For \(A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix} \) we cannot write it in the form \(\mathbf{P} \mathbf{D} \mathbf{P}^T \) because we do not have enough no. of \(\mathbf{1} \) in \(\mathbf{P} \) to have orthogonal eigenvectors.

Some simple facts about eigenvectors:

1) Let \(A \) be an \(n \times n \) matrix with characteristic polynomial

\[f(\lambda) = (-\lambda)^n + b_{n-1} (-\lambda)^{n-1} + \ldots + b_0 \]

Then, \(b_{n-1} = \text{trace} \ A \).

\(b_0 = \det A \).

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \det (A - \lambda I_2) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} \]

\[= (a - \lambda)(d - \lambda) - bc \]

\[= \lambda^2 - (a + d) \lambda + (ad - bc) \]

\[\downarrow \quad \text{Trace of } A \quad \det A \]
2. If \(A = PBP^{-1} \) then for some \(n \times n \) invertible matrix \(P \) and \(B \) is a \(n \times n \) matrix.

Then \(A \) and \(B \) have the same eigenvalues but possibly different eigenvectors.

Definition: Let \(A \) and \(B \) are \(n \times n \) matrices such that \(A = PBP^{-1} \) for some invertible \(n \times n \) matrix. Then \(A \) and \(B \) are said to be \(\text{similar} \).

1) \(\det A = \det B \)
2) \(A \) is similar to \(B \) and then \(B \) is similar to \(A \).
3) \(A \) is similar to \(A \)
4) \(A \) is similar to \(B \) and \(B \) is similar to \(C \) then \(A \) is similar to \(C \).
5) \(\text{trace of } A = \text{trace of } B \).
Defn: A is said to be diagonalizable if A is similar to a diagonal matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$.

Thm: Let A be a $n \times n$ matrix such that geometric multiplicity of λ_i equals algebraic multiplicity of λ_i.

Then A is diagonalizable.

Our first example had this property. For $A = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$ we have two eigenvectors corresponding to eigenvalues 5 and -1; $\{ [1], [-1] \}$ which are linearly independent and therefore span \mathbb{R}^2.

Definition: If a matrix A has n linearly independent eigenvectors $\hat{v}_1, \ldots, \hat{v}_n$ corresponding to its eigenvalues.
Then \(\{v_1, \ldots, v_n\} \) is called an eigenbasis of \(\mathbb{R}^n \).

A is diagonalizable if and only if we can find an eigenbasis of \(\mathbb{R}^n \) corresponding to \(A \).

If \(\{\lambda_1, \ldots, \lambda_n\} \) are eigenvalues of \(A \) repeated up to multiplicity and \(\{v_1, \ldots, v_n\} \) is the corresponding eigenbasis,

\[
A = \begin{bmatrix}
\vdots & & \vdots \\
v_1 & \cdots & v_n \\
\vdots & & \vdots
\end{bmatrix}
\begin{bmatrix}
\lambda_1 & & 0 \\
0 & \cdots & 0 \\
0 & \cdots & \lambda_n
\end{bmatrix}
\begin{bmatrix}
\vdots \\
v_1 \\
\vdots
\end{bmatrix}
\]

Let us remind ourselves of our initial example.
We wanted to solve equations of the form
\[\dot{x}(k) = A \dot{x}(k-1) \]
given some initial value \(\dot{x}(0) \).

Let \(A \) be diagonalizable. Then \(\{ \hat{v}_1, \ldots, \hat{v}_n \} \) is an eigenbasis of \(\mathbb{R}^n \). Therefore \(\dot{x}(0) = c_1 \hat{v}_1 + \cdots + c_n \hat{v}_n \).

Then, \(\dot{x}(1) = A \dot{x}(0) = c_1 A \hat{v}_1 + \cdots + c_n A \hat{v}_n \)
\[= c_1 \lambda_1 \hat{v}_1 + \cdots + c_n \lambda_n \hat{v}_n \]

\[\dot{x}(k) = c_1 \lambda_1^k \hat{v}_1 + \cdots + c_n \lambda_n^k \hat{v}_n \]

Then the behaviour of \(\lambda_1, \ldots, \lambda_n \) completely determines what happens to \(\dot{x}(k) \) as \(k \) becomes large.
For instance, if $\lambda_1, \ldots, \lambda_n < 1$

Then as $k \to \infty$, $\lambda_1^k, \ldots, \lambda_n^k \to 0$.

$\Rightarrow \quad \hat{x}(k) \to 0$

What is this c_1, c_2, \ldots, c_n?

$\hat{x}(0) = [v_1 \ldots v_n] \begin{bmatrix} c_1 \\ \\ \vdots \\ c_n \end{bmatrix}$

$P = [c_1 \ldots c_n]$

$\begin{bmatrix} c_1 \\ \\ \vdots \\ c_n \end{bmatrix} = P \hat{x}(0)$

(This is what you will get if instead you had replaced A by PDP^{-1}.)
Let us now consider our owl and wood rat population.

After time \(t \) years

\[
\begin{bmatrix}
X(t) \\
W(t)
\end{bmatrix} =
\begin{bmatrix} 0.5 & 0.4 \\ -p & 0.1 \end{bmatrix}
\begin{bmatrix}
X(t-1) \\
W(t-1)
\end{bmatrix}
\]

Let \(p = 0.02 \)

Then

\[
\det (A - \lambda I) = \det
\begin{bmatrix} 0.5 - \lambda & 0.4 \\ -0.02 & 0.1 - \lambda \end{bmatrix}
\]

\[
= 0.55 + \lambda^2 - 1.6\lambda + 0.08
\]

\[
= \lambda^2 - 1.6\lambda + 0.63
\]

\[
= \lambda^2 - 0.9\lambda - 0.7\lambda + 0.63
\]

\[
= (\lambda - 0.9)(\lambda - 0.7)
\]

\[
\therefore \text{Eigenvalues of } A \text{ are } \lambda = 0.9, 0.7.
\]
Starting with some \(X(0) \), let \(V_1, V_2 \) be the eigenvectors corresponding to \(\lambda = 0.9 \) and \(\lambda = 0.7 \).

Then \(X(0) = 0.9V_1 c_1 V_1 + 0.7V_2 \) for some \(c_1, c_2 \in \mathbb{R} \).

And
\[
X(t) = c_1 0.9^t V_1 + c_2 0.7^t V_2
\]

As \(t \to \infty \) what happens?

Error: If we computed what \(V_1, V_2 \) were then this would give us a better idea of what how soon this ecosystem would disappear!