Cayley-Hamilton and related matters

Recall that the linear transformation $T : V \to V$ that is the 0-vector of $\mathcal{L}(V)$ (let’s follow the book’s notation and write T_0 for it) is the one for which $T_0(v) = 0_V$ for all $v \in V$.

There is good reason to want to know about the polynomial equations that a given transformation $T : V \to V$ satisfies. Here’s what that means.

a) The vector space $\mathcal{L}(V)$ has the additional structure of a ring, a notion under discussion **right now** in Abstract Algebra I (401), as one can take the composition of linear transformations to be a “multiplication” that must obey certain rules (it’s just Theorem 2.10 on page 87). In particular, we can compose a transformation T with itself, obtaining something rightfully called T^2.

b) We should know by now that if V is finite-dimensional of dimension n over the field \mathbb{F}, specifying an ordered basis β of V determines an isomorphism

$$[\beta] : \mathcal{L}(V) \to M_{n \times n}(\mathbb{F}); \quad \text{here, } ([\beta](T)) \text{ is what we called } [T]_\beta \text{ earlier.}$$

This isomorphism takes a product $TU \in \mathcal{L}(V)$ to $[T]_\beta[U]_\beta = [TU]_\beta \in M_{n \times n}(\mathbb{F})$.\footnote{One says that $[]_\beta$ is an isomorphism of rings.}

In other words, “everything” in linear algebra in finite-dimensional vector spaces can always be done in terms of matrices and column vectors (which must be quite a relief!); to do so, you must first choose an ordered basis of V. It is also part of the story to remember what happens when you change to another basis, but the formula for that is easy to remember.

c) Let $g \in P(\mathbb{F})$, and write it out as $g(t) = \sum_{k=0}^d c_k t^k$, with all $c_k \in \mathbb{F}$. Then for a matrix $A \in M_{n \times n}(\mathbb{F})$, $g(A) = \sum_{k=0}^d c_k A^k$, where we make the canonical convention that A^0 is another symbol for the identity matrix I_n. For instance, if $g(t) = t^3 + t - 2$ and A is an $n \times n$ matrix, then $g(A) = A^3 + A - 2I_n$. Check that for all polynomials $g_1(t)$ and $g_2(t)$, the matrices $g_1(A)$ and $g_2(A)$ commute.

Fix $n \in \mathbb{N}$. Given an $n \times n$ matrix A, we are seeking [non-zero] polynomials $g(t)$ for which $g(A) = T_0$. There always exist such g. Being the patient creatures that we are, we first just gaze at the set of all such polynomials $g(t)$, i.e., let

$$S_A = \{ g \in P[t] \mid g(A) = T_0 \}.$$

What does one see?

1. First S_A is a subspace of the vector space $P(\mathbb{F})$. Indeed, it is the nullspace (kernel) of the linear transformation

$$e_A : P(\mathbb{F}) \to M_{n \times n}(\mathbb{F}) \quad \text{given by } \quad e_A(g) = g(A)$$

(evaluation at A). We seek a non-trivial element of $\mathfrak{N}(e_A)$.

\begin{align*}
(*) \quad e_A : P(\mathbb{F}) & \to M_{n \times n}(\mathbb{F}) \\
& \text{given by } e_A(g) = g(A)
\end{align*}
2. Of course, if we wish, we can restrict ourselves to g lying in the familiar subspace $P_d(\mathbb{F}) = \{g \in P(\mathbb{F}) \mid \deg(g) \leq d\}$ of $P(\mathbb{F})$, for any $d \geq 0$, and we get the restrictions

$$(e_A)_d : P_d(\mathbb{F}) \to M_{n \times n}(\mathbb{F}),$$

all given, of course, by the formula in (*).

3. Note that our previous experience gives us that $P_d(\mathbb{F}) \subset P_{d+1}(\mathbb{F})$, $P_d(\mathbb{F})$ has its standard basis \{1, t, t^2, ..., t^d\} so $\dim P_d(\mathbb{F}) = d + 1$, and $\mathfrak{r}((e_A)_d) = \mathfrak{r}(e_A) \cap P_d(\mathbb{F})$. And also, $\dim M_{n \times n}(\mathbb{F}) = n^2$.

Why is that useful? Because by rank-nullity, the linear transformation $(e_A)_{n^2}$ must have non-trivial nullspace, as the dimension of $\dim P_{n^2}(\mathbb{F})$ is greater than that of $M_{n \times n}(\mathbb{F})$. In other words, A satisfies some non-trivial polynomial equation of degree $\leq n^2$, i.e., S_A contains such a polynomial.

4. Surely we can do better than that! Let $g(t) = f_A(t) = \det(A - tI)$ be the characteristic polynomial of A. We know that the solutions for the scalar t in $f_A(t) = 0$ are the eigenvalues of A, etc., etc. It would be tempting to just plug in the matrix $t = A$ into $f_A(t)$ to get

$$f_A(A) = \det(A - AI) = \det T_0 = 0. \text{ Violà!}$$

Unfortunately, the above is bullshit—try to carry it out as stated for the general 2×2 matrix; you have to install a 2×2 matrix as an entry of a 2×2 matrix,

However, it is nonetheless true that $f_A \in S_A$ for all matrices A. This is the famous Cayley-Hamilton Theorem. In the case when A is a diagonalizable $n \times n$ matrix with distinct eigenvalues, it is not all that difficult to see that this is correct.

But some matrices “refuse” to diagonalize. The correct proof of Cayley-Hamilton is based on breaking \mathbb{F}^n down into subspaces that are invariant under A. Details suppressed for now, but I’ll add that a systematic treatment of invariant subspaces is the key to identifying the “simplest form” of a general matrix.

5. For a diagonalizable $n \times n$ matrix with n distinct eigenvalues, it happens to be true that f_A is “the best that one can do”. What does that mean? Rather elementary ring theory tells us that every matrix A has what’s called its minimal polynomial, the polynomial g of lowest degree—we must normalize the situation by assuming that its leading coefficient is 1 $\in \mathbb{F}$—for which $g(A) = T_0$. For a diagonalizable $n \times n$ matrix with n distinct eigenvalues, $(-1)^n f_A$ is the minimal polynomial. It is a sound idea to start wondering how and when $(-1)^n f_A$ can fail to be the minimal polynomial. An easy observation to start with is that for $A = cI_n$, $f_A(t) = (c - t)^n = (-1)^n(t - c)^n$, but the minimal polynomial is just $(t - c)$. How about our little demon, a non-diagonalizable matrix in $M_{2 \times 2}(\mathbb{C})$ (the field is OK, but our friend is not so nice)?