω),

where we only have the vector fields of the Euclidean rotation in the sum. Hence in
the right-hand side of (3.6) we have an estimate for

∫∫
0<s<t

M(s, ρ)ρ dρ ds. Replac-
ing f by M we increase |E ∗ f |, so it is enough to estimate U = E ∗M . Expressing

in polar coordinates we have

(∂2
t − ∂2

r )rU(t, r) = rM(t, r),

which implies that

rU(r, t) ≤ 1
2

∫∫

0<s<t

M(s, ρ)ρ ds dρ. ¤



ON THE LIFESPAN OF SOLUTIONS OF NONLINEAR WAVE EQUATIONS WITH SMALL INITIAL DATA.1221

Theorem 3.5. Let f ∈ C2([0,∞)×R3). Then

(1 + t + |x|)|E ∗ f(t, x)| ≤ C
∑

|J|≤2

∫∫

0<s<t

|ZJf(s, y)|/(1 + s + |y|) ds dy,

Proof. First we shall prove that

(3.7) (t + |x|)|E ∗ f(t, x)| ≤ C
∑

|J|≤2

∫∫

0<s<t

|ZJf(s, y)|/(s + |y|) ds dy,

where we only use homogeneous Z’s in the sum. In the proof we may assume that
f(t, x) = 0 in a small neighborhood of (t, x) = 0. Let χ ∈ C∞(R), χ(q) ≥ 0,
χ(q) = 0 when q ≤ 1/4 and χ(q) = 1 when q ≥ 3/4. Set ψ(Y ) = χ(L(Y, Y )/|Y |2).
Then for the homogeneous ZI ’s we have |ZIψ(Y )| ≤ CI so writing f = (1−ψ)f+ψf
we see that it is enough to prove (3.7) in the two cases i) L(Y, Y ) ≥ |Y |2/4 in the
support of f(Y ) and ii) L(Y, Y ) ≤ 3|Y |2/4 in the support of f(Y ).

i) Assume that L(Y, Y ) ≥ |Y |2/4 in the support of f(Y ). Then if L(X, X) ≤
|X|2/8 (3.7) follows from (3.1) if we use (3.5) but with X and Y interchanged. If
instead L(X, X) ≥ |X|2/8 then by (3.4)

√
D(X,Y ) ≥

√
1/8|X||y − sx/t| so if we

for fixed s take z = y− sx/t as new variable in (3.1) and use Lemma 3.3 we get an
estimate

(t + |x|)|E ∗ f(t, x)| ≤ C
∑

i=1,2,3, j=0,1

∫∫

0<s<t

|∂iZ
j
00f(s, y)| ds dy.

Since L(Y, Y ) ≥ |Y |2/4 in the support of f(Y ) (3.7) follows from (1.7) in this case.
ii) Assume that L(Y, Y ) ≤ 3|Y |2/4 in the support of f(Y ). Then if L(X, X) ≥

7|X|2/8 (3.7) follows from (3.1) if we use the estimate (3.5). If instead L(X, X) ≤
7|X|2/8 then |x| ≥ |t|/√15 > 0. Since by assumption |y| ≥ s/

√
7 in the support of

f(s, y), (3.7) follows from Lemma 3.4 in this case.
The theorem follows immediately from (3.7). In fact if s+ |y| ≥ 1 in the support

of f(s, y) this is obvious and if s+|y| ≤ 2 in the support of f(s, y) then (3.7) applied
to f(s, y1 + 3, y2, y3) gives (1 + t)|E ∗ f(t, x)| ≤ C

∑
|α|≤2

∫∫
0<s<t

|∂αf(s, y)| ds dy.
Hence the theorem follows from (3.7) by one more partition of unity. ¤
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