Reflection on change of matrix

Let A be an $n \times n$ matrix. The words *change of matrix* in the title could refer to what happens when you describe the linear transformation T_A with respect to some basis \mathcal{B} other than the standard basis \mathcal{A}. You should first appreciate the statement

$$[T_A]_{\mathcal{A}} = A,$$

and that it says how T_A acts in terms of \mathcal{A}-coordinates.

Next, we understand that the \mathcal{B}-matrix $[T_A]_{\mathcal{B}}$ can be described in two ways:

a) The matrix $[T_A]_{\mathcal{B}}$ is the one and only matrix that satisfies:

$$[A\bar{v}]_{\mathcal{B}} = [T_A(\bar{v})]_{\mathcal{B}} = [T_A]_{\mathcal{B}}[\bar{v}]_{\mathcal{B}}.$$

Once we accept that all bases of \mathbb{R}^n are equal in the eyes of the law, (2) has the same content as (1). It coincides with (1) when $\mathcal{B} = \mathcal{A}$, and it says how T_A acts in terms of \mathcal{B}-coordinates.

b) Since we are presumed to be given the matrix A, there is the well-known formula that minimizes the brain pain:

$$[T_A]_{\mathcal{B}} = S^{-1}[T_A]_{\mathcal{A}} S = S^{-1}AS,$$

where S is the matrix whose column vectors are the vectors in \mathcal{B}.

Note that (3) says, *once you know the vectors in \mathcal{B}, and how to multiply and invert $n \times n$ matrices, computing the \mathcal{B}-matrix of T_A is completely mechanical.* A good linear algebra student will understand a) as well.

However, the above is not what I had in mind. I want to point out some very simple maneuvers concerning matrices and their eigenvalues.

i) λ is an eigenvalue of A if and only if $\lambda + c$ is an eigenvalue of $A + cI$. Indeed we have the following elementary calculation

$$A\bar{v} = \lambda \bar{v} \quad \text{if and only if} \quad (A + cI)\bar{v} = (\lambda + c)\bar{v},$$

from which it follows that there is even an *equality* of eigenspaces

$$\ker(A - \lambda I) = E_\lambda(A) = E_{\lambda+c}(A + cI).$$

ii) Similarly,

$$E_\lambda(A) = E_{k\lambda}(kA).$$