For Problem Set #4

Prove or give a counterexample:

Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous at the point whose position vector is \vec{a}. Suppose that $D_{\vec{v}}(\vec{a})$ exists for all unit vectors \vec{v}, and satisfies

$$D_{\vec{v}}(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{v}. \quad (1)$$

Then f is differentiable at \vec{a}.

The above assertion is the converse of Theorem 6.2 on page 155.