Linear Algebra

Rekha Santhanam

Johns Hopkins Univ.

February 13, 2009
An $n \times n$ matrix is an elementary matrix if it is obtained by one of the three elementary row operations.
An $n \times n$ matrix is an elementary matrix if it is obtained by one of the three elementary row operations. Namely

- exchanging rows
An $n \times n$ matrix is an elementary matrix if it is obtained by one of the three elementary row operations. Namely

- exchanging rows
- multiplying a row by a scalar

For example,
$$
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
$$

is an elementary 2×2 matrix obtained by exchanging rows.

The row reduced form of a $m \times n$ matrix A can then be written as $\text{rref } A = E_1 E_2 \cdots E_k$ where E_i are $m \times m$ elementary matrices.
An $n \times n$ matrix is an elementary matrix if it is obtained by one of the three elementary row operations. Namely

- exchanging rows
- multiplying a row by a scalar
- adding rows
An $n \times n$ matrix is an elementary matrix if it is obtained by one of the three elementary row operations. Namely

- exchanging rows
- multiplying a row by a scalar
- adding rows

For example \[
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\] is an elementary 2×2 matrix obtained by exchanging rows.
An \(n \times n \) matrix is an elementary matrix if it is obtained by one of the three elementary row operations. Namely

- exchanging rows
- multiplying a row by a scalar
- adding rows

For example \[
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]
is an elementary \(2 \times 2 \) matrix obtained by exchanging rows. The row reduced form of a \(m \times n \) matrix \(A \) can then be written as

\[
\text{rref} A = E_1 E_2 \cdots E_k
\]

where \(E_i \) are \(m \times m \) elementary matrices.
We described the Image of a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ as

$$\text{Image } T = \{ \vec{b} \in \mathbb{R}^n : T(\vec{x}) = \vec{b} \text{ for some } \vec{x} \in \mathbb{R}^m \}$$
We described the Image of a linear transformation $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ as

$$\text{Image } T = \{ \vec{b} \in \mathbb{R}^n : T(\vec{x}) = \vec{b} \text{ for some } \vec{x} \in \mathbb{R}^m \} = \{ T(\vec{x}) : \vec{x} \in \mathbb{R}^m \}$$
We described the Image of a linear transformation $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ as

$$\text{Image } T = \{ \vec{b} \in \mathbb{R}^n : T(\vec{x}) = \vec{b} \text{ for some } \vec{x} \in \mathbb{R}^m \}$$

$$= \{ T(\vec{x}) : \vec{x} \in \mathbb{R}^m \}$$

Let the transformation be defined by a $n \times m$ matrix A, that is,

$T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^m$, and $A = [\vec{v}_1 \cdots \vec{v}_m]$, for $\vec{v}_1, \cdots, \vec{v}_m \in \mathbb{R}^n$.

Then Image $T = \text{Span } \{ \vec{v}_1, \cdots, \vec{v}_m \}$.
So we are looking at vectors which arise as $A\vec{x}$.
So we are looking at vectors which arise as $A\vec{x}$.

More often than not, it's possible that $A\vec{x} = \vec{0}$ for non-zero vectors $\vec{x} \in \mathbb{R}^m$.
So we are looking at vectors which arise as $A\vec{x}$.

More often than not, it’s possible that $A\vec{x} = \vec{0}$ for non-zero vectors $\vec{x} \in \mathbb{R}^m$.

In fact, if we know all the possible solutions of $A\vec{x} = \vec{0}$, the solutions of any consistent system $A\vec{x} = \vec{b}$ is a translation of the former set of solutions.
So we are looking at vectors which arise as $A\vec{x}$.

More often than not, it's possible that $A\vec{x} = \vec{0}$ for non-zero vectors $\vec{x} \in \mathbb{R}^m$.

In fact, if we know all the possible solutions of $A\vec{x} = \vec{0}$, the solutions of any consistent system $A\vec{x} = \vec{b}$ is a translation of the former set of solutions.

For example...
Let $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be a linear transformation defined by a $n \times m$ matrix A.
Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation defined by a $n \times m$ matrix A.

Namely, $T(\vec{x}) = A\vec{x}$.
Let $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be a linear transformation defined by a $n \times m$ matrix A.

Namely, $T(\vec{x}) = A\vec{x}$.

Then the Kernel of T is the set of vectors $\vec{x} \in \mathbb{R}^m$ such that $T(\vec{x}) = \vec{0}$.
• The vector $\vec{0} \in \mathbb{R}^n$ is always in the Kernel.
• The vector $\vec{0} \in \mathbb{R}^n$ is always in the Kernel.

• The sum of any two vectors in the Kernel is also in the Kernel.
• The vector $\vec{0} \in \mathbb{R}^n$ is always in the Kernel.

• The sum of any two vectors in the Kernel is also in the Kernel.

• The scalar multiple of any vector in the Kernel is also in the Kernel.
The vector $\vec{0} \in \mathbb{R}^n$ is always in the Kernel.

The sum of any two vectors in the Kernel is also in the Kernel.

The scalar multiple of any vector in the Kernel is also in the Kernel.
Consider a set V on which addition of elements of V and scalar multiplication by \mathbb{R} is well defined.
Consider a set V on which addition of elements of V and scalar multiplication by \mathbb{R} is well defined.

More specifically, $u, v \in V$ implies $u + v \in V$ and $u \in V$, $c \in \mathbb{R}$ implies $cu \in V$.
Consider a set V on which addition of elements of V and scalar multiplication by \mathbb{R} is well defined.

More specifically, $u, v \in V$ implies $u + v \in V$ and $u \in V, c \in \mathbb{R}$ implies $cu \in V$.

The set is V is said to be a (real) vector space if it satisfies the following properties:
Let $u, v, w \in V$ and $c, k \in R$.

- $(u + v) + w = u + (v + w)$
Let $u, v, w \in V$ and $c, k \in R$.

- $(u + v) + w = u + (v + w)$
- $u + v = v + u$
Let $u, v, w \in V$ and $c, k \in R$.

- $(u + v) + w = u + (v + w)$
- $u + v = v + u$
- There exists a unique element denoted by 0 in V such that $u + 0 = u = 0 + u$ for all $u \in V$.
Let \(u, v, w \in V \) and \(c, k \in \mathbb{R} \).

- \((u + v) + w = u + (v + w)\)
- \(u + v = v + u\)
- There exists a unique element denoted by \(0\) in \(V\) such that \(u + 0 = u = 0 + u\) for all \(u \in V\).
- For every \(u\) there is an unique additive inverse denoted as \((-u) \in V\) such that \(u + (-u) = 0 = (-u) + u\).
Let $u, \nu, w \in V$ and $c, k \in R$.

- $(u + \nu) + w = u + (\nu + w)$
- $u + \nu = \nu + u$
- There exists a unique element denoted by 0 in V such that $u + 0 = u = 0 + u$ for all $u \in V$.
- For every u there is an unique additive inverse denoted as $(-u) \in V$ such that $u + (-u) = 0 = (-u) + u$.
- $c (u + w) = c u + c w$
Let $u, v, w \in V$ and $c, k \in R$.

- $(u + v) + w = u + (v + w)$
- $u + v = v + u$
- There exists a unique element denoted by 0 in V such that $u + 0 = u = 0 + u$ for all $u \in V$.
- For every u there is an unique additive inverse denoted as $(-u) \in V$ such that $u + (-u) = 0 = (-u) + u$.
- $c (u + w) = c u + cw$
- $c(ku) = (ck) u$
Let $u, v, w \in V$ and $c, k \in R$.

- $(u + v) + w = u + (v + w)$
- $u + v = v + u$
- There exists a unique element denoted by 0 in V such that $u + 0 = u = 0 + u$ for all $u \in V$.
- For every u there is an unique additive inverse denoted as $(-u) \in V$ such that $u + (-u) = 0 = (-u) + u$.
- $c(u + w) = cu + cw$
- $c(ku) = (ck)u$
- $(c+k)u = cu + ku$
Let $u, v, w \in V$ and $c, k \in R$.

- $(u + v) + w = u + (v + w)$
- $u + v = v + u$
- There exists a unique element denoted by 0 in V such that $u + 0 = u = 0 + u$ for all $u \in V$.
- For every u there is an unique additive inverse denoted as $(−u) \in V$ such that $u + (−u) = 0 = (−u) + u$.
- $c(u + w) = cu + cw$
- $c(ku) = (ck) u$
- $(c + k)u = cu + ku$
- $1u = u$