Solutions for Midterm 1

1 a. By D’Alembert’s formula:
\[u(x, t) = 0 + \frac{1}{2c} \int_{x-ct}^{x+ct} s e^{-s^2} \, ds = -\frac{1}{4c} e^{-s^2} \bigg|_{x-ct}^{x+ct} = \frac{1}{4c} [e^{-(x-ct)^2} - e^{-(x+ct)^2}] \]

1 b. Using the formula above, \(u(x, \frac{100}{t}) = \frac{1}{4c}[e^{-(x-100)^2} - e^{-(x+100)^2}] \), a reasonable sketch will include a “bump” above the x-axis at \(x = 100 \) and a bump below the x-axis at \(x = -100 \). The best sketches will show that the bumps have width 1 and their peaks just barely hit \(\pm \frac{1}{4c} \).

2. Computing the derivative of \(\tilde{E}(t) \) yields
\[
\frac{d\tilde{E}(t)}{dt} = \frac{1}{2} \int_0^L \frac{\partial}{\partial t} [u(x, t)]^2 \, dx = \int_0^L u(x, t) \frac{\partial u}{\partial t}(x, t) \, dx = k \int_0^L u(x, t) \frac{\partial^2 u}{\partial x^2}(x, t) \, dx - \alpha \int_0^L u(x, t) u(x, t) \, dx
\]
\[= k \int_0^L \left[\frac{\partial u}{\partial x}(x, t) \right]^2 \, dx - \alpha \int_0^L [u(x, t)]^2 \, dx \leq 0 \]

hence \(\tilde{E}(t) \) is a decreasing function of \(t \) and that \(\tilde{E}(t) \leq \tilde{E}(0) = \frac{1}{2} \int_0^L [u(x, 0)]^2 \, dx = \frac{1}{2} \int_0^L [f(x)]^2 \, dx \).

A second approach would be to set \(u(x, t) = e^{-\alpha t} v(x, t) \) and apply the energy method to \(v(x, t) \), which now satisfies a heat equation without sources. This approach has the advantage of showing that energy actually decays exponentially \(\tilde{E}(t) \leq e^{-2\alpha t} \tilde{E}(0) \).

3. This is due to the maximum (and minimum) principle. Consider the rectangle
\[R = \{(x, t) : 0 \leq x \leq 2, 0 \leq t \leq 2 \} \]

Let \(\Gamma \) denote the union of the 2 lateral sides with the initial side of the boundary of \(R \) \(\{ \{x = 0\}, \{x = 2\}, \{t = 0\} \} \). The maximum and minimum principles tell us that
\[\max_{(x,t) \in R} u(x, t) = \max_{(x,t) \in \Gamma} u(x, t), \quad \min_{(x,t) \in R} u(x, t) = \min_{(x,t) \in \Gamma} u(x, t). \]

On the initial side, \(1 - (x - 1)^2 \) is a downward parabola with zeros at \(x = 0, 2 \) and max at \(x = 1 \) which tells us \(0 \leq 1 - (x - 1)^2 \leq 1 \). On the lateral sides, \(u(0, t) = 0 \) and \(u(2, t) = t \), so \(0 \leq u(2, t) \leq 2 \) when \(0 \leq t \leq 2 \) and \(u(2, 2) = 2 \). Hence the max on the boundary is 2 and the min is 0. Applying the max/min principles tells us that \(0 \leq u(x, t) \leq 2 \) for any \((x, t) \) in \(R \) (actually the strong version of the principle tells us we can replace this with strict inequalities on the interior of \(R \)).

4. Solution 1: First form the full Fourier series corresponding to initial data \(u(x, 0) = \cosh(x) \)
\[\cosh(x) \sim A_0 + \sum_{n=1}^{\infty} A_n \cos(nx) + \sum_{n=1}^{\infty} B_n \sin(nx) \]
where \(A_0, A_n, B_n \) are given by the standard formulas (actually, \(\cosh(x) \) is continuous and \(\cosh(\pi) = \cosh(-\pi) \), so by theorem we can replace the ‘\(\sim \)’ by an equality ‘\(= \)’). Hence the solution to the problem is given by

\[
u(x, t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(nx)e^{-n^2t} + \sum_{n=1}^{\infty} B_n \sin(nx)e^{-n^2t}.\]

We should then have

\[
\lim_{t \to \infty} u(x, t) = A_0 + \lim_{t \to \infty} \left[\sum_{n=1}^{\infty} A_n \cos(nx)e^{-n^2t} + \sum_{n=1}^{\infty} B_n \sin(nx)e^{-n^2t} \right] = A_0 + 0 = A_0,
\]

since each term in both series decays exponentially to 0 as \(t \to \infty \). The equilibrium solution is thus constant and equal to

\[
A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cosh(x)dx = \frac{1}{2\pi} \sinh(x)\left|_{-\pi}^{\pi} \right. = \frac{1}{2\pi} (\sinh(\pi) - \sinh(-\pi)) = \frac{1}{\pi} \sinh(\pi).
\]

Solution 2: Consider the equilibrium problem \(v''(x) = 0, v(\pi) = v(-\pi), v'(\pi) = v'(-\pi) \). It is easy to see that \(v(x) \) must be a line, and by considering boundary conditions, it must be a horizontal line, i.e. \(v(x) = c \) for some constant \(c \). Now consider the energy functional \(E(t) = \int_{-\pi}^{\pi} u(x, t)dx \). This sort of functional is actually conserved for all \(t \geq 0 \) as

\[
\frac{dE(t)}{dt} = \int_{-\pi}^{\pi} \frac{\partial}{\partial t} (x, t)dx = \int_{-\pi}^{\pi} \frac{\partial^2 u}{\partial x^2}(x, t)dx = \frac{\partial u}{\partial x}(x, t)|_{-\pi}^{\pi} = 0
\]

by the boundary conditions. Hence

\[
\int_{-\pi}^{\pi} \cosh(x)dx = E(0) = \lim_{t \to \infty} E(t) = \int_{-\pi}^{\pi} v(x)dx = \int_{-\pi}^{\pi} Cdx = C2\pi
\]

which implies \(v(x) = C = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cosh(x)dx = \frac{1}{\frac{1}{\pi}} \sinh(\pi) \).

5. Separating variables \(u(x, t) = G(t)\phi(x) \) gives

\[
\frac{G''(t)}{G(t)} - 4 = \frac{\phi''(x)}{\phi(x)} = -\lambda, \quad \phi''(x) = -\lambda \phi(x), \quad G'(t) = (4 - \lambda)G(t)
\]

As noted in the hint, \(\phi(x) = \sin(nx), \lambda = n^2 \), meaning \(G(t) = C \exp(4t - n^2t) \). Hence our family of separated solutions look like \(u(x, t) = C_n e^{4t-n^2t} \sin(nx) \) and correspond to initial data of the form \(C_n \sin(nx) \).

Part a): \(u(x, t) \) is just a separated solution with \(C_1 = 5 \), in other words

\[
u(x, t) = 5e^{4t-n^2t} \sin(x) = 5e^{3t} \sin(x)
\]

Hence \(\lim_{t \to \infty} u(x, t) = \infty \) provided \(\sin(x) > 0 \), but this is true for any \(0 < x < \pi \).

Part b): \(u(x, t) \) is now just a sum of 2 separated solutions

\[
u(x, t) = 3e^{4t-5^2t} \sin(5x) - 10e^{4t-2^2t} \sin(2x) = 3e^{-21t} \sin(5x) - 10 \sin(2x).
\]

Hence \(\lim_{t \to \infty} u(x, t) = 0 - 10 \sin(2x) = -10 \sin(2x) \).