Tangents and normals

1. By thinking of components, a vector that’s a function of \(t \) is the same as three scalar functions of \(t \) taken together. When \(\mathbf{r}(t) \) is a given vector function, we have the convention of viewing it as tracing a curve in space. The derivative \(\mathbf{r}'(t) \) is, of course, another vector function, corresponding to the derivatives of the three scalar functions, and it gives tangent vectors along that curve. Here, though, it does not help to think of \(\mathbf{r}'(t) \) as tracing another curve. If we want all of our tangent vectors to be the same length, we can form the unit tangent vector in the direction of \(\mathbf{r}'(t) \):

\[
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||},
\]

defined for all \(t \) such that \(\mathbf{r}'(t) \neq \mathbf{0} \).

If, for example \(\mathbf{r}(t) = ti - t^2j + t^3k \), then \(\mathbf{r}'(t) = i - 2tj + 3t^2k \), so

\[
\mathbf{T}(t) = \frac{i - 2tj + 3t^2k}{\sqrt{1 + 4t^2 + 9t^4}} = Q(t)i - 2tQ(t)j + 3t^2Q(t)k,
\]

where

\[
Q(t) = (1 + 4t^2 + 9t^4)^{-\frac{1}{2}}.
\]

2. There is no notion of the normal direction to a curve \(\mathbf{r}(t) \) at some \(t = t_0 \). However, the normal plane can be defined to be the plane through \(\mathbf{r}(t_0) \) that has \(\mathbf{r}'(t_0) \) as a normal vector (i.e., is perpendicular to the tangent line), provided of course \(\mathbf{r}'(t_0) \neq \mathbf{0} \). From the information here, we plug into the formulas from 12.6 to get the equation of the normal plane at \(t_0 \):

\[
(\mathbf{r} - \mathbf{r}(t_0)) \cdot \mathbf{r}'(t_0) = 0.
\]

Writing \(a, b \) and \(c \) for the components of \(\mathbf{r}'(t_0) \), we get for the equation of the plane:

\[
a(x - x(t_0)) + b(y - y(t_0)) + c(z - z(t_0)) = 0.
\]

For instance, the equation of the normal plane to \(ti - t^2j + t^3k \) at \(t = 1 \) is Do the calculations: \(\mathbf{r}(1) = i - j + k; \mathbf{r}'(1) = i - 2j + 3k \). Therefore, the equation of the normal plane is:

\[
(x - 1) - 2(y + 1) + 3(z - 1) = 0.
\]