Story so far

Chapter 1
Algebra in \(\mathbb{R}^2, \mathbb{R}^3 \)

Chapter 2
Geometry in \(\mathbb{R}^2, \mathbb{R}^3 \)

Reflection, Projection

Next on menu

Chapter 3
Matrices

Chapter 4
Linear Transform.

Chapter 5
Solving Systems

Chapter 2
Linear Transform.

Chapter 1
Algebra in \(\mathbb{R}^n \)

Chapter 4
Generalization to \(\mathbb{R}^n \)

Chapter 3
Generalization to \(\mathbb{R}^n \)

Once we get past this, we can do more practical examples.

Chapter 7, 8, 9.
What did we do?

We wanted to generalize properties of \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) to \(\mathbb{R}^n \).

We introduced the notion of vector space, which generalized this.

Then we noted that \(\mathbb{R}^n \) is a vector space.

What are other examples of vector spaces which are in \(\mathbb{R}^n \)?

We defined a subspace, which is nothing but a vector space itself or something which is inside \(\mathbb{R}^n \).

eg. a line through \((0,0)\) in \(\mathbb{R}^2 \)

a plane passing through \((0,0,0)\) in \(\mathbb{R}^3 \)

We discussed that if \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a linear transformation, then the kernel of \(T = \{ x \in \mathbb{R}^n / T(x) = 0 \} \) and
Image \(T = \{ \vec{y} \in \mathbb{R}^m / \vec{y} = Tx \} \) for some \(x \in \mathbb{R}^n \)

\(x \) and \(y \) are subspaces of \(\mathbb{R}^n \) and \(\mathbb{R}^m \) respectively.

To check if something is a subspace of a vector space, because it sits inside a bigger space we only need to check 3 properties.

Eq: \(W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 / x_1 + x_2 + x_3 = 0 \right\} \)

is subspace because:

\[0 + 0 + 0 = 0 \Rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in W \]

For any \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \), \(y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \in W \) \(\Rightarrow x_1 + x_2 + x_3 = 0 \)

\(y_1 + y_2 + y_3 = 0 \)

\[x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix} \in W, \quad \Leftrightarrow \quad (x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3) = 0 \]
Similarly, \(k \in \mathbb{R}, \ x \in \mathbb{W} \) then
\[
\begin{align*}
x_1 + x_2 + x_3 &= 0 \\
\Rightarrow& \ k(x_1 + x_2 + x_3) = 0 \\
\Rightarrow& \ k \in \mathbb{R}, \ k(x_1 + kx_2 + kx_3) = 0
\end{align*}
\]
\(\Rightarrow\) \(k \cdot x \in \mathbb{W} \).

Alternatively, if we note that
\[
\mathbb{W} = \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0 \}
\]

then
\[
\mathbb{W}' = \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \}
\]

\(=\) \(\ker [1 \ 1 \ 1] \)

or it is the kernel of the transformation \(T: \mathbb{R}^3 \to \mathbb{R}^3 \) defined as
\[
\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = [1 \ 1 \ 1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
\]

is \(\mathbb{W}' = \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1 \} \)

a subspace of \(\mathbb{R}^3 \)?
Given any vectorspace, it can be described completely by its basis.
For example.

If \[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix} \in W
\]

Then \[x_1 + x_2 + x_3 = 0\]

\(\Rightarrow\) Let \(x_2 = s\), \(x_3 = t\) for \(s, t \in \mathbb{R}\)

Then \(x_1 = -s - t\)

\(\Rightarrow\) \[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix} = \begin{bmatrix}
 -s-t \\
 s \\
 t
\end{bmatrix} = s \begin{bmatrix}
 -1 \\
 1 \\
 0
\end{bmatrix} + t \begin{bmatrix}
 -1 \\
 0 \\
 1
\end{bmatrix}
\]

\(\Rightarrow\) \(W = \text{Span} \left\{ \begin{bmatrix}
 -1 \\
 0 \\
 1
\end{bmatrix}, \begin{bmatrix}
 1 \\
 0 \\
 0
\end{bmatrix} \right\} \)

Further look at, \(\left\{ \begin{bmatrix}
 1 \\
 0 \\
 0
\end{bmatrix}, \begin{bmatrix}
 0 \\
 0 \\
 1
\end{bmatrix} \right\} \). It is

is a linearly independent.
One can note this by observing that they are not scalar multiples of each other on that
\[a_1 \begin{bmatrix} -1 \\ 1 \\ 6 \end{bmatrix} + a_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
\[\Rightarrow \begin{bmatrix} -1 & -1 & 0 \\ 1 & 1 & 0 \\ 6 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]
\[\Rightarrow \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
\[\Rightarrow a_1 = 0 = a_2 \]
\[\Rightarrow \text{Ker} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \text{ is a basis of } W, \]

What is so special about the basis?
THM: Let \(V \) be a vector space (or a subspace) and \(\{v_1, v_2, \ldots, v_k\} \) \(\subseteq V \). Then \(\{v_1, v_2, \ldots, v_k\} \)
is a basis of V if and only if
for every element $v \in V$ can be written uniquely as a linear combination
of v_1, \ldots, v_k, that is,

$$v = a_1 v_1 + \cdots + a_k v_k$$

for some $v_1, \ldots, v_k \in \mathbb{R}$.

This means that if I fix a basis and $\{v_1, \ldots, v_k\} \subseteq V$
and write down a k-tuple of real numbers $[c_1 \ldots c_k]$, then there can
be only one element of V described by these scalars.

$$v = a_1 v_1 + \cdots + a_k v_k$$

We will see how this can be useful in a bit. But before that,

note V can have more than one basis.