1) Let $V = \text{span} \{ p_1(x), p_2(x), p_3(x) \} \subseteq P_3(\mathbb{R})$
where $p_1(x) = 1 + 2x + 2x^2 + x^3$
$p_2(x) = 2x + x^3$
$p_3(x) = -2 - 4x^2 + 3x^3$

(a) Prove that $p_1(x), p_2(x), p_3(x)$ form a basis for V.
(b) Let $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in V$
Find the components of $f(x)$ relative to the basis $p_1(x), p_2(x), p_3(x)$.
(c) Let $q_1(x) = 1 + 2x^2$, $q_2(x) = 2x + x^3$, $q_3(x) = 3x^3$
Show that $q_1(x), q_2(x), q_3(x)$ form a basis for V.

2) (a) State and prove a criterion for a linear transformation to be injective.
(b) Prove that a linear transformation maps linearly independent sets to linearly independent sets
if and only if it is injective.
(c) Prove that a linear transformation $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ can not be injective if $m < n$.
3) prove, or find a counterexample: any square matrix can be expressed uniquely as \(A = B + C \) with \(B^5 = B \) and \(C^5 = -C \).

4) let \(W = \text{span} \{(1, 2, 3, 10), (-2, 3, -4, 0), (-3, 4, -11, 9), (4, -5, 18, 1)\} \subseteq \mathbb{R}^4 \)

(a) find a basis for \(W \)
(b) find conditions for vectors \((a, b, c, d) \in \mathbb{R}^4\) to be in \(W \)

5) let \(V = P_2(\mathbb{R}) \) and \(T: V \to V \) a linear operator such that \(T(1) = x \), \(T(x) = 2x^2 \), \(T(x^2) = 3 \).

(a) write down the matrix of \(T \) under the basis \(1, x, x^2 \).
(b) what is the matrix of \(T \) under the basis \(1, x-2, (x-2)^2 \)?

6) let \(T: \mathbb{R}^4 \to \mathbb{R}^3 \) be the linear transformation whose matrix with respect to the standard basis is
\[
A = \begin{bmatrix}
1 & 0 & 3 & 1 \\
2 & -1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

(a) find a basis for \(\text{ker} T \)
(b) find a basis for \(\text{ran} T \)
(c) determine \(T(7, -15, 0, 25) \)
7) Let V_1, V_2 be subspaces of a vector space V let $T: V_1 \times V_2 \to V$ be the linear transformation defined by $T(v_1, v_2) = v_1 - v_2$

(a) show that $\ker T = \{0\} \iff V_1 \cap V_2 = \{0\}$

(b) show that $\dim(V_1 \cap V_2) \geq \dim V_1 + \dim V_2 - \dim V$

8) Prove or find a counterexample:
(a) if V is a vector space and W is a subset of V, then W is a subspace of V
(b) subsets of linearly dependent sets are linearly dependent

9) State and prove the dimension theorem

10) Let $T: P_2(\mathbb{R}) \to \mathbb{R}^{2 \times 2}$ given by

$$T(p(x)) = \begin{bmatrix} p'(1) & p'(0) \\ p''(1) & p''(2) \end{bmatrix}$$

(a) Show that T is linear
(b) Determine the rank of T
(c) Determine a basis for a subspace W of $\mathbb{R}^{2 \times 2}$ such that $W \oplus \text{ran} T = \mathbb{R}^{2 \times 2}$
(d) Determine the matrix representation of T with respect to the standard bases of $P_2(\mathbb{R})$ and $\mathbb{R}^{2 \times 2}$.
11) Let W be a subspace of \mathbb{R}^n of dimension $n-1$ and show that there is a standard basis vector e_i such that $\mathbb{R}^n = W + \text{span}\{e_i\}$.

12) Let W_1, W_2 be subspaces of V.
 (a) Define the sum of W_1 and W_2.
 (b) Prove, or find a counterexample:
 if S_1 is a basis for W_1 and S_2 is a basis for W_2, then $S_1 \cup S_2$ is a basis for $W_1 + W_2$.
 (c) Let W_3 be another subspace of V.
 define $W_1 \oplus W_2 \oplus W_3$.
 (d) Give an example of subspaces W_1, W_2, W_3 such that $V = W_1 + W_2 + W_3$, $W_1 \cap W_2 = W_1 \cap W_3 = W_2 \cap W_3 = \{0\}$ and $V \neq W_1 \oplus W_2 \oplus W_3$.