Interior and boundary

The *interior* of a subset E of \mathbb{R}, often denoted $\text{int } E$, is defined to be the largest open set contained in E. For instance, the interior of $(a, b]$ is (a, b). The meaning of *the largest open set contained in E*—is there such a thing?—can be given tautologically as the union of all open sets contained in E; here we use the property that the union of any collection of open sets is open. (On Feb 16, we defined the closure of E as the smallest closed set containing E, where a similar issue arises.)

I think we have an idea of what is meant by the boundary of a country. What is a reasonable notion of the *boundary* of a set $E \subset \mathbb{R}$? It should give the expected outcome that the boundary of any interval with endpoints a and b consists of the two endpoints. Here it is: the boundary of E is defined to be

$$b(E) = \overline{E} \cap \overline{E'},$$

where E' is the complement of E, and the “bar” denotes closure.

Exercises.

1. a) Show that $b(E) = b(E')$.

 b) Show that $x \in b(E)$ if and only if every open interval that contains x, contains both a point of E and a point of E'. [“a point” means “at least one point”]

2. a) Show that $\text{int } E$ and $b(E)$ are disjoint.

 b) Derive the formula $\overline{E} = (\text{int } E) \cup b(E)$.

3. Give a complete argument, in full detail, that shows that in any unbounded set of positive real numbers there is a sequence $\{x_j\}$ with

$$\lim_{j \to \infty} x_j = +\infty.$$

(I know it’s “obvious”)