Scattering from infinity with singular asymptotics for wave equations
satisfying the weak null condition.
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Let 0 = —02 + A, be the wave operator in 3 space dimensions. Consider
Op=(0w)  Ov=0,

Have a global solutions for 0 < t < oo for given initial data when t = 0.
We want to prescribe data at t = oo and solve the backwards problem.
First we need to understand the asymptotics as t — oc.

For the linear homogeneous wave equation we have
P(t,x) ~ F(r—t,w)/r, where |F(q,w)| + (q)|Fq(q,w)| S 1.
The same is true if only
Bl +r 2Dl S e+ e — " (1)) e>0,
This is seen by expressing the wave operator in spherical coordinates:
Ot = —r Y0 + 0,) (0 — 0,)(rb) + r2Dunb,
and integrating, in the t+ r direction and in the t—r direction.
However, general quadratic terms do not decay enough for this to hold:
wt(t,x)2 ~ Fé(r— t,w)2/r2.
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The asymptotics for the wave equation with such sources along light cones
Lo =n(r—t,w)/r?,  |n(q,0)| S{g)7"" >0
The solution to the forward problem has a log correction in the asymptotics

o(t, rw) ~ In ‘ <t:r> ‘ For(r—t,w) n fo(r—t,w),

In fact, using the expression for the wave operator in spherical coordinates
Oo(t, rw) ~ 2.7-"0/17q(r—t,w)/r2 + O(l/r3) ~n(r—t,w)/r?

as t— 00, r~t,
r r

if
2]:0/1,q(q7w) = n(qaw)‘
This only determines Fp1(q,w) up to a function of w
lim  Fo1(q,w) = No(w),
qg——o00

that has be determined from interior homogeneous asymptotics.
Fo(g,w) is free to chose and determined from initial data apart from that
it has to match interior asymptotics

thl‘]oo}b(q’w) = NO(W)v
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Interior asymptotics for the wave equation with such sources on light cones
06 =n(r—tw)/r,  |n(q.w)| < (@)1 e>o.

The forward problem for this equation has homogeneous asymptotics
o(t,x) ~ poo(t, x) = V(x/t)/t, t>|x|, t—o0.

In fact, ¢a(t, x) = a¢(at, ax) satisfies

—Oy = ny(r—t,w)/r?, na(q,w) = an(aq,w).
As a — 00, in the sense of distribution theory oo
na(gq,w) = an(agq,w) — 6(q)P(w), where  N(w) = / n(q,w) dq,

and 0(q) is the delta function. Hence ¢, — oo Where -
—O oo = N(w)d(r —t)/r?.
Since this is homogeneous of degree —3, ¢, is homogeneous of degree —1.
We claim that ¢, has the asymptotics as we approach the light cone:
gboo(t,rw)wIn’é‘No;L(w)/r—{—No(w)/r, r—t.
In fact convolving with the fundamental solution of [J gives a formula

1 N(o) dS(o)
Poo(t, rw) _471-/.Szt—<07fw>'
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Higher order asymptotics, in the wave zone r ~ t:

(b(t, rw)Nwrad(r_taW71/r)
| 2r | Fou(r—t,w) Fo(r—t,w)
(t— >’ e

and in the interior r < t:

=In

| 2r |Aa(r—tw) Alr—t,w)
|(t—r>‘ r? *

r r2

¢oo(t; rw)’\“whom(r_tawal/r)

1 2r
= N01(w)7|n —r

2r

1 r—t r—t
N -+ M —
‘+ o(w)r-i- 11(w) 2 n .

Matching conditions

lim Fi(q,w) = Nj(w), qli)rlmoo]:jl(q,w) = Nji(w), j=0,1.

q——o00
Assume that
| ((9)0q)*0%n(q,w)| < Clq)~>27, k+lal <N, 0<vy<l
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Construct approximate solution. Let xa(t,x) = x((r — t)/r?), where
x(s) =1, when s > —1/2 and x(s) =0 when s < —1,0 < a < 1. Set

Vapp = XaVrad + (1 — Xa)Vhom,
OW,g ~ —n(r—t,w)/r?, OWVpom =0
With Vi = V,00 — Vhom We have
OW.pp = XaOVrag + (1 — Xa2)OWhom + Oxa Vairr + 2Q(0Xa, OV difr)
OW pp+n(r— t,cu)/r2 ~ (1—xa)n(r— t,w)/r2+DXa W yitr +2Q(0xa, OV yifr)
With Hj1 = Fj1 — Nj1 and H; = F; — N;, for j = 0,1 we have
WV girr(t, rw)

n | 2r ‘%1 (r—t w)+7-lo(r t w)+|n| 2r Hll(r—t,w)+7{1(r—t,w)

r (t—1r) r? r2
Because of the matching H decays more in g
[Hol+(q) ™" [Hal +[Hoa|+(q)” M|
+(q) ([Ho,ql+(q)” gy H1ql) S ()7

and that improves the decay in the transition region r=t ~_—r?.
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With the appropriate choice of 0 < a < 1 we get
OWapp + n(r—t,w)/r* =F

where F decays fast so we can find a solution of

OVer = —F, with |[We,| < <t>_1_b, b> 0.

Hence WV = V,,, + W, is a solution to

OV = —n(r—t,w)/r
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