These notes are incomplete – they will be updated regularly.

LIE GROUPS, LIE ALGEBRAS, AND REPRESENTATIONS
SPRING SEMESTER – 2008

RICHARD A. WENTWORTH

Contents

1. Lie groups and Lie algebras 2
 1.1. Definition and examples of Lie groups 2
 1.2. Left invariant vector fields and Lie algebras 3
 1.3. The exponential map 6
2. Representations of Lie groups and Lie algebras 9
 2.1. Definitions and examples 9
 2.2. The adjoint representation 9
 2.3. Semisimplicity and Schur’s lemma 9
 2.4. Haar measure and Weyl’s trick 9
 2.5. Characters 9
 2.6. Examples 9
 2.7. Peter-Weyl theorem 9
3. Maximal tori 9
 3.1. Existence 9
 3.2. Weyl group 9
 3.3. Cartan subalgebras 9
4. Classification of complex semisimple Lie algebras 9
 4.1. Roots 9
 4.2. Dynkin diagrams 9
 4.3. Stiefel diagrams 9
 4.4. Classification 9
5. Weyl character formula 9
 5.1. Weights and multiplicities 9
 5.2. Examples 9

... without fantasy one would never become a mathematician, and what gave me a place among the mathematicians of our day, despite my lack of knowledge and form, was the audacity of my thinking. - Sophus Lie

Date: February 4, 2008 (last revision).
1. Lie groups and Lie algebras

1.1. Definition and examples of Lie groups.

Definition 1.1. A (real, complex) Lie group G is a group that has the structure of a (real, complex) differentiable manifold so that the multiplication and inverse maps are smooth.

Some examples:

- The simplest Lie group is perhaps \mathbb{R} with its additive structure. The simplest compact example is the circle $U(1) = \mathbb{R}/\mathbb{Z}$. More generally, take finite dimensional vector spaces such as \mathbb{R}^n, and those vector spaces divided by lattices \mathbb{R}^n/Γ, $\Gamma \cong \mathbb{Z}^n$.

- Let V be an n-dimensional vector space over $K = \mathbb{R}$, \mathbb{C}, or \mathbb{H}. Then $GL(V) = \{\text{invertible endomorphisms } A : V \to V\}$ Note that invertibility is equivalent to the non-vanishing of $\det A$, which is smooth (in fact, polynomial) in the entries of A. Hence, $GL(V)$ is an open submanifold of the space of all endomorphisms $\text{End}(V)$. The manifold structure on the latter comes from the identification with the vector space of matrix entries. We will mostly denote these groups $GL(n, \mathbb{R})$, $GL(n, \mathbb{C})$, and $GL(n, \mathbb{H})$.

- Let $SL(V) \subset GL(V)$ denote the subgroup with $\det A = 1$. To see the manifold structure, by the implicit function theorem we need to show that 1 is a regular value for the determinant map. By an important formula, at a point A with $\det A = 1$,

\[D \det(A) X = D \log \det(A) X = \text{Tr}(A^{-1}X) \]

and this is clearly surjective, since it is not identically zero.

- Let $O(n) \subset GL(n, \mathbb{R})$ be the group of length preserving matrices. This is the *orthogonal group*. We have

\[O(n) = \{A \in GL(n, \mathbb{R}) : AA^T = I\} \]

To see the manifold structure, we need to show that zero is a regular value for the map $F : GL(n, \mathbb{R}) \to \text{Sym}(n, \mathbb{R})$ defined by $F(A) = AA^T - I$, where $\text{Sym}(n, \mathbb{R})$ are the symmetric matrices. We have

\[DF(A)X = XA^T + AX^T \]

and this is surjective, for if Y is symmetric, $A \in O(n)$, and $X = YA/2$, then $DF(A)X = Y$.

- In a similar way, one defines the *unitary* and *symplectic* groups $U(n)$ and $\text{Sp}(n)$. More precisely, these are subgroups of $GL(n, \mathbb{C})$ and $GL(n, \mathbb{H})$ preserving hermitian and quaternionic norms. E.g.

\[U(n) = \{A \in GL(n, \mathbb{C}) : AA^* = I\} \]

where $A^* = \overline{A}^T$.

- We can also define the groups $SO(n)$ and $SU(n)$ by the requirement $\det A = 1$.

Notice the following:
• The real groups $SU(n)$ and $SL(n, \mathbb{R})$ are both subgroups of the complex group $SL(n, \mathbb{C})$.

• $SU(n)$ is compact whereas $SL(n, \mathbb{R})$ is non-compact.

• $SU(n) \cap SL(n, \mathbb{R}) = SO(n)$.

This structure is an important feature that holds in great generality.

For example, suppose $A \in SU(2)$. Then

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Since $A^* = A^{-1}$, we have

$$SU(2) = \left\{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in GL(2, \mathbb{C}) : |a|^2 + |b|^2 = 1 \right\}$$

In this way, we see that diffeomorphically $SU(2) \simeq S^3$. Notice that $U(1) \subset SU(2)$ by the requirement $b = 0$. The quotient space $SU(2)/U(1) \simeq S^2$, and this is known as the Hopf fibration. We can see this as follows. $SU(2)$ acts on $S^2 = \mathbb{P}^1$ by

$$\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} [z_1, z_2] = [az_1 + bz_2, -\bar{b}z_1 + \bar{a}z_2]$$

This action is clearly transitive, and the stabilizer of $[1, 0]$ is precisely the $U(1)$ above. This realizes \mathbb{P}^1 as a homogeneous space.

The requirement that $a, b \in \mathbb{R}$ implies

$$SU(2) \cap SL(2, \mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL(2, \mathbb{R}) : a^2 + b^2 = 1 \right\} \simeq U(1)$$

On the other hand, $SL(2, \mathbb{R})$ acts on the upper half space \mathbb{H}^2 (not the quaternions!) by linear fractional transformations:

$$\tau = (x, y) \mapsto A\tau = \frac{a\tau + b}{c\tau + d}$$

It is easy to see that this is a transitive action, and that the stabilizer of $\tau = i$, say, is the $U(1)$ above. In this way we see that $SL(2, \mathbb{R})/U(1)$ is diffeomorphic to the upper half plane, which is an open set in $S^2 = SU(2)/U(1)$. This is an example of the Borel embedding.

1.2. Left invariant vector fields and Lie algebras.

Definition 1.2. Let G be a connected Lie group, $\mathfrak{g} = T_eG$. Then \mathfrak{g} is called the Lie algebra of G.

An important fact is that the tangent bundle of a Lie group is trivial $TG \simeq G \times \mathfrak{g}$. A trivialization is given by the following. Any $g \in G$ gives rise to two diffeomorphisms of G by multiplication on the left or on the right.

$$l_g : G \to G : l_g(h) = gh, \quad r_g : G \to G : r_g(h) = hg$$

Now the derivative $Dl_g : T_hG \to T_{gh}G$. We make the following

Definition 1.3. A vector field X_g on G is called left invariant if $Dl_g(X_h) = X_{gh}$ for all $g, h \in G$.
The space of left invariant vector fields is isomorphic to \(\mathfrak{g} \) by setting \(X_g = Dl_g(X) \), for \(X \in \mathfrak{g} \). This gives the desired trivialization. We will use the abbreviation l.i.v.f. for “left invariant vector field”.

Remark 1.4. For a matrix group such as the ones we have considered above, \(Dl_g \) is simply multiplication by \(g \). Hence, \(X_g = gX \).

For any smooth manifold \(M \), there is a product on the space of vector fields \(\mathfrak{X}(M) \) on \(M \) defined as follows. For \(X, Y \in \mathfrak{X}(M) \) and a function \(f \) on \(M \), let

\[
[X, Y](f) = X(Y(f)) - Y(X(f))
\]

To be explicit, in local coordinates \(e^i \), write

\[
X = \sum_{i=1}^{n} X^i \frac{\partial}{\partial e^i} \quad Y = \sum_{i=1}^{n} Y^i \frac{\partial}{\partial e^i}
\]

Then in these coordinates

\[
[X, Y] = \sum_{i,j=1}^{n} \left\{ X^i \frac{\partial Y^j}{\partial e^i} - Y^i \frac{\partial X^j}{\partial e^i} \right\} \frac{\partial}{\partial e^j}
\]

The bracket satisfies

1. \([X, Y] = -[Y, X]\)
2. \([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 \) (Jacobi identity).

Given a Lie group, \(\mathfrak{g} = T_eG \) has been identified with the space of l.i.v.f.‘s, and so \(\mathfrak{g} \) inherits the bracket operation. Namely, define \([\ , \]\) on \(\mathfrak{g} \) by

\[
[X, Y]_{\mathfrak{g}} = [X_g, Y_g]\bigg|_{g=e}
\]

We now abstract this.

Definition 1.5. A finite dimensional real (complex) vector space \(\mathfrak{g} \) with a bilinear multiplication \([\ , \]_{\mathfrak{g}}\) satisfying properties (1) and (2) above is called a real (complex) Lie algebra.

Hence, if \(G \) is a Lie group then \(\mathfrak{g} = T_eG \) with bracket (1.4) is a Lie algebra. Conversely, every (finite dimensional) Lie algebra arises in this way.

Remark 1.6. If \(\mathfrak{g} \) is a real Lie algebra, the complexification \(\mathfrak{g}^C = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} \) is a complex Lie algebra. This is an important construction.

Proposition 1.7. For matrix groups, the Lie bracket is given by the commutator of matrix multiplication.

Proof. It suffices to prove this for \(GL(n) \). For coordinates we choose the elementary matrices: \(x^{ij}(A) = A^{ij} \). If \(X = \sum_{i,j=1}^{n} X^{ij} \frac{\partial}{\partial x^{ij}} \), then by Remark 1.4, \(X_g = \sum_{i,j=1}^{n} g^{ik} X^{kj} \frac{\partial}{\partial x^{ij}} \). It follows that

\[
\frac{\partial X_g^{pq}}{\partial x^{ij}} \bigg|_{g=e} = \delta^{pq} X^{ij}
\]
Hence, plugging into the expression above,

\[[X_g, Y_g]_{g=e} = \sum_{i,j,p,q=1}^{n} \{ X_{ij} \frac{\partial Y_{pq}}{\partial x_{ij}} - Y_{ij} \frac{\partial X_{pq}}{\partial x_{ij}} \} \frac{\partial}{\partial x_{pq}} \]

\[= \sum_{i,j,p,q=1}^{n} \{ X_{ij} \delta_{pi} Y_{jq} - Y_{ij} \delta_{pi} X_{jq} \} \frac{\partial}{\partial x_{pq}} \]

\[= \sum_{i,p,j,q=1}^{n} \{ X_{pj} Y_{jq} - Y_{pj} X_{jq} \} \frac{\partial}{\partial x_{pq}} \]

\[= XY - YX \]

□

Examples:

• If \(G \) is abelian, \(g \) is a \textit{trivial} Lie algebra, i.e. all brackets vanish. Indeed, suppose \(G \) is a matrix group. If \(g(t) \) and \(h(s) \) are curves through the identity with \(\dot{g}(0) = X, \dot{h}(0) = Y \), then

\[\frac{\partial}{\partial t} \bigg|_{t=0} \frac{\partial}{\partial s} \bigg|_{s=0} (ghg^{-1}h^{-1}) = \frac{\partial}{\partial t} \bigg|_{t=0} (gYg^{-1} - Y) = XY - YX \]

For the general argument, see Proposition 1.13 below.

• Since \(\text{GL}(V) \) is an open subset of the vector space of endomorphisms, \(\mathfrak{gl}(V) \simeq \text{End}(V) \). By Proposition 1.7, the Lie algebra structure is simply the commutator of matrix multiplication. Suppose \(\dim V = n \). A basis is given by the elementary matrices \(\{ e(i, j) \}_{i,j=1}^{n} \), i.e.

\[(e(i, j)e(p, q))_{kl} = \sum_{r=1}^{n} (e(i, j))_{kr} (e(p, q))_{rl} = \sum_{l=1}^{n} \delta_{ik} \delta_{rj} \delta_{pr} \delta_{ql} = \delta_{ik} \delta_{jp} \delta_{ql} = \delta_{jp} e(i, q) \]

we have

\[(1.5) \quad [e(i, j), e(p, q)] = \delta_{jp} e(i, q) - \delta_{qi} e(p, j) \]

• From (1.1) we see that

\[\mathfrak{sl}(V) = \{ X \in \text{End}(V) : \text{Tr}(X) = 0 \} \]

Notice that any endomorphism can be decomposed into traceless and trace pieces:

\[X = \left(X - \frac{1}{n} \text{Tr} X \cdot I \right) + \frac{1}{n} \text{Tr} X \cdot I \]

Hence, if \(V \) is a vector space over \(\mathbb{K} \) we have a canonical decomposition of Lie algebras:

\[\mathfrak{gl}(V) = \mathbb{K} \oplus \mathfrak{sl}(V) \]

• From (1.2) we see that

\[\mathfrak{o}(n) = \{ X \in \text{End}(\mathbb{R}^n) : X^T = -X \} \]
i.e. the skew-symmetric matrices. Also, \(\mathfrak{so}(n) \) consists of the traceless, skew-symmetric matrices. Similarly,

\[
\mathfrak{u}(n) = \{ X \in \text{End}(\mathbb{C}^n) : X^* = -X \}
\]

or skew-hermitian matrices, and \(\mathfrak{su}(n) \) are traceless, skew-hermitian.

- A basis for \(\mathfrak{su}(2) \) is given by

\[
\sigma_1 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad \sigma_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \sigma_3 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}
\]

with commutation relations

\[
[\sigma_1, \sigma_2] = -\sigma_3 \quad [\sigma_2, \sigma_3] = -\sigma_1 \quad [\sigma_3, \sigma_1] = -\sigma_2
\]

These (up to scale) are the relations for the cross product on \(\mathbb{R}^3 \).

- For \(\mathfrak{sl}(2, \mathbb{R}) \), take

\[
X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\]

and one checks the same commutation relations

\[
[X, Y] = 2Y \quad [X, Z] = -2Z \quad [Y, Z] = X
\]

Notice the 2-dimensional subalgebras. It is clear that \(\mathfrak{su}(2) \) does not have 2-dimensional subalgebras, so \(\mathfrak{sl}(2, \mathbb{R}) \) and \(\mathfrak{su}(2) \) are not isomorphic. On the other hand, their complexifications are:

\[
\mathfrak{su}(2)^C \simeq \mathfrak{sl}(2, \mathbb{R})^C \simeq \mathfrak{sl}(2, \mathbb{C})
\]

1.3. The exponential map.

Definition 1.8. A one parameter subgroup (1-PS) of a Lie group \(G \) is a homomorphism \(\mathbb{R} \to G \).

A 1-PS is determined by an element of \(\mathfrak{g} \) in the following way. Given \(X \in \mathfrak{g} \), let \(\gamma(t) \) be a solution to the differential equation

\[
\dot{\gamma}(t) = X_{\gamma(t)} \quad \gamma(0) = e
\]

i.e. \(\gamma(t) \) is the flow through the identity of the l.i.v.f. of \(X \).

Lemma 1.9. The map \(t \mapsto \gamma(t) \) defines a homomorphism \(\mathbb{R} \to G \). In particular, \(\gamma(-t) = \gamma(t)^{-1} \).

Proof. We need to show \(\gamma(s + t) = \gamma(s)\gamma(t) \) for all \(t, s \). Fix \(s \) and let

\[
\sigma(t) = \gamma(s)\gamma(t) \quad \rho(t) = \gamma X(s + t)
\]

Then

\[
\dot{\sigma}(t) = Dl_{\gamma(s)}\dot{\gamma}(t) = Dl_{\gamma(s)}X_{\gamma(t)}
\]

\[
= Dl_{\gamma(s)}Dl_{\gamma(t)}X = Dl_{\gamma(s)\gamma(t)}X
\]

\[
= X_{\sigma(t)}
\]
Hence, \(\sigma(t) \) is the integral curve of the l.i.v.f. of \(X \) through \(\sigma(0) = \gamma(s) \). On the other hand,
\[
\dot{\rho}(t) = \dot{\gamma}(s + t) = X_{\gamma(s + t)} = X_{\rho(t)}
\]
So \(\rho(t) \) is the integral curve of the l.i.v.f. of \(X \) through \(\rho(0) = \gamma(s) \). By the uniqueness of integral curves, these must coincide.

Lemma 1.10. Let \(\gamma(t) \) be the flow of \(X_g \) through the identity. Then
\[
[X, Y]_g = \frac{d}{dt} \bigg|_{t=0} Dr_{\gamma(-t)}Y_{\gamma(t)}
\]

Proof. Notice that \(\Phi_t(g) = g\gamma(t) \) is the flow of \(X_g \) through the point \(g \). Moreover, \(D\Phi_t Y_g = Dr_{\gamma(t)}Y_g \). Hence, by definition of the Lie derivative
\[
[X, Y]_g = L_X Y_t = \frac{d}{dt} \bigg|_{t=0} D\Phi_{-t}Y_{\gamma(t)} = \frac{d}{dt} \bigg|_{t=0} Dr_{\gamma(-t)}Y_{\gamma(t)}
\]

Definition 1.11. The exponential map \(\exp : \mathfrak{g} \to G \) is defined by \(\exp(X) = \gamma(1) \), where \(\gamma(t) \) is the flow of \(X_g \) through the identity.

Notice that \(d\exp(0) \) is the identity. Hence, by the implicit function theorem, \(\exp \) is a local diffeomorphism. Here is the justification for the terminology:

Claim 1. Let \(G \) be a matrix group. Then
\[
\exp(X) = \sum_{m=0}^{\infty} \frac{X^m}{m!}
\]

Proof. Let \(E(X) \) be the right hand side, and \(\sigma(t) = E(tX) \). Then \(\sigma(0) = I \) and \(\dot{\sigma}(t) = \sigma(t)X = X_{\sigma(t)} \). Hence, \(\sigma(t) \) is the flow of the l.i.v.f. of \(X \), and the claim holds.

Here is one use of the exponential map.

Proposition 1.12. Let \(\phi : H \to G \) be a homomorphism of Lie groups with \(H \) connected. The derivative \(D\phi(e) : \mathfrak{h} \to \mathfrak{g} \) is a homomorphism of Lie algebras. Moreover, any other homomorphism with the same derivative is equal to \(f \).

Proof. We first show that the derivative \(D\phi : T_hH \to T_{\phi(h)}G \) takes l.i.v.f.’s to l.i.v.f.’s. Indeed, if \(X \in \mathfrak{h} \), \(Y = D\phi(e)X \), we need to show that \(D\phi(h)X_h = Y_{\phi(h)} \). Let \(\gamma(t) \) be a curve in \(H \), \(\gamma(0) = e \), \(\dot{\gamma}(0) = X \). Then
\[
\frac{d}{dt} \bigg|_{t=0} \phi(h\gamma(t)) = D\phi(h)Dl_hX = D\phi(h)X_h
\]
On the other hand,
\[
\frac{d}{dt} \bigg|_{t=0} \phi(h)\phi(\gamma(t)) = Dl_{\phi(h)} \frac{d}{dt} \bigg|_{t=0} \phi(\gamma(t)) = Dl_{\phi(h)}D\phi(e)X = Dl_{\phi(h)}Y = Y_{\phi(h)}
\]
Since $\phi(h \gamma(t)) = \phi(h) \phi(\gamma(t))$, this proves the claim. It follows that

$$D\phi(e)[X, Y]_h = D\phi(h)[X_h, Y_h] \bigg|_{h=e}$$

$$= [D\phi(h)X_h, D\phi(h)Y_h] \bigg|_{h=e}$$

$$= [(D\phi(e)X)_{\phi(h)}, (D\phi(e)Y)_{\phi(h)}] \bigg|_{h=e}$$

$$= [D\phi(e)X, D\phi(e)Y]_g$$

Hence, $D\phi(e)$ is a homomorphism. Since l.i.v.f.'s are sent to l.i.v.f.'s, ϕ maps flows of these vector fields to the corresponding flows. The following diagram therefore commutes:

\begin{align*}
 \mathfrak{h} & \xrightarrow{\exp} H \\
 D\phi(e) & \downarrow \quad \quad \downarrow \phi \\
 \mathfrak{g} & \xrightarrow{\exp} G
\end{align*}

Since exp is a diffeomorphism on a neighborhood U about the origin, it follows from this diagram that if $D\tilde{\phi}(e) = D\phi(e)$, then $\tilde{\phi} = \phi$ on U. Now consider

$$\tilde{H} = \left\{ h \in H : \tilde{\phi}(h) = \phi(h) \right\}$$

This set is clearly closed and contains U. If $h \in \tilde{H}$, then since ϕ is a homomorphism, hU is an open neighborhood of h contained in \tilde{H}. Hence, \tilde{H} is open and closed and nonempty. It must equal H by connectivity.

\[\square \]

Proposition 1.13. The Lie algebra of an abelian Lie group is trivial. Moreover, the exponential map of an abelian Lie group is a homomorphism.

Proof. Fix $X, Y \in \mathfrak{g}$, and let $\gamma(t) = \exp(tX)$. If G is abelian, then $l_g = r_g$ and $Dl_g = Dr_g$. Also, recall from Lemma 1.9 that $\gamma(-t) \gamma(t) = e$. Now by Lemma 1.10 we have

\[
[X, Y]_g = L_{X_g} Y_g \bigg|_{g=e} = \frac{d}{dt} \bigg|_{t=0} D\gamma(-t) Y_{\gamma(t)}
\]

\[
= \frac{d}{dt} \bigg|_{t=0} Dl_{\gamma(-t)} Y_{\gamma(t)}
\]

\[
= \frac{d}{dt} \bigg|_{t=0} Dl_{\gamma(-t)} Dl_{\gamma(t)} Y
\]

\[
= \frac{d}{dt} \bigg|_{t=0} Dl_{\gamma(-t)\gamma(t)} Y
\]

\[
= \frac{d}{dt} \bigg|_{t=0} Dl_e Y = \frac{d}{dt} \bigg|_{t=0} Y = 0
\]
To prove the second statement, notice that the multiplication map \(\mu : G \times G \to G \) is a homomorphism if and only if \(G \) is abelian. Also, \(D\mu : g \times g \to g : (X,Y) \mapsto X + Y \). The result now follows from the commutativity of the diagram (1.6).

2. **Representations of Lie groups and Lie algebras**

2.1. **Definitions and examples.**

2.2. **The adjoint representation.** We may think of one vector field acting on others. Namely, for \(X \in \mathfrak{X}(M) \) there is a linear map

\[
\text{ad} : \mathfrak{X}(M) \to \text{End} \mathfrak{X}(M) : \text{ad}_X(Y) \mapsto [X,Y]
\]

satisfying the properties for any function \(f \) on \(M \),

\[
\text{ad}_fX = f \text{ad}_X \quad \text{ad}_X(fY) = f \text{ad}_X(Y) + X(f)Y
\]

2.3. **Semisimplicity and Schur’s lemma.**

2.4. **Haar measure and Weyl’s trick.**

2.5. **Characters.**

2.6. **Examples.**

2.7. **Peter-Weyl theorem.**

3. **Maximal tori**

3.1. **Existence.**

3.2. **Weyl group.**

3.3. **Cartan subalgebras.**

4. **Classification of complex semisimple Lie algebras**

4.1. **Roots.**

4.2. **Dynkin diagrams.**

4.3. **Stieffel diagrams.**

4.4. **Classification.**

5. **Weyl character formula**

5.1. **Weights and multiplicities.**

5.2. **Examples.**
E-mail address: wentworth@jhu.edu