Riemann and Green

First, let’s understand that integration with respect to area has been defined rigorously. That is all I will say about Riemann here. Be sure to do #1.

0. If you are feeling ambitious, search for a proof of the fact that a piecewise C^1 curve has length zero, in the sense of Figure 5.37 (page 306), and write it up in your own words. [You may need to use the offciial definition of compactness in terms of coverings; look it up in a source of higher level than a Calculus text.]

1. Let \vec{F} be a continuous vector field defined on (say) a simple C^1 path $\vec{x}: I \to \mathbb{R}^2$.

 (a) Show that
 \[
 \left| \int_{\vec{x}} \vec{F} \cdot d\vec{s} \right| \leq \max_{t \in I} \{ \| \vec{F}(\vec{x}(t)) \| \} \cdot L(\vec{x}),
 \]
 where L denotes the length of the path.

 (b) Let $\epsilon > 0$ be given. Show that there is a piecewise linear path $\vec{p}: I \to \mathbb{R}^2$ such that $\| \vec{p}(t) - \vec{x}(t) \| < \epsilon$, and also $\| \vec{p}'(t) - \vec{x}'(t) \| < \epsilon$ (except, of course, at the corners in \vec{p}). [Hint: Section 3.2]

2. Let’s reduce the proof of Green’s theorem to something close to the special case of rectangles. So let D be a domain in \mathbb{R}^2 with piecewise C^1 boundary ∂D. In the statement of Green’s theorem, we’ll make the mild assumption that M and N are C^1 functions on a larger set than D, namely on an open set $U_{\epsilon}(D)$ of points in \mathbb{R}^2 that lie within some fixed distance $r > 0$ from D (so $D \subset U_{\epsilon}(D)$).

 (a) We must specify the orientation of the boundary first (see p.381), so if we then use a parametrization of ∂D, it must be compatible with the orientation. Give a definition of the orientation that does not use the picture. What does “to the left” mean intrinsically? (It may help to think in terms of normal vectors.)

 (b) Let P be a polygonal region in $U_{\epsilon}(D)$. Show that Green’s theorem holds for P.

 (c) Show that for general D, given $\epsilon' > 0$, there is a polygonal region $P \subset U_{\epsilon}(D)^2$ for which both
 \[
 \left\| \int_{\partial P} \vec{F} \cdot d\vec{s} - \int_{\partial D} \vec{F} \cdot d\vec{s} \right\| < \epsilon',
 \]
 and the analogous inequality for the area integrals over P and D hold. (This is similar to what is mentioned in Colley, on page 388.) Then deduce from part (b) that for that choice of P, we get
 \[
 \left| \int_D - \int_{\partial D} \right| < 2\epsilon'.
 \]
 But ϵ' was arbitrary; let $\epsilon' \to 0$.

1By the way, the image of a closed set under a continuous mapping need not be closed; the image of a bounded set need not be bounded. But in the settings we consider in our course, the image of a set that is both closed and bounded is closed and bounded.

2P need not be contained in D; it’s an issue of convexity.