Statement of Ethics regarding this exam

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: ___________________________ Date: __________________

- This is a 50 minute closed book exam. No notes, books, or calculators are allowed.

- Present your solution to each problem in a clear and orderly fashion. Show all your work. An answer without justification will not receive full credit.

- Do not use any techniques we have not covered in class yet.

- This exam contains 6 pages (including this cover page) and 5 questions. The last page is intended for use as scrap paper.

The table on the right is for grading purposes. Please do not write in it.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>
1. Determine whether each one of the following is TRUE or FALSE. If the statement is false, explain why or give a counterexample.

(a) (5 points) The function $f(x) = \sin(x)$ is one-to-one.

(b) (5 points) If a function $f(x)$ is continuous at a, then it is differentiable at a.

(c) (5 points) If f and g are differentiable functions, then $(fg)' = f'g'$.

(d) (5 points) If f is a continuous function and $\lim_{{x \to 4}} f(x) = 5$, then $f(4) = 5$.

(e) (5 points) If f and g are continuous functions, then $f + g$ is a continuous function.
2. Evaluate the following limits justifying each step.

 (a) (15 points) \[\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 6x + 8} \]

 (b) (15 points) \[\lim_{x \to \infty} \sqrt{x^2 + 3x + 1} - x \]
3. (a) (15 points) Let \(f, g \) be continuous functions defined on \([1, 3]\) such that \(f(1) < g(1) \) and \(f(3) > g(3) \). Show that there exists a number \(c \) in the interval \((0, 3)\) such that \(f(c) = g(c) \).

(b) (15 points) Find all asymptotes (horizontal and vertical) of \(\frac{\sqrt{2x^6 + x^4 + 3}}{x^3 + x^2 - 2x} \).
4. (a) (15 points) Find the derivative of \(f(x) = \sqrt{x^2 + 3} \) using the definition of derivative.

(b) (10 points) Find the equation of the tangent line to the graph of \(f \) at the point \((1,2)\).
5. (a) (15 points) Find the derivative of \(f(x) = \frac{x^2 + 2x + 1}{x + 2} \)

(b) (15 points) Find the values of \(A \) and \(B \) such that the function

\[
\begin{cases}
 x^2 + 1 & x < 0 \\
 A \sin x + B \cos x & x \geq 0
\end{cases}
\]

is differentiable.
This page is intended for use as scrap paper.