Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be $\text{Ker} \ (A - \lambda I_n)$.
Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be $\text{Ker } (A - \lambda I_n)$.

Let A and B be similar $n \times n$ matrices. Then

• they have the same eigenvalues. They may however have different eigenspaces.
• they have the same determinant and trace.
• they have the same rank and nullity.
Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be $\text{Ker } (A - \lambda I_n)$.

Let A and B be similar $n \times n$ matrices. Then

- they have the same eigenvalues. They may however have different eigenspaces.
Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be $\text{Ker} \ (A - \lambda I_n)$.

Let A and B be similar $n \times n$ matrices. Then

- they have the same eigenvalues. They may however have different eigenspaces.
- they have the same determinant and trace.
Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be $\ker (A - \lambda I_n)$.

Let A and B be similar $n \times n$ matrices. Then

- they have the same eigenvalues. They may however have different eigenspaces.
- they have the same determinant and trace.
- they have the same rank and nulity.
Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be $\text{Ker} \ (A - \lambda I_n)$.

Let A and B be similar $n \times n$ matrices. Then

- they have the same eigenvalues. They may however have different eigenspaces.
- they have the same determinant and trace.
- they have the same rank and nullity.
Let us understand the characteristic equation. In general for an $n \times n$ matrix A,

$$\det(A - \lambda I^n) = \lambda^n + \text{trace}(A)\lambda^{n-1} + \cdots + \det(A).$$

Therefore, $\det(A)$ is equal to the product of the eigenvalues of A, and the trace of A is equal to the sum of the eigenvalues of A.
Let us understand the characteristic equation. In general for an \(n \times n \) matrix \(A \),

\[
\det(A - \lambda I_n) = \lambda^n + \text{trace} A \lambda^{n-1} + \cdots + \det A
\]
Let us understand the characteristic equation. In general for an $n \times n$ matrix A,

$$\det(A - \lambda I_n) = \lambda^n + \text{trace} A \lambda^{n-1} + \cdots + \det A$$

Therefore, $\det A$ is equal to the product of the eigenvalues of A.
Let us understand the characteristic equation. In general for an \(n \times n \) matrix \(A \),

\[
\det(A - \lambda I_n) = \lambda^n + \text{trace}A\lambda^{n-1} + \cdots + \det A
\]

Therefore, \(\det A \) is equal to the product of the eigenvalues of \(A \) and the trace of \(A \) is equal to the sum of the eigenvalues of \(A \).
A matrix A is said to be diagonalizable if it is similar to a diagonal matrix.
A matrix A is said to be diagonalizable if it is similar to a diagonal matrix. If A is similar to a diagonal matrix D, then $A^k = S^{-1}D^kS$ for all $k \in \mathbb{N}$.
A matrix A is said to be diagonalizable if it is similar to a diagonal matrix. If A is similar to a diagonal matrix D, then $A^k = S^{-1}D^kS$ for all $k \in \mathbb{N}$. A $n \times n$ matrix A is diagonalizable if it has n linearly independent eigenvectors.
A matrix A is said to be diagonalizable if it is similar to a diagonal matrix. If A is similar to a diagonal matrix D, then $A^k = S^{-1}D^kS$ for all $k \in \mathbb{N}$.

A $n \times n$ matrix A is diagonalizable if it has n linearly independent eigenvectors.

But when is a matrix diagonalizable in general?