Focus is \(c^2 = b^2 - a^2 \) \(\Rightarrow \frac{1}{3} = \frac{1}{3} = \frac{\sqrt{2}}{3} \).

Note the standard form of a hyperbola is

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \text{with} \quad c = \sqrt{a^2 + b^2}.
\]
Remember \(q(x) = x^T A x \) for a symmetric matrix \(A \) so there is no chance of \(A \) having complex eigenvalues.

If you think about it in linear algebra language to get the quadratic form in coordinates which have no mixed terms, what we are doing is: let \(q \) be a form \(R^n \rightarrow R \) i.e.

1) Find a orthonormal basis \(\{ e_1, \ldots, e_n \} \) consisting of eigenvectors of \(A \).

2) Write \(q(x) \) in \(B \) coordinates.

Which is

\[q^B \]

If \(x \) is in std coordinates, we want to write it in \(B \) coordinates we want

\[
[q^B] = [u_1 \ldots u_n] A [u_1 \ldots u_n]^T \]

\[q^B = [x]_B \cdot D \cdot [x]_B \]

\[q^B (x^B) = [x]_B^T [u_1 \ldots u_n]^T A [u_1 \ldots u_n] [x]_B \]

\[= [x]_B^T D [x]_B \]
let $\mathbb{A} : \mathbb{C} \rightarrow \mathbb{C} = [x^2]_B$

\[
\phi(c) = \lambda_1 c_1^2 + \ldots + \lambda_n c_n^2.
\]

Consider $A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$

A has eigenvalues $\lambda = 0$ and $\lambda = 6$.

Eigenspace for $\lambda = 0$ is $\ker A = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right\}$

Eigenspace for $\lambda = 6$ is

$\ker (A - 6I) = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$

Clearly $\mathbf{v}_1 \cdot \mathbf{v}_3 = 0 = \mathbf{v}_2 \cdot \mathbf{v}_3$

But $\mathbf{v}_1, \mathbf{v}_2$ are lin. indpt but not orthogonal.

However, using Gram Schmidt we can get $\text{span} \left\{ \mathbf{u}_1, \mathbf{u}_2 \right\} = \ker (A)$
so that \(\hat{u}_1, \hat{u}_2 \) are orthonormal

and

\[\hat{u}_2 = \frac{\hat{v}_1}{\| \hat{v}_1 \|} \]

\[\hat{u}_1 = \begin{bmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix} \]

\[\hat{u}_2 = \frac{\sqrt{2}}{\sqrt{3}} \begin{bmatrix} -1/\sqrt{2} \\ 1 \\ -1/\sqrt{2} \end{bmatrix} \]

and

\[\hat{u}_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \]

Then, in \(\theta = [\hat{u}_1, \hat{u}_2, \hat{u}_3]^T \) coordinates,

\[g(\hat{x}) = \hat{x}^T A \hat{x} \]

\[g(\hat{x}) = 0 \cdot c_1^2 + 0 \cdot c_2^2 + 6 \cdot c_3^2 \]

Clearly what we can say about this form is that it has minimum at \(\hat{0} \)!
If A is not symmetric, this is easy. They are eigenvalues, and $\lambda_i = \lambda_j$ or $\lambda_i = \lambda_j$. Then $L(v_1) = L(v_2)$ and $L(v_2) = L(v_1)$. If A is orthogonal, such that $L(v_1)$ and $L(v_2)$ are orthogonal in \mathbb{R}^2, then there exist v_1, v_2 which are orthogonal. We said that for any orthogonal transform $L: \mathbb{R}^2 \to \mathbb{R}^2$ which is linear and diagonalizable, such that A is diagonal, and $L(v_1)$ and $L(v_2)$ are orthogonal in \mathbb{R}^2.

Remember, $g(x) = k$ is a hyperbola. Following is not on your test.

$g(x) = k$ will help you understand.
Then for any $L : \mathbb{R}^2 \to \mathbb{R}^2$, $L(x) = Ax$

if we want to find an orthogonal set $\{\hat{w}_1, \hat{w}_2\}$

to orthogonalize the set eigenbasis for $A^T A$.

Now, $A^T A \hat{w}_1 = \sigma_1 \hat{w}_1$ and $\|A \hat{w}_1\|^2 = \hat{w}_1^T A^T A \hat{w}_1$

$= \sigma_1 \hat{w}_1^T \hat{w}_1$

$= \sigma_1 \|\hat{w}_1\|^2$

$= \sigma_1$

Similarly $\|A \hat{w}_2\|^2 = \sigma_2$.

Now define $\hat{u}_1 = A \hat{w}_1$, $\hat{u}_2 = \dfrac{A \hat{w}_2}{\sigma_2}$

$\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$
\[A = \sqrt{\sum \lambda_k} U \Sigma V^T \]

In general, if \(A \) is a \(m \times n \) matrix with or singular values, we will have

\[A = U\Sigma V^T \]

where \(U \) is a \(\{u_1, \ldots, u_m\} \) is an eigen basis of \(A^+ A \).

Then the idea is that very often several of the \(\sigma_i \)'s are almost zero, by ignoring them we can get approximate values of \(A \) so if the matrix is strong some data to transfer then simplifies what needs to be sent.