Chapter 9 Differential Equations.

Def: A differential equation (DE) is an equation that contains an unknown function and one or more of its derivatives.

Order of DE: the highest derivative's order.

Eq. \(y' = xy \) (*) \(y = y(x) \) is the unknown function
\[\text{order} = 1 \]
\[y'' + y = x \quad \text{order} = 2. \]

(2) A function \(f \) is called a solution of a DE if the equation is satisfied when \(y = f(x) \) and its derivatives are substituted into the equation.

Eq. \(f \) is solution of (*) if \(f'(x) = xf(x) \).
\[f(x) = \frac{x^4}{4} + c \] is a solution to \(y' = x^3 \).

Eq. Show that \(y = ce^x + e^{2x} \) for every constant \(c \) is a solution to \(y' - y = e^{2x} \).
proof: For any constant c, $y = ce^x + e^{2x}$
then $y' = ce^x + 2e^{2x}$

the LHS = $y' - y = e^{2x}$ = the RHS of DE. \(\square\)

Initial value problem
Find a solution to the differential equation satisfying

$y(x_0) = y_0$.

eg: Find a solution to $y' - y = e^{2x}$ st $y(0) = 1$.

Substitute the value $x = 0$ and $y = 1$ into

$y = ce^x + 2e^{2x}$, we get

$1 = c + 2$

$c = -1$

So

$y = 2e^{2x} - e^x$
First order differential equation.

\[y' = F(x, y) \] \quad \text{if \ } F(x, y) \text{ is some expression in } x \text{ and } y \]

It is called separable if \(F(x, y) = g(x)f(y) \)

Solve separable DE.

If \(f(y) \neq 0 \), we could write:

\[\frac{dy}{dx} = g(x)f(y) \]

\[\int \frac{1}{f(y)} \, dy = \int g(x) \, dx \]

then solve \(y \).

e.g.: (a) \(\frac{dy}{dx} = \frac{x^2}{y^2} \) \quad (b) Find the solution with \(y(0) = 2 \).

\[y^2 \, dy = x^2 \, dx \Rightarrow \int y^2 \, dy = \int x^2 \, dx \]

\[\Rightarrow \frac{y^3}{3} = \frac{x^3}{3} + C \Rightarrow y^3 = x^3 + 3C \Rightarrow y = \sqrt[3]{x^3 + 3C} \]

(b) put \(x = 0 \) and \(y = 2 \) into \(y = \sqrt[3]{x^3 + 3C} \)

we get \(3C = 8 \). So \(y = \sqrt[3]{x^3 + 8} \)
Models for population growth.

\[x : \text{time variable} \]

\[P(x) : \text{the population at time } x \]

\[P'(x) : \text{the growth rate at time } x \]

Law: the growth rate is proportional to \(P(x) \)

1000 bacteria growing at rate 300 bacteria.

2000 bacteria growing at rate 600 bacteria.

\[
\frac{dP(x)}{dx} = kP(x) \quad \Leftrightarrow \quad \frac{dy}{dx} = ky
\]

Eg: (a) Solve \(\frac{dy}{dx} = ky \)
(b) Find the solution s.t. \(y(1) = 2 \)

\[
\frac{dy}{y} = kdx \quad \Rightarrow \quad \int \frac{dy}{y} = \int kdx \quad \Rightarrow \quad \ln|y| = kx + C
\]

\[
\Rightarrow \quad y = e^{kx} \cdot e^C = C_1 e^{kx}
\]

(b). Plug \(x=1 \) and \(y=2 \) into

\[
y = C_1 e^{kx}
\]

\[
C_1 = \frac{2}{e^k} \quad \Rightarrow \quad y = 2e^{kx} + k
\]
Linear equations with first order.

\[
\frac{dy}{dx} + p(x)y = q(x)
\]

where \(p(x) \) and \(q(x) \) are continuous functions on a given interval.

Strategy to solve: Multiply both sides by \(I(x) = e^{\int p(x) \, dx} \) and integrate both sides.

\[(\text{Solve}) \]

Eg.: \(y' - y = e^x \). Linear, \(p(x) = -1 \) \(q(x) = e^x \).

\[I(x) = e^{\int p(x) \, dx} = e^{-x} \]

\[e^{-x} y' - e^{-x} y = 1 \iff \frac{d(e^{-x} y)}{dx} = 1 \]

\[e^{-x} \frac{dy}{dx} - e^{-x} y = 1 \]

\[\Rightarrow \text{Integrating on both sides:} \]

\[e^{-x} y = x + C \]

\[y = e^x \cdot (x + C e^x) \]
(b) Find the solution with $y(1)=2$

plug $x=1$ and $y=2$ into

$$y = e^x \cdot x + ce^x$$

$$2 = e + ce \quad c = \frac{2}{e} - 1$$

so

$$y = e^x \cdot x + \left(\frac{2}{e} - 1\right)e^x$$