Take home test I
Math 413
Due on March 24, 2010

(1) Show that none of these spaces are homeomorphic to each other.
(a) S^1 with subspace topology in \mathbb{R}^2.
(b) $D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ with subspace topology.
(c) $S^1 \vee S^1 = \{(x, y) \in \mathbb{R}^2 \mid (x-1)^2+y^2 = 1\} \cup \{(x, y) \in \mathbb{R}^2 \mid (x+1)^2+y^2 = 1\}$

(2) Prove that the complement of \mathbb{Q}^2 in \mathbb{R}^2 is connected.

(3) Let (X, d) be a metric space and Y be a subset of X. Let \overline{d} denote the restriction of $d : X \times X \to \mathbb{R}$ to $Y \times Y$.
(a) Verify that \overline{d} defines a metric on Y.
(b) Show that the metric topology on (Y, \overline{d}) is equivalent to the subspace topology on Y.

(4) Prove that the usual topology on \mathbb{R}^2 is strictly weaker than the topology induced on \mathbb{R}^2 by lexicographic (dictionary) order.

(5) Let R, S be equivalence relations on a space X such that R is finer than S, that is, for $x, y \in X$; $xRy \implies xSy$. Let $p : X/R \to X/S$ be the natural function which takes the equivalence class of $x \in X$ with respect to R to the equivalence class of x with respect to S. Prove that p is a quotient map.

(6) Let X, Y be topological spaces and $f : X \to Y$ be a homeomorphism. Let R be an equivalence relation on X. Then define a relation S on Y as $y_1S_y_2$ iff $f^{-1}(y_1)Rf^{-1}(y_2)$.
(a) Show that this defines an equivalence relation on Y.
(b) Show that the quotient spaces X/R and Y/S are homeomorphic.

(7) Let X be a space defined to be the disjoint union of two discs $D_1 = \{(x, y) \in \mathbb{R}^2 \mid (x-\frac{3}{2})^2+y^2 \leq 1\}$ and $D_2 = \{(x, y) \in \mathbb{R}^2 \mid (x+\frac{3}{2})^2+y^2 \leq 1\}$ in \mathbb{R}^2. Define a relation \sim on the space by identifying the points on the boundary of D_1 and D_2 as follows:
$(a, b) \in D_1 \sim (-a, b) \in D_2$ if and only if $(a-\frac{3}{2})^2+b^2 = 1$.
Show that the quotient space obtained by considering the partition set is homeomorphic to $S^2 \subset \mathbb{R}^3$. You can assume that $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ is the quotient space obtained by identifying the boundary of a disc D^2 in \mathbb{R}^2 to a point.
(8) Let \(p : \mathbb{R} \to S^1 \) be the map \(p(t) = (cos 2\pi t, \sin 2\pi t) \). Show that if \(id_{S^1} : S^1 \to S^1 \) is the identity function then there does not exist a continuous map \(f : S^1 \to \mathbb{R} \) such that \(p \circ f = id_{S^1} \).

Definition 0.1. If a space \(X \) has a countable basis for its topology then \(X \) is said to be second-countable. For example, \(\mathbb{R} \) has a countable basis which consists of open intervals with rational endpoints.

It follows easily that if \(X \) is second countable then any subspace \(Y \) of \(X \) is also second countable.

(9) Prove that if \((X_i, T_i) \) are second countable topological spaces for \(i = 1, \ldots, k \) then \(X_1 \times X_2 \times \cdots \times X_k \) with the product topology is also second countable.

(10) Let \(\mathbb{R}_l \) denote \(\mathbb{R} \) with semi-open interval topology (that is, the topology generated by sets of the form \([x, y)\) for \(x, y \in \mathbb{R} \)). Let \(L = \{(x, -x) \in \mathbb{R}^2\} \). Prove that the subspace topology on \(L \) induced by product topology on \(\mathbb{R}_l \times \mathbb{R}_l \) is discrete topology.

(11) Prove that a discrete space is second countable if and only if the underlying set is countable.

(12) Using the previous exercises, show that \(\mathbb{R}_l \), that is, real line with semi-open interval topology is not second countable.