Sample questions for the final

1. Let A be a 2×2 matrix with eigenvalues 1 and 4. Let $\text{Ker } (A - I) = \text{Span}\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \}$ and $\text{Ker } (A - 4I) = \text{Span}\{ \begin{bmatrix} 3 \\ -1 \end{bmatrix} \}$.

 (a) Is A diagonalizable? If yes, write out the diagonalization, else explain why A is not diagonalizable?

 (b) Find a diagonal matrix B such that $B^2 = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$.

 (c) Use parts 8(a) and 8(b) to find a matrix X such that $X^2 = A$.

2. Let A be the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

 (a) Find the eigenvalues and eigenspaces of A. Write down an orthogonal basis of \mathbb{R}^2 consisting of eigenvectors of A.

 (b) Find a orthogonal basis of \mathbb{R}^2 consisting of eigenvectors of A.

 (c) Let T denote the transformation described by A. Write down the matrix of T with respect to the new eigenbasis you wrote down in 2(a).

 (d) Explain what the diagonalization of A describes in terms of T.

3. Solve the following system of differential equations.

$$\frac{dx_1}{dt} = x_1(t) - 2x_2(t)$$

$$\frac{dx_2}{dt} = 2x_1(t) + x_2(t)$$

Given $x_1(0) = 1$ and $x_2(0) = -1$. What happens to $x_1(t), x_2(t)$ as $t \to \infty$?

4. Answer the following in short. Give justification for your answers.

 (a) Let $\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 6$. Find $\det \begin{bmatrix} a + 2d & b + 2e & c + 2f \\ g & h & i \\ 2d & 2e & 2f \end{bmatrix}$.

 (b) Let $V = \text{Span}\{ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \}$. Find a basis of V.

 (c) Give an example of a 3×3 matrix A with eigenvalues 5, -1 and 3.

 (d) If A is a 3×3 orthogonal matrix find all possible values of its determinant.

 (e) Let $A^2 = I$. Find Ker A.

4. State true or false with justification.
(a) Let A be a 3×3 matrix. If $Ax = 0$ has infinitely many solutions then the column vectors of A span \mathbb{R}^3.

(b) Let A be a 3×3 matrix with a set of eigenvectors spanning \mathbb{R}^3. Then A is diagonalizable.

(c) Let A be a 3×3 matrix with linearly independent column vectors. Then A is diagonalizable.

(d) If A is an invertible 3×3 matrix then $AB = AC$ implies $B = C$.

(5) State whether the following are subspaces of \mathbb{R}^3. Justify your answers.

(a) $\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x + y = -z \right\}$.
(b) $\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

(6) Write short answers to the following.

(i) Let $\begin{bmatrix} 1 & 3 & -1 \\ 0 & -5 & 2 \\ 2 & -1 & 0 \end{bmatrix}$ be the inverse of A. Find an appropriate matrix X so that $XA = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{bmatrix}^T$. Is X invertible? Why or why not?

(ii) A is a diagonalizable 2×2 matrix with eigenvalues 1 and -1. Show that $A^2 = I$.

(iii) A is a $n \times n$ matrix such that $AA^T = I$. What values can determinant of A take?

(iv) If $\{v_1, v_2, v_3\}$ are linearly independent vectors in \mathbb{R}^5 and $v_4 = v_3 - v_2 + v_1$, then is $\{v_1, v_2, v_4\}$ is linearly independent? Why or why not?

(v) If A has eigenvalues 1, 3 and $\frac{2}{3}$, find determinant of A.

(vi) If A is a invertible 3×3 matrix and v_1, v_2, v_3 are linearly independent vectors in \mathbb{R}^3. Show that Av_1, Av_2, Av_3 are linearly independent.

(7) State True or False with justification. (No points for just stating true or false)

(i) Let $C = AB$ for 4×4 matrices A and B. If C is invertible then A is invertible.
(ii) Let W be a subspace of \mathbb{R}^4 and v be a vector in \mathbb{R}^4. If $v \in W$ and $v \in W^\perp$ then $v = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

(iii) Let V be a vector space and W be a subspace of V. If $\dim W = \dim V$ then $W = V$.

(iv) If A is an invertible 3×3 matrix and B and C are 3×3 matrices, then $AB = AC$ implies $B = C$.