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Let � = −∂2t +4x be the wave operator in 3 space dimensions. Consider

�ϕ = (∂tψ)2, �ψ = 0,

Have a global solutions for 0 ≤ t <∞ for given initial data when t = 0.
We want to prescribe data at t =∞ and solve the backwards problem.
First we need to understand the asymptotics as t →∞.

For the linear homogeneous wave equation we have

ψ(t, x) ∼ F(r − t, ω)/r , where |F(q, ω)|+ 〈q〉|Fq(q, ω)| . 1.

The same is true if only

|�ψ |+ r−2|4ωψ| . r−1〈t + r〉−1−ε〈t − r〉−1+ε〈(r− t)+〉−ε, ε > 0,

This is seen by expressing the wave operator in spherical coordinates:

�ψ = −r−1(∂t + ∂r )(∂t − ∂r )(rψ) + r−24ωψ,

and integrating, in the t+ r direction and in the t−r direction.

However, general quadratic terms do not decay enough for this to hold:

ψt(t, x)2 ∼ F ′q(r− t, ω)2/r2.
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The asymptotics for the wave equation with such sources along light cones

−�φ = n(r− t, ω)/r2, |n(q, ω)| . 〈q〉−1−ε, ε > 0

The solution to the forward problem has a log correction in the asymptotics

φ(t, rω) ∼ ln
∣∣∣ r

〈t−r〉

∣∣∣ F01(r−t, ω)

r
+
F0(r−t, ω)

r
, as t→∞, r∼ t,

In fact, using the expression for the wave operator in spherical coordinates

�φ(t, rω) ∼ 2F ′01,q(r−t, ω)/r2 + O
(
1/r3

)
∼ n(r− t, ω)/r2,

if
2F ′01,q(q, ω) = n(q, ω).

This only determines F01(q, ω) up to a function of ω

lim
q→−∞

F01(q, ω) = N01(ω),

that has be determined from interior homogeneous asymptotics.
F0(q, ω) is free to chose and determined from initial data apart from that
it has to match interior asymptotics

lim
q→−∞

F0(q, ω) = N0(ω),
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Interior asymptotics for the wave equation with such sources on light cones

−�φ = n(r− t, ω)/r2, |n(q, ω)| . 〈q〉−1−ε, ε > 0.

The forward problem for this equation has homogeneous asymptotics

φ(t, x) ∼ φ∞(t, x) = Ψ(x/t)/t, t > |x |, t →∞.
In fact, φa(t, x) = aφ(at, ax) satisfies

−�φa = na(r− t, ω)/r2, na(q, ω) = a n(aq, ω).

As a→∞, in the sense of distribution theory

na(q, ω) = a n(aq, ω)→ δ(q)Φ(ω), where N(ω) =

∫ +∞

−∞
n(q, ω) dq,

and δ(q) is the delta function. Hence φa → φ∞ where

−�φ∞ = N(ω)δ(r − t)/r2.

Since this is homogeneous of degree−3, φ∞ is homogeneous of degree−1.
We claim that φ∞ has the asymptotics as we approach the light cone:

φ∞(t, rω) ∼ ln
∣∣ r

t−r

∣∣N01(ω)/r + N0(ω)/r , r→ t.

In fact convolving with the fundamental solution of � gives a formula

φ∞(t, rω) =
1

4π

∫
S2

N(σ) dS(σ)

t−〈σ, rω〉
.
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Higher order asymptotics, in the wave zone r ∼ t:

φ(t, rω)∼Ψrad (r−t, ω,1/r)

= ln
∣∣∣ 2 r

〈t−r〉

∣∣∣F01(r−t, ω)

r
+
F0(r−t, ω)

r
+ln

∣∣∣ 2 r

〈t−r〉

∣∣∣F11(r−t, ω)

r2
+
F1(r−t, ω)

r2
,

and in the interior r < t:

φ∞(t, rω)∼Ψhom(r−t, ω,1/r)

= N01(ω)
1

r
ln
∣∣∣ 2 r

t− r

∣∣∣+ N0(ω)
1

r
+ N11(ω)

r−t
r2

ln
∣∣∣ 2 r

t− r

∣∣∣+ N1(ω)
r−t
r2

.

Matching conditions

lim
q→−∞

Fj (q, ω) = Nj (ω), lim
q→−∞

Fj1(q, ω) = Nj1(ω), j = 0, 1.

Assume that

| (〈q〉∂q)k∂αωn(q, ω)| ≤ C 〈q〉−2−2γ , k + |α| ≤ N, 0 < γ < 1.
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Construct approximate solution. Let χa(t, x) = χ
(
(r − t)/ra

)
, where

χ(s) = 1, when s ≥ −1/2 and χ(s) = 0 when s ≤ −1, 0 < a < 1. Set

Ψapp = χaΨrad + (1− χa)Ψhom,
where

�Ψrad ∼ −n(r− t, ω)/r2, �Ψhom = 0

With Ψdiff = Ψrad −Ψhom we have

�Ψapp = χa�Ψrad + (1− χa)�Ψhom +�χa Ψdiff + 2Q(∂χa, ∂Ψdiff )

�Ψapp +n(r−t, ω)/r2 ∼ (1−χa)n(r−t, ω)/r2+�χa Ψdiff +2Q(∂χa, ∂Ψdiff )

With Hj1 = Fj1 − Nj1 and Hj = Fj − Nj , for j = 0, 1 we have

Ψdif f (t,rω)

= ln
∣∣∣ 2 r

〈t−r〉

∣∣∣H01(r−t, ω)

r
+
H0(r−t, ω)

r
+ln

∣∣∣ 2 r

〈t−r〉

∣∣∣H11(r−t, ω)

r2
+
H1(r−t, ω)

r2

Because of the matching H decays more in q

|H0|+〈q〉−1|H1|+|H01|+〈q〉−1|H11|
+ 〈q〉

(
|H ′0,q|+〈q〉−1|H ′1,q|+|H ′01,q|+〈q〉−1|H ′11,q|

)
. 〈q〉−γ .

and that improves the decay in the transition region r−t ∼ −ra.
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With the appropriate choice of 0 < a < 1 we get

�Ψapp + n(r− t, ω)/r2 = F

where F decays fast so we can find a solution of

�Ψerr = −F , with |Ψerr | . 〈t〉−1−b, b > 0.

Hence Ψ = Ψapp + Ψerr is a solution to

�Ψ = −n(r− t, ω)/r2.
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