If we fix any orthonormal basis \(\{v_1, v_2, \ldots, v_k\} \) of \(V \),

then \(\text{proj}_V x = \left(\frac{x \cdot v_1}{v_1 \cdot v_1} \right) v_1 + \ldots + \left(\frac{x \cdot v_k}{v_k \cdot v_k} \right) v_k \).

Remember we wanted to use this to do approximation methods.

We need to make sure our definition have the correct properties.

Let \(V \subseteq \mathbb{R}^n \) be a subspace, the orthogonal complement of \(V \) in \(\mathbb{R}^n \) is defined as \(V^\perp = \{ x' \in \mathbb{R}^n / x' \cdot v = 0 \text{ for all } v \in V \} \).

Then \(V^\perp \) is also a subspace of \(\mathbb{R}^n \).

and

- a) \(V \cap V^\perp = \{ 0 \} \)
- b) \(\dim V + \dim V^\perp = n \)
- c) \((V^\perp)^\perp = V \)
Pythagorean thm

If \(x, y \in \mathbb{R}^n \) are orthogonal

\[\text{if and only if} \quad \| x + y \|^2 = \| x \|^2 + \| y \|^2 \]

Thm

If \(V \) is a subspace of \(\mathbb{R}^n \), and vector \(x \) in \(\mathbb{R}^n \) then

\[\| \text{proj}_V x \| \leq \| x \| \]

Reason:

We know by Pythagorean thm.

\[\| x \|^2 = \| x - \text{proj}_V x \|^2 + \| \text{proj}_V x \|^2 \]

or

\[\| x \|^2 \geq \| \text{proj}_V x \|^2 \]

Then in order to do approximation
we need to make sure we always can have a orthogonal / orthonormal basis! (Note it is easy to go from orthogonal set to orthonormal by just dividing by their length.)
Thm: Let $x \in \mathbb{R}^n$ and V be a subspace of \mathbb{R}^n.

Then: $||x^l - \text{proj}_V x^l|| \leq ||x^l - v||$ for all $v \in \mathbb{R}^n$.

Proof: follows from pythagorean thm.

Therefore, now if we want to imitate the approximation method in \mathbb{R}^3 to \mathbb{R}^n, we need to be able to compute $\text{proj}_V x$.

This however will work only if we know how to compute find an orthogonal basis of V.

* Gram-Schmidt Method is a method by which we start with any basis E_1, \ldots, E_k of a subspace V of \mathbb{R}^n and obtain an orthonormal basis of V.

Then: one way to find the approximation of $Ax^l = b$ when A is a $m \times n$ matrix $\iff A^T A$ is inconsistent is to solve for $x^* = \text{proj}_{\text{Im} A} b$.
Alternately, a few observations will tell us that. We don't need to actually compute the projection at all.

Fact 1. \(\bar{V} \cdot \bar{X} = \bar{V}^T \bar{X} \)

\[
\begin{bmatrix}
1 \\
0 \\
3
\end{bmatrix} \cdot \begin{bmatrix}
2 \\
1 \\
3
\end{bmatrix} = 11 \quad \text{and} \quad \begin{bmatrix}
10 \\
3
\end{bmatrix} \begin{bmatrix}
2 \\
1 \\
3
\end{bmatrix} = 11
\]

Fact 2: \(\text{Im} \)

Definition: Let \(\bar{V} \)

Fact 2: \((\text{Im} A)^\perp = \text{Ker} A^T \)

Why? \((\text{Im} A)^\perp = \{ \bar{X} \in \mathbb{R}^m / \bar{X}, \bar{Y} = 0 \} \) for all \(\bar{Y} \in \text{Im} \bar{A} \)

Let \(A^T = [\bar{v}_1 \ldots \bar{v}_n] \)

Then \((\text{Im} A)^\perp = \{ \bar{X} \in \mathbb{R}^m / \bar{v}_1^T \bar{X} = 0, \ldots, \bar{v}_n^T \bar{X} = 0 \} \)
Therefore \((\text{Im } A)^\perp = \{ \mathbf{x} \in \mathbb{R}^m \mid \begin{bmatrix} v_1^T \\ \vdots \\ v_n^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \}\)

\[= \{ \mathbf{x} \in \mathbb{R}^m \mid A^T \mathbf{x} = \mathbf{0} \}\]

\[= \ker A^T \]

Similarly, \((\ker A)^\perp = \text{Im } A^T\)

Anyway, we were trying to solve \(A \mathbf{x}^* = \text{proj}_{\text{Im } A} \mathbf{b} = \mathbf{b}^\perp\)

\(<\{\) \((\mathbf{b} - A \mathbf{x}^*) = \mathbf{b}^\perp \in (\text{Im } A)^\perp = \ker A^T\)

\(<\{\) \(A^T (\mathbf{b} - A \mathbf{x}^*) = \mathbf{0}\)

\(<\{\) \(A^T A \mathbf{x}^* = A^T \mathbf{b}\)

is called the normal equation

\(\mathbf{x}^*\) is the least squares solution of \(A^T A\).
Moreover,

Theorem:

\[\text{a) } \text{Ker } A = \text{Ker } (A^T A) \]

\[\text{b) } \text{Ker } A = \{0\} \iff (A^T A) \text{ is invertible} \]

Therefore if \(\text{Ker } A = \{0\} \), then \(Ax = b \) has a unique least squares solution.

But in general how do I find the orthogonal projection of a vector \(b \in \mathbb{R}^n \) onto a subspace \(V \subset \mathbb{R}^n \)?

Method 1:

First start with any basis \(\{v_1, \ldots, v_k\} \) of \(V \). Construct a orthonormal basis \(\{u_1, \ldots, u_k\} \) of \(V \) and then

\[
\text{proj}_V b = (b, u_1) u_1 + \cdots + (b, u_k) u_k.
\]

Method 2:

Use the reasoning used for least squares method to prove the following. Let \(\{v_1, \ldots, v_k\} \) be a basis of \(V \).
\[A = (v_1 \ldots v_k) \text{ is a } n \times k \text{ matrix.} \]

Then, \[\text{proj}_V b = A (A^T A)^{-1} A^T b \]

Method: Let me explain the idea behind the Gram-Schmidt process using a simple example.

Let \[\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ \end{bmatrix} \right\} \]

be a basis of a subspace \(V \) of \(\mathbb{R}^4 \).

We want to find \(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3 \) such that \(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3 \) is orthonormal set and in \(V \). Then clearly it is a basis since \(\dim V = 3 \) and \(\{\tilde{u}_1, \tilde{u}_2, \tilde{u}_3\} \) is linearly independent.

We should construct \(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3 \) using linear combinations of \(v_1, v_2, v_3 \), since \(\text{Span} \{v_1, v_2, v_3\} = V \).
Let \(\vec{u}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} \).

Now \(\vec{v}_2 \) is not normal to \(\vec{u}_1 \) but \(\vec{v}_2^\perp = \vec{v}_2 - \text{proj}_{\vec{u}_1} \).

Define \(\vec{u}_2 = \frac{\vec{v}_2^\perp}{\|\vec{v}_2^\perp\|} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - 4 \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} \)

\[\frac{1}{11} \begin{bmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 1/2 \end{bmatrix} \]

Now \(\{\vec{u}_1, \vec{u}_2\} \) are orthonormal.

\(\vec{v}_3 \) is not in \(\text{Span}\{\vec{u}_1, \vec{u}_2\} = \text{Span}\{\vec{v}_1, \vec{v}_2\} \) so \(\vec{v}_3^\perp \) exist and is orthogonal to \(\vec{u}_1, \vec{u}_2 \).

Define \(\vec{u}_3 = \frac{\vec{v}_3^\perp}{\|\vec{v}_3^\perp\|} = \vec{v}_3 - \text{proj}_{\text{Span}\{\vec{u}_1, \vec{u}_2\}} \).