Echelon

We were at the following stage:

For any $m \times n$ matrix A (with entries in the field \mathbb{F}), we can write as $A = PR$, where P is an invertible $m \times m$ matrix and R is an $m \times n$ reduced row-echelon matrix. We saw that that the rank of A and the rank of A^t are equal, deducing this from the same for R, where it is “obvious”.

More is true. Let $j(i)$ be the (increasing) function that gives the column of R that has the i-th pivotal 1, for all i satisfying $1 \leq i \leq r$, with r denoting the rank of R (equaling the rank of A, by the above). Let $\{e_1, ..., e_n\}$ be the standard basis of \mathbb{F}^n, and $\{f_1, ..., f_m\}$ the standard basis of \mathbb{F}^m. The correct statement about R is that

\[(*)\quad R(e_{j(i)}) = f_i\]

for $1 \leq i \leq r$, i.e., the $j(i)$ column vector of R is f_i. Applying P to $(*)$, we get

\[(**)\quad A(e_{j(i)}) = P(f_i)\]

As the f_i’s are linearly independent, the $P(f_i)$’s are also linearly independent (why?). Thus, the $A(e_{j(i)})$’s are linearly independent, so these are r vectors that form a basis of $\mathcal{R}(A)$. We should know by now that these vectors are just the $j(i)$-th column vectors of A, the same columns that have the f_i’s in R.