12. \(V \) is an n-dimensional vector space over \(F \).
 \(T: V \rightarrow V \) is linear transformation.
 Range (\(T \)) and nullspace (\(T \)) are identical.
 Prove that \(n \) is even.

 By Thm 2 on p.71, \(n = \dim V = \text{rank } T + \text{nullity } T \).
 Since range (\(T \)) = nullspace (\(T \)), their dimensions are equal, i.e., \(\text{rank } T = \text{nullity } T = m \geq 0 \) (integer).

 Thus, \(n = \dim V = m + m = 2m \), so \(n \) is even. \(\checkmark \)

13. \(V \) is a vector space.
 \(T: V \rightarrow V \) is linear transformation.
 Prove the following 2 statements are equivalent:
 (a) range (\(T \)) \(\cap \) nullspace (\(T \)) = \(\{0\} \)
 (b) If \(T(Tx) = 0 \), then \(Tx = 0 \).

 \((a) \Rightarrow (b) \): Suppose range (\(T \)) \(\cap \) nullspace (\(T \)) = \(\{0\} \)
 and \(T(Tx) = 0 \). Show \(Tx = 0 \).
 \[T(Tx) = 0 \Rightarrow Tx \in \text{nullspace}(T) \]
 Also, \(Tx \in \text{Range}(T) \)
 So, \(Tx \in \text{Range}(T) \) \(\cap \) nullspace (\(T \))
 Thus, \(Tx = 0 \). \(\checkmark \)

 \((b) \Rightarrow (a) \): Suppose \(T(Tx) = 0 \Rightarrow Tx = 0 \).
 Show range (\(T \)) \(\cap \) nullspace (\(T \)) = \(\{0\} \).
 The given info says that whenever an element is in the range and the kernel, it must be 0.
 Thus, range (\(T \)) \(\cap \) nullspace (\(T \)) = \(\{0\} \). \(\checkmark \)
11. \(V \) - finite dimensional vector space

\[T : V \to V \]

Suppose \(\text{rank}(T) = \text{rank}(T^2) \).

Prove: \(\text{range}(T) \cap \text{nullspace}(T) = \{0\} \).

By #13 on p.74, proving the above is equivalent to proving \(T(T\alpha) = 0 \Rightarrow T\alpha = 0 \), so let's prove the latter.

Since \(\text{rank}(T) = \text{rank}(T^2) \), by the Rank-Nullity Thm,

\[\text{nullity}(T) = \text{nullity}(T^2) \]

(Recall that nullity is the dimension of the kernel.)

Now, \(\text{kernel}(T) \leq \text{kernel}(T^2) \).

Combining the last 2 statements, \(\text{kernel}(T) = \text{kernel}(T^2) \).

Thus, if \(\alpha \in \text{kernel}(T^2) \), i.e. \(T(T\alpha) = T^2\alpha = 0 \),

then \(\alpha \in \text{kernel}(T) \), i.e. \(T\alpha = 0 \). \(\checkmark \)

7. \(V, W \) - vector spaces over \(F \)

\(U : V \to W \) an isomorphism

Prove that \(T \mapsto UTU^{-1} \) is an isomorphism of \(L(V,V) \) onto \(L(W,W) \).

\[T \mapsto UTU^{-1} \]

Method 1:

Show \(T \) is 1-1 by showing \(\text{ker}(T) = 0 \):

Suppose \(T(T\alpha) = UTU^{-1} = 0 \)

\(UTU^{-1} \) are isomorphisms and therefore have full rank, so \(T \) must be 1-1. \(\checkmark \)

Show \(T \) is onto: Let \(S \in L(W,W) \).

I need to show that \(S \) can be mapped to.

Consider \(T(U^{-1}SU) \), where \(U^{-1}SU \in L(V,V) \)

\[T(U^{-1}SU) = UTU^{-1}SU = S \]

Hence, \(\text{Range}(T) = L(W,W) \). \(\checkmark \)

Method 2:

Show \(T \) is an invertible linear transformation by exhibiting its inverse.

\[\varphi^{-1}(S) = U^{-1}SU \], where \(S \in L(W,W) \).

\[\varphi^{-1} \circ \varphi(U) = U^{-1}(UTU^{-1}) \]

To show this is indeed the inverse,

Likewise, \(\varphi \circ \varphi^{-1}(S) = \text{the identity on } L(W,W) \).
Let T be the linear operator on \mathbb{R}^3, the matrix of which in the standard ordered basis is $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$. Find a basis for the range of T and the kernel of T.

Let's row-reduce:

$$
A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = R
$$

$Ax = 0$ and $Rx = 0$ have the same solutions.

$$
\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

$x_1 - x_3 = 0$

$x_2 + x_3 = 0$

Let $x_3 = c$, so solutions look like $(c, -c, c)$. Thus, a basis for the kernel of T is $\{(1, -1, 1)\}$.

A basis for the range of T consists of the linearly independent columns of A.

From our row-reduced matrix, we see that the 3rd column is a linear combination of the 1st two.

Thus, a basis for the range of T is $\{(1, 0, -1), (2, 1, 3)\}$.

W: space of all $n \times 1$ column matrices over F

A: $n \times n$ matrix over F

A defines a linear operator L_A on W through left multiplication: $L_A(x) = Ax$.

Prove that every linear operator on W is left multiplication by some $n \times n$ matrix, i.e., is L_A for some A.

Let T be a linear operator on W. By Thm II, T can be represented by a matrix A, where $T(x) = Ax$. Then T is left multiplication by A, i.e., $T = L_A$.

Now suppose V is an n-dimensional vector space over F, and let B be an ordered basis for V. For each $\alpha \in V$, define $U_\alpha = [\alpha]_B^\uparrow$. Prove that U is an isomorphism of V onto W.

Show U is 1-1:

Let $U_\alpha = [\alpha]_B^\uparrow = 0$.

Let's also suppose $B = \{v_1, \ldots, v_n\}$. Thus, $\alpha = a_1v_1 + \ldots + a_nv_n$ for some $a_i, i = 1, \ldots, n$.

Rewriting, $U_\alpha = U(a_1v_1 + \ldots + a_nv_n) = [\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}] = 0$. Thus, $a_1 = \ldots = a_n = 0 \Rightarrow \alpha = 0$.

This means $\ker(U)$ is 0, and hence U is 1-1.

Show U is onto:

Let $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in W$. Is there an $\alpha \in V$ such that $U_\alpha = X$?

Yes. Let $\alpha = x_1v_1 + \ldots + x_nv_n$. (Note that $\alpha \in V$)

Then $U_\alpha = [\alpha]_B^\uparrow = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

Since X is a generic element of W, U is onto, i.e. $\text{range}(U) = W$.

Thus U is an isomorphism.

12. V is an n-dimensional vector space over F.

$B = \{\alpha_1, \ldots, \alpha_n\}$ is an ordered basis for V.

(a) According to Thm 1, there is a unique linear operator T on V such that

$T\alpha_j = \alpha_{j+1}$, $j = 1, \ldots, n-1$

$T\alpha_n = 0$.

What is the matrix of T in the ordered basis B?
(a) continued

\[

t_1(x_1) = x_2 = 0x_1 + 1x_2 + 0x_3 + \ldots + 0x_n \\
t_1(x_2) = x_3 = 0x_1 + 0x_2 + 1x_3 + 0x_4 + \ldots + 0x_n \\
\vdots \\
t_1(x_n) = 0 = 0x_1 + \ldots + 0x_n \\
\]

\[
A = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0 \\
\end{bmatrix}
\]

(b) Prove that \(T^n = 0 \), but \(T^{n-1} \neq 0 \).

(I need to show \(T^n \) is the zero map, but \(T^{n-1} \) is not.)

\[
T^2 x_j = x_{j+2} \quad j = 1, \ldots, n-2
\]

\[
T^2 x_{n-1} = T(T x_{n-1}) = T(x_n) = 0
\]

\[
T^2 x_n = T(T x_n) = T(0) = 0
\]

\[
T^3 x_j = x_{j+3} \quad j = 1, \ldots, n-3
\]

\[
T^3 x_{n-2} = T(T x_{n-2}) = T^2(x_{n-1}) = 0
\]

\[
T^3 x_{n-1} = T(T^2 x_{n-1}) = T(0) = 0
\]

\[
T^3 x_n = T^2 (T x_n) = T^2(0) = 0
\]

\[
\vdots
\]

\[
T^{n-1} x_j = x_{j+n-1} \quad j = 1
\]

\[
T^{n-1} x_2 = T(T^{n-2} x_2) = T(x_n) = 0
\]

Thus, \(T^{n-1} \) is not the zero map.

\[
T^n x_j = T(T^{n-1} x_j) = T(0) = 0
\]

for \(j = 2, \ldots, n \).

Thus, \(T^n \) is the zero map.
Let S be any linear operator on V such that $S^n = 0$ but $S^{n-1} \neq 0$. Prove that there is an ordered basis B' for V such that the matrix of S in the ordered basis B' is the matrix A of part (a).

We will show such a basis exists by constructing it.

Let $v \in V$ such that $S^{n-1}v \neq 0$. We know such a vector exists since S^{n-1} is not the zero map.

Claim: \(\{v, Sv, \ldots, S^{n-1}v\} \) is a basis for V.

Since V is finite dimensional, it suffices to show that these vectors are linearly independent.

Suppose \(c_0v + c_1Sv + \ldots + c_{n-1}S^{n-1}v = 0 \).

Then \(S^{n-1}(c_0v + c_1Sv + \ldots + c_{n-1}S^{n-1}v) = 0 \) also.

\[S^{n-1}(c_0v) = 0 + \ldots + 0 \]

So, \(c_0S^{n-1}v = 0 \), but \(S^{n-1}v \neq 0 \) by above assumption, so \(c_0 \) is 0.

Now, consider \(c_1Sv + \ldots + c_{n-1}S^{n-1}v = 0 \).

Then \(S^{n-2}(c_1Sv + \ldots + c_{n-1}S^{n-1}v) = 0 \) also.

\[S^{n-2}(c_1Sv) = 0 + \ldots + 0 \]

So, \(c_1S^{n-2}(Sv) = 0 \)

\[c_1S^{n-1}v = 0 \), but \(S^{n-1}v \neq 0 \), so \(c_1 = 0 \).

Continuing in the same manner, \(c_0 = c_1 = c_2 = \ldots = c_{n-1} = 0 \), so \(\{v, Sv, \ldots, S^{n-1}v\} \) is a lin. ind. set, and hence a basis for V.

Note that \(\{v, Sv, \ldots, S^{n-1}v\} \) satisfies the properties in part (a).

Let $B' = \{v, Sv, \ldots, S^{n-1}v\}$.

Then the matrix of S in the ordered basis B' is the same matrix as that in part (a).

Prove that if M and N are $n \times n$ matrices over F such that $M^n = N^n = 0$, but $M^{n-1} \neq 0$ and $N^{n-1} \neq 0$, then M and N are similar.

Just apply part (c).