At the end of our last lecture we arrived at the following conclusion:

Theorem:

Suppose that \(y_1(t) \) and \(y_2(t) \) are two solutions to

\[
L[y] = y'' + p(t)y' + q(t)y = 0.
\]

Suppose also that the initial values

\[
y(t_0) = y_0, \quad y'(t_0) = y_0'
\]

are assigned and satisfy

\[
W(y_1, y_2)(t_0) = y_1(t_0)y_2'(t_0) - y_1'(t_0)y_2(t_0) \neq 0.
\]

Then there exist \(c_1, c_2 \in \mathbb{R} \) s.t.

\[
y(t) = c_1y_1(t) + c_2y_2(t)
\]

solves this IVP.

Example:

We found that

\[
y'' - 4y + 3y = 0
\]

has the solutions \(y_1(t) = e^t \) and \(y_2(t) = e^{3t} \).

By considering the roots of the characteristic equation

\[
r^2 - 4r + 3 = 0
\]

Their Wronskian at any time \(t \) is

\[
W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} = \begin{vmatrix} e^t & e^{3t} \\ e^t & 3e^{3t} \end{vmatrix} = e^t \cdot 3e^{3t} - e^t \cdot e^{3t} = 2e^{4t} \neq 0 \quad (\text{for all } t \in \mathbb{R}).
\]
The Wronskian therefore has the following significance for the structure of the set of all solutions to $L[y] = y'' + p(t)y' + q(t)y = 0$.

Theorem:

Suppose that $y_1(t)$, $y_2(t)$ are two solutions to

$$L[y] = y'' + p(t)y' + q(t)y = 0.$$

If there exists a time t_0 with $W(y_1, y_2)(t_0) \neq 0$, then the family of solutions

$$y(t) = c_1 \cdot y_1(t) + c_2 \cdot y_2(t)$$

with arbitrary $c_1, c_2 \in \mathbb{R}$ includes every solution to $L[y] = 0$.

Proof:

Let $\phi(t)$ be any solution to $L[y] = 0$.

Since $W(y_1, y_2)(t_0) \neq 0$, the IVP

$$L[y] = 0, \quad y(t_0) = \phi(t_0), \quad y'(t_0) = \phi'(t_0)$$

has a solution $y(t) = c_1 \cdot y_1(t) + c_2 \cdot y_2(t)$ for some choice of $c_1, c_2 \in \mathbb{R}$ by the previous theorem.

But then, by uniqueness [of solutions to the IVP, from the last lecture], we must have

$$\phi(t) = c_1 \cdot y_1(t) + c_2 \cdot y_2(t).$$
Thus, for a given 2nd order linear homogeneous ODE \(\text{L}y(t) = 0 \), if you find two solutions \(y_1(t) \) and \(y_2(t) \) with non-zero Wronskian \(W(y_1, y_2)(t) \neq 0 \) at some time \(t_0 \), then all solutions to \(\text{L}y(t) = 0 \) are of the form

\[
y(t) = c_1 \cdot y_1(t) + c_2 \cdot y_2(t),
\]

called the general solution or the fundamental set of solutions to \(\text{L}y(t) = 0 \).

Example:

Let \(y_1(t) = e^{r_1 t} \) and \(y_2(t) = e^{r_2 t} \) be two solutions to \(\text{L}y(t) = y'' + p(t)y' + q(t)y = 0 \). Then their Wronskian at any time \(t \) is

\[
W(y_1, y_2)(t) = \begin{vmatrix}
y_1(t) & y_2(t) \\
y_1'(t) & y_2'(t)
\end{vmatrix} = e^{r_1 t} e^{r_2 t} - e^{r_1 t} e^{r_2 t} = (r_2 - r_1) e^{(r_1+r_2)t}.
\]

Thus, if \(r_1 \neq r_2 \), then

\[
y(t) = c_1 \cdot e^{r_1 t} + c_2 \cdot e^{r_2 t}
\]
is a fundamental set of solutions.
Example:
\[y_1(t) = e^t \sin(t), \quad y_2(t) = e^t \cos(t) \]

\[\Rightarrow y_1'(t) = e^t \sin(t) + e^t \cos(t), \quad y_2'(t) = e^t \cos(t) - e^t \sin(t) \]

\[\Rightarrow W(y_1, y_2)(t) = y_1(t) y_2'(t) - y_1'(t) y_2(t) \]

\[= e^t \sin(t) \left(e^t \cos(t) - e^t \sin(t) \right) \]

\[- \left(e^t \sin(t) + e^t \cos(t) \right) \cdot e^t \cos(t) \]

\[= -e^{2t} \sin^2(t) - e^{2t} \cos^2(t) \]

\[= -e^{2t} = 0 \quad \text{for all} \ t \in \mathbb{R}. \quad \]

The next theorem gives an explicit formula for the Wronskian with important consequences:

Theorem:
Let \(y_1(t) \) and \(y_2(t) \) be two solutions to
\[L[y] = y'' + p(t) y' + q(t) y = 0, \]
where \(p(t) \) and \(q(t) \) are continuous on an open interval I. Then the Wronskian \(W(y_1, y_2)(t) \) is given by

\[W(y_1, y_2)(t) = C \cdot \exp \left(-\int p(t) \, dt \right), \]

where \(C \) is a constant that depends on \(y_1 \) and \(y_2 \), but not on \(t \).
Conclusion:

\(W(x_1, x_2)(t) \) is either zero for all \(t \in [a,b] \) (if \(c = 0 \)) or else is never zero in \(I \) (if \(c \neq 0 \)).

Proof of Theorem:

We know that \(x_1 \) and \(x_2 \) are solutions to \(L[y] = 0 \):

1. \(y_1'' + p(t) \cdot y_1' + q(t) \cdot y_1 = 0 \)
2. \(y_2'' + p(t) \cdot y_2' + q(t) \cdot y_2 = 0 \)

Now multiply (1) by \(-y_2\), multiply (2) by \(y_1\), and add the resulting equations to get:

3. \((y_1'y_2'' - y_1''y_2') + p(t) \cdot (y_1y_2' - y_1'y_2) = 0 \).

Next, let

\[W(t) := W(x_1, x_2)(t) = y_1(t) \cdot y_2'(t) - y_1'(t) \cdot y_2(t) \]

and observe that [check!]

\[W'(t) = y_1(t) \cdot y_2''(t) - y_1''(t) \cdot y_2(t) \]

Then we can rewrite (3) as:

\[W'(t) + p(t) \cdot W(t) = 0. \]

But this is a linear first order ODE for \(W(t) \) which we can solve immediately [with the method of integrating factors] to obtain:

\[W(t) = C \cdot \exp \left(- \int p(t) \, dt \right), \]

where \(C \) is a constant (that depends on \(x_1 \) and \(x_2 \)).