1. Let \(R \) be a commutative ring with unity. Assume \(R \) is an injective \(R \)-module.

 - by comment in D.F. p. 347, \(R \) is an injective module over an ID is divisible
 - \(rR = R \) for all \(r \in R \setminus \{0\} \)
 - for any nonzero \(a \in R \), \(3r \in R \setminus \{0\} \) s.t. \(ra = 1 \), i.e. \(a \in R^\times \)
 - \(R \) is a field

2. Consider the SES:
 \[
 0 \to Z \to Q \to Q\otimes Z \to 0
 \]

 Apply the right exact functor \(Q_{\otimes } - \):

 \[
 Q_{\otimes } Z \to Q_{\otimes } Q \to Q_{\otimes } Q/2 \to 0
 \]

 Since \(Q_{\otimes } Z \cong Q \), and \(Q \to Q_{\otimes } Q \), the sequence is exact on the left (could also note \(Q \) is \(Z \) localized at \((0) \) is flat)

 Therefore, we have SES:

 \[
 0 \to Q_{\otimes } Z \to Q_{\otimes } Q \to Q_{\otimes } Q/2 \to 0
 \]

 \[
 0 \to Q_{\otimes } Q \to Q_{\otimes } Q \to Q_{\otimes } Q/2 \to 0
 \]

 by exactness, \(Q \cong Q_{\otimes } Q \)

3. The only proper ideals in a field is \((0) \), since every element is a unit. Thus a field is trivially a PID.

 By the FTFG MOPID, any \(R \)-module \(M \cong R \oplus \oplus R \oplus \oplus \oplus R \oplus \oplus \oplus R \) for \(\epsilon \neq 0 \)

 so every module over a field is torsion-free, which over a PID is free of rank \(\epsilon \) (\(\epsilon \) dim \(\text{dim}_R \)

4. For \(i = 1, \ldots, n \). For any polynomial \(f(x) = \sum x_i \), \(\overline{f}(x) = \sum \overline{x_i} \) \(\overline{x_i} = x_i \cdot \overline{1} = x_i \cdot \overline{1} \) .

 So \(\overline{f}(x) \) is completely determined by the images of the \(x_i \)‘s, which provides uniqueness. \(\phi \) clearly a ring homomorphism.

 For the diagram:

 \[
 \begin{array}{ccc}
 R & \to & R[x_1, \ldots, x_n] \\
 \phi & \downarrow & \downarrow \\
 \overline{\phi} & \to & \overline{R}[\overline{x_1}, \ldots, \overline{x_n}]
 \end{array}
 \]

 to commute, \(\overline{\phi} \mid_R = \phi \) as well.

5. a) Since \(S_n \) is a group, for any \(\sigma \in S_n \), \(\sigma^{-1} \), so the inverse of \(\sigma \) is just \(\sigma^{-1} \).

 b) The action is transitive, so the only \(\sigma \in S_n \) s.t. \(\sigma \to \text{id} \in \text{Aut}(R[x_1, \ldots, x_n]) \)

 c) Easy to check this is a subgroup. Note for \(G \subseteq S_n \), the fixed elements \(R[x_1, \ldots, x_n]^G \) are the symmetric polynomials.

 (and \(\phi = 0 \))