A Decomposition Theorem of Plesken Lie Algebras over Finite Fields

Mona Merling

Department of Mathematics
Bard College

May 2009
A Decomposition Theorem of Plesken Lie Algebras over Finite Fields

Definition of Lie Algebra

Let k be a field. A **Lie algebra** L over k is a k-vector space L together with a bilinear map

\[[,] : L \times L \rightarrow L \]

(called the **bracket** or **commutator**) satisfying:

1. $[x, x] = 0$ for all x in L;
2. $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ for all x, y, z in L.

(Jacobi identity)

Lie algebras are **neither associative nor commutative**
Definition of Lie Algebra

Let k be a field. A **Lie algebra** L over k is a k-vector space L together with a bilinear map

$$[\ ,\] : L \times L \to L$$

(called the **bracket** or **commutator**) satisfying:

1. $[x, x] = 0$ for all x in L;
2. $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ for all x, y, z in L.
 (Jacobi identity)

Lie algebras are neither associative nor commutative.
Definition of Lie Algebra

Let k be a field. A **Lie algebra** L over k is a k-vector space L together with a bilinear map

$$ [,] : L \times L \rightarrow L $$

(called the **bracket** or **commutator**) satisfying:

1. $[x, x] = 0$ for all x in L;
2. $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ for all x, y, z in L. (Jacobi identity)

Lie algebras are **neither associative nor commutative**.
Let k be a field. A **Lie algebra** L over k is a k-vector space L together with a bilinear map

$$[\ , \] : L \times L \to L$$

(called the **bracket** or **commutator**) satisfying:

1. $[x, x] = 0$ for all x in L;
2. $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ for all x, y, z in L. (Jacobi identity)

Lie algebras are **neither associative nor commutative**
Some Examples

Example

\mathbb{R}^3 with the Lie bracket given by the cross product of vectors

$$[x, y] = x \times y,$$
for all $x, y \in \mathbb{R}^3$.

Example

Let $\mathfrak{gl}(n, k)$ be the vector space of all $n \times n$ matrices over k with the Lie bracket defined by

$$[x, y] = xy - yx,$$
where the multiplication on the right is the usual product of matrices.
Some Examples

Example

\mathbb{R}^3 with the Lie bracket given by the cross product of vectors

$$[x, y] = x \times y, \text{ for all } x, y \in \mathbb{R}^3.$$

Example

Let $\mathfrak{gl}(n, k)$ be the vector space of all $n \times n$ matrices over k with the Lie bracket defined by

$$[x, y] = xy - yx,$$

where the multiplication on the right is the usual product of matrices.
Classification of Simple Lie Algebras

- A Lie algebra is **simple** if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over \(\mathbb{C} \) is isomorphic to one of the **classical Lie algebras**:

\[\mathfrak{sl}(n, \mathbb{C}), \mathfrak{o}(n, \mathbb{C}), \mathfrak{sp}(2n, \mathbb{C}). \]
Classification of Simple Lie Algebras

- A Lie algebra is **simple** if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over \mathbb{C} is isomorphic to one of the **classical Lie algebras**:

$\mathfrak{sl}(n, \mathbb{C}), \mathfrak{o}(n, \mathbb{C}), \mathfrak{sp}(2n, \mathbb{C})$.
A Lie algebra is **simple** if it has no non-trivial ideals and is not abelian.

A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.

In particular, a simple Lie algebra is semisimple.

Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over \(\mathbb{C} \) is isomorphic to one of the **classical Lie algebras**:

\[\mathfrak{sl}(n, \mathbb{C}), \mathfrak{o}(n, \mathbb{C}), \mathfrak{sp}(2n, \mathbb{C}). \]
Classification of Simple Lie Algebras

- A Lie algebra is **simple** if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over \mathbb{C} is isomorphic to one of the **classical Lie algebras**:

$$\mathfrak{sl}(n, \mathbb{C}), \mathfrak{o}(n, \mathbb{C}), \mathfrak{sp}(2n, \mathbb{C}).$$
A Lie algebra is **simple** if it has no non-trivial ideals and is not abelian.

A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.

In particular, a simple Lie algebra is semisimple.

Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over \mathbb{C} is isomorphic to one of the **classical Lie algebras**:

$$\mathfrak{sl}(n, \mathbb{C}), \mathfrak{o}(n, \mathbb{C}), \mathfrak{sp}(2n, \mathbb{C}).$$
The Group Algebra

Definition

Let G be a group and k a field. The group algebra $k[G]$ is the set of all linear combinations of finitely many elements of G with coefficients in k.

The group algebra is a Lie algebra.
The Group Algebra

Definition

Let G be a group and k a field. The **group algebra** $k[G]$ is the set of all linear combinations of finitely many elements of G with coefficients in k.

The group algebra is a Lie algebra.
A Decomposition Theorem of Plesken Lie Algebras over Finite Fields

Structure Theorem

Let \(\mathcal{L}(G) \) be the subspace of \(\mathbb{C}[G] \) that is the linear span of the elements \(\hat{g} = g - g^{-1} \). Then \(\mathcal{L}(G) \) is a Lie-subalgebra of \(\mathbb{C}[G] \), defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra \(\mathcal{L}(G) \) admits the decomposition

\[
\mathcal{L}(G) = \bigoplus_{\chi \in \mathcal{R}} \mathfrak{o}(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{Sp}} \mathfrak{sp}(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{C}} \mathfrak{gl}(\chi(1))
\]

where \(\mathcal{R}, \mathcal{Sp}, \) and \(\mathcal{C} \) are the sets of irreducible characters of real, symplectic, and complex types, respectively, and where the prime signifies that there is just one summand \(\mathfrak{gl}(\chi(1)) \) for each pair \(\{\chi, \bar{\chi}\} \) from \(\mathcal{C} \).
Structure Theorem

Let \(L(G) \) be the subspace of \(\mathbb{C}[G] \) that is the linear span of the elements \(\hat{g} = g - g^{-1} \). Then \(L(G) \) is a Lie-subalgebra of \(\mathbb{C}[G] \), defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra \(L(G) \) admits the decomposition

\[
L(G) = \bigoplus_{\chi \in \mathcal{R}} o(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{Sp}} sp(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{C}} 'g\mathfrak{l}(\chi(1))
\]

where \(\mathcal{R} \), \(\mathcal{Sp} \) and \(\mathcal{C} \) are the sets of irreducible characters of real, symplectic, and complex types, respectively, and where the prime signifies that there is just one summand \(g\mathfrak{l}(\chi(1)) \) for each pair \(\{\chi, \bar{\chi}\} \) from \(\mathcal{C} \).
Structure Theorem

Let $\mathcal{L}(G)$ be the subspace of $\mathbb{C}[G]$ that is the linear span of the elements $\hat{g} = g - g^{-1}$. Then $\mathcal{L}(G)$ is a Lie-subalgebra of $\mathbb{C}[G]$, defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra $\mathcal{L}(G)$ admits the decomposition

$$\mathcal{L}(G) = \bigoplus_{\chi \in \mathcal{R}} \mathfrak{o}(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{Sp}} \mathfrak{sp}(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{C}} \mathfrak{gl}(\chi(1))$$

where \mathcal{R}, \mathcal{Sp} and \mathcal{C} are the sets of irreducible characters of real, symplectic, and complex types, respectively, and where the prime signifies that there is just one summand $\mathfrak{gl}(\chi(1))$ for each pair $\{\chi, \bar{\chi}\}$ from \mathcal{C}.
Structure Theorem

Let $\mathcal{L}(G)$ be the subspace of $\mathbb{C}[G]$ that is the linear span of the elements $\hat{g} = g - g^{-1}$. Then $\mathcal{L}(G)$ is a Lie-subalgebra of $\mathbb{C}[G]$, defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra $\mathcal{L}(G)$ admits the decomposition

$$\mathcal{L}(G) = \bigoplus_{\chi \in \mathcal{R}} o(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{Sp}} sp(\chi(1)) \oplus \bigoplus_{\chi \in \mathcal{C}} 'gl(\chi(1))$$

where \mathcal{R}, \mathcal{Sp}, and \mathcal{C} are the sets of irreducible characters of real, symplectic, and complex types, respectively, and where the prime signifies that there is just one summand $'gl(\chi(1))$ for each pair $\{\chi, \bar{\chi}\}$ from \mathcal{C}.
Example

The character table for A_5 is:

<table>
<thead>
<tr>
<th>Conjugacy Class</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>$\frac{\sqrt{5}+1}{2}$</td>
<td>$\frac{\sqrt{5}+1}{2}$</td>
</tr>
<tr>
<td>χ_3</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>$\frac{\sqrt{5}+1}{2}$</td>
<td>$\frac{\sqrt{5}-1}{2}$</td>
</tr>
<tr>
<td>χ_4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>χ_5</td>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The group A_5 has 5 characters, all of real type, of degrees 1,3,3,4,5. So, $\mathcal{L}(A_5)$ decomposes in the following way:

$$\mathcal{L}(A_5) = \mathfrak{o}(1, \mathbb{C}) \oplus \mathfrak{o}(3, \mathbb{C}) \oplus \mathfrak{o}(3, \mathbb{C}) \oplus \mathfrak{o}(4, \mathbb{C}) \oplus \mathfrak{o}(5, \mathbb{C}).$$
My project

\[\mathcal{L}(G) \text{ is a Lie-subalgebra of } k[G] \text{ for any field } k. \]

Question

Can we find a similar structure theorem if we take \(k \) to be a finite field instead of \(\mathbb{C} \)?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.
My project

\[\mathfrak{L}(G) \] is a Lie-subalgebra of \(k[G] \) for any field \(k \).

Question

Can we find a similar structure theorem if we take \(k \) to be a finite field instead of \(\mathbb{C} \)?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.
My project

\[\mathfrak{L}(G) \] is a Lie-subalgebra of \(k[G] \) for any field \(k \).

Question

Can we find a similar structure theorem if we take \(k \) to be a finite field instead of \(\mathbb{C} \)?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.
My project

\(\mathcal{L}(G) \) is a Lie-subalgebra of \(k[G] \) for any field \(k \).

Question

Can we find a similar structure theorem if we take \(k \) to be a finite field instead of \(\mathbb{C} \)?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.
Method

We define the reduction mod p of the Plesken Lie algebra in two ways and clash the results against each other, the result being a fascinating theorem.

- $\mathfrak{L}(G)_{\mathbb{F}_p}$ is the Plesken Lie algebra as a subalgebra of $\mathbb{F}_p[G]$.
- $\mathfrak{L}(G) \otimes_{\mathbb{Z}} \mathbb{F}_p = (\mathfrak{L}(G))_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F}_p$, the tensor product of the \mathbb{Z}-span of the Chevalley basis of the complex Lie algebra $\mathfrak{L}(G)$ with \mathbb{F}_p.
Method

We define the reduction mod p of the Plesken Lie algebra in two ways and clash the results against each other, the result being a fascinating theorem.

- $\mathcal{L}(G)_{\mathbb{F}_p}$ is the Plesken Lie algebra as a subalgebra of $\mathbb{F}_p[G]$

- $\mathcal{L}(G) \otimes_{\mathbb{F}_p} = (\mathcal{L}(G))(\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_p$, the tensor product of the \mathbb{Z}-span of the Chevalley basis of the complex Lie algebra $\mathcal{L}(G)$ with \mathbb{F}_p.
A Decomposition Theorem of Plesken Lie Algebras over Finite Fields

Important Result

Theorem

If the Lie algebra L *is a direct sum of simple ideals* $L = L_1 \oplus \cdots \oplus L_n$, *then*

$$L \otimes F_p = L_1 \otimes F_p \oplus \cdots \oplus L_n \otimes F_p.$$

Example

$$\mathcal{L}(A_5) \otimes F_p = \mathfrak{o}(1, F_p) \oplus \mathfrak{o}(3, F_p) \oplus \mathfrak{o}(3, F_p) \oplus \mathfrak{o}(4, F_p) \oplus \mathfrak{o}(5, F_p).$$
Important Result

Theorem

If the Lie algebra L is a direct sum of simple ideals $L = L_1 \oplus \cdots \oplus L_n$, then

$$L \otimes \mathbb{F}_p = L_1 \otimes \mathbb{F}_p \oplus \cdots \oplus L_n \otimes \mathbb{F}_p.$$

Example

$\mathcal{L}(A_5) \otimes \mathbb{F}_p = \mathfrak{o}(1, \mathbb{F}_p) \oplus \mathfrak{o}(3, \mathbb{F}_p) \oplus \mathfrak{o}(3, \mathbb{F}_p) \oplus \mathfrak{o}(4, \mathbb{F}_p) \oplus \mathfrak{o}(5, \mathbb{F}_p).$
Main Result

Theorem

If \(p \neq 2 \) and \(p \nmid \#G \) the Lie algebras \(\mathcal{L}(G) \otimes_{\mathbb{F}_p} \) and \(\mathcal{L}(G)_{\mathbb{F}_p} \) are the same if

- the splitting field of \(\mathbb{C}[G] \) is \(\mathbb{Q} \), or
- the splitting field of \(\mathbb{C}[G] \) is \(K \), an extension of \(\mathbb{Q} \) and \(p \) splits completely in the ring of integers of \(K \).

The splitting field of \(\mathbb{C}[G] \) is the smallest field over which the complex irreducible representations of \(G \) can be realized, and its ring of integers is the collection of all the algebraic integers in the field.
Main Result

Theorem

If $p \neq 2$ and $p \nmid \# G$ the Lie algebras $\mathcal{L}(G) \otimes_{\mathbb{F}_p} \mathbb{F}_p$ and $\mathcal{L}(G)_{\mathbb{F}_p}$ are the same if

- the splitting field of $\mathbb{C}[G]$ is \mathbb{Q}, or
- the splitting field of $\mathbb{C}[G]$ is K, an extension of \mathbb{Q} and p splits completely in the ring of integers of K.

The splitting field of $\mathbb{C}[G]$ is the smallest field over which the complex irreducible representations of G can be realized, and its ring of integers is the collection of all the algebraic integers in the field.
Example

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in O_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_{F_{13}}$, and $\mathcal{L}(A_5) \otimes F_{13}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $Z[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{F_{11}}$ is the same as $\mathcal{L}(A_5) \otimes F_{11}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_{F_{13}}$, and $\mathcal{L}(A_5) \otimes_{F_{13}}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{F_{11}}$ is the same as $\mathcal{L}(A_5) \otimes_{F_{11}}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_{\mathbb{F}_{13}}$, and $\mathcal{L}(A_5) \otimes_{\mathbb{F}_{13}}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{\mathbb{F}_{11}}$ is the same as $\mathcal{L}(A_5) \otimes_{\mathbb{F}_{11}}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $\rho = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_{F_{13}}$ and $\mathcal{L}(A_5) \otimes_{F_{13}}$ are not the same.

Example

Let $\rho = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{F_{11}}$ is the same as $\mathcal{L}(A_5) \otimes_{F_{11}}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $L(A_5)_{F_{13}}$, and $L(A_5) \otimes_{F_{13}}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $L(A_5)_{F_{11}}$ is the same as $L(A_5) \otimes_{F_{11}}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_{F_{13}}$ and $\mathcal{L}(A_5) \otimes F_{13}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{F_{11}}$ is the same as $\mathcal{L}(A_5) \otimes F_{11}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_{F_{13}}$, and $\mathcal{L}(A_5) \otimes_{F_{13}}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{F_{11}}$ is the same as $\mathcal{L}(A_5) \otimes_{F_{11}}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_{F_{13}}$, and $\mathcal{L}(A_5)^{\otimes F_{13}}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{F_{11}}$ is the same as $\mathcal{L}(A_5)^{\otimes F_{11}}$.
Example

The splitting field of $\mathbb{C}[A_5]$ is $\mathbb{Q}(\sqrt{5})$ whose ring of integers is $\mathbb{Z}[\sqrt{5}]$.

Example (Let $p = 13$.)

- $x^2 - 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K, i.e., it is a prime ideal.
- $\mathcal{L}(A_5)_F_{13}$, and $\mathcal{L}(A_5) \otimes F_{13}$ are not the same.

Example

Let $p = 11$.

- $x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathcal{L}(A_5)_{F_{11}}$ is the same as $\mathcal{L}(A_5) \otimes F_{11}$.
Example

The splitting field of \(\mathbb{C}[A_5] \) is \(\mathbb{Q}(\sqrt{5}) \) whose ring of integers is \(\mathbb{Z}[\sqrt{5}] \).

Example (Let \(p = 13 \).)

- \(x^2 - 5 \) is irreducible modulo 13,
- the ideal \((13) \) does not factor in \(\mathcal{O}_K \), i.e., it is a prime ideal.
- \(L(A_5)_{F_{13}} \) and \(L(A_5) \otimes F_{13} \) are not the same.

Example

Let \(p = 11 \).

- \(x^2 - 5 \equiv (x + 4)(x + 7) \) (mod 11),
- we get the ideal factorization \((11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7) \).
- the prime 11 splits completely in \(\mathbb{Z}[\sqrt{5}] \).
- \(L(A_5)_{F_{11}} \) is the same as \(L(A_5) \otimes F_{11} \).
Why Most People Do Not Associate With Lie Algebras

If algebras were people...
I'm sorry, I just can't associate with you.
LIE!

2007
© COURTNEY GIBBONS