Math 108 Midterm 2 Practice

Print Name: ________________________________ Section: ________________

Statement of Ethics regarding this exam

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature: ________________________________ Date: ________________

- This is a 50 minute closed book exam. No notes, books, or calculators are allowed.

- Present your solution to each problem in a clear and orderly fashion. Show all your work. An answer without justification will not receive full credit.

- Do not use any techniques we have not covered in class yet.

- This exam contains 6 pages (including this cover page) and 5 questions. The last page is intended for use as scrap paper.

The table on the right is for grading purposes. Please do not write in it.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>
1. Determine whether each one of the following is TRUE or FALSE. If the statement is false, explain why or give a counterexample.

(a) (5 points) If \(f(x) \) and \(g(x) \) are two differentiable functions such that \(\lim_{x \to 0} \frac{f'(x)}{g'(x)} \) exists, then the L’Hospital’s rule applies and \(\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} \).

(a) False

(b) (5 points) If \(g(x) \) and \(h(x) \) are two functions defined on an interval \((a, b)\) such that \(g'(x) = h'(x) \), then \(g(x) - h(x) \) is constant.

(b) True

(c) (5 points) If \(f \) is a continuous function on a closed interval \([a, b]\), then \(f \) attains an absolute maximum.

(c) True

(d) (5 points) If \(f(x) \geq 5 \) for \(x \) in \([1, 3]\), then \(\int_{1}^{3} f(x) \, dx \geq 10 \)

(d) True
2. (30 points) A poster is to have area 54 in2 with 1-inch margin at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area?

Answer

6×9
3. Let \(f(x) = 2x^3 - 9x^2 + 12x - 1 \).

 (a) (10 points) Find the intervals on which \(f \) is increasing and the intervals on which \(f \) is decreasing.

 Answer
 Increasing on the intervals \((-\infty, 1), (2, \infty)\).
 Decreasing on the interval \((1, 2)\).

 (b) (10 points) Find the intervals on which \(f \) is concave up and the intervals on which \(f \) is concave down.

 Answer
 Concave down on the interval \((-\infty, \frac{3}{2})\).
 Concave up on the interval \((\frac{3}{2}, \infty)\).

 (c) (10 points) Find all critical points of \(f \) and indicate if they are local maxima, local minima, or neither.

 Answer
 Critical numbers are \(x = 1, 2 \). The critical number \(x = 1 \) is a local maximum, the critical number \(x = 2 \) is a local minimum.
4. (a) (15 points) Find the left Riemann sum approximating \(\int_{1}^{2} x^2 \, dx \) with 4 terms. You do not need to simplify.

\[
\frac{1}{4} \left(1^2 + \left(\frac{5}{4} \right)^2 + \left(\frac{6}{4} \right)^2 + \left(\frac{7}{4} \right)^2 \right)
\]

(b) (15 points) Find the area under the graph of \(f(x) = x^2 + x^3 \) between \(x = 1 \) and \(x = 2 \).

\[
73 \quad \frac{12}{12}
\]
5. Evaluate the following limits

(a) (10 points) \(\lim_{x \to 0} \frac{\cos\left(\frac{\pi}{2} - x^2\right) \ln(1 + x) - x}{x} \)

Answer

\(-2\)

(Hint: Apply L’Hospital’s rule twice.)

(b) (10 points) \(\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{e^x - 1} \right) \)

Answer

\(\frac{1}{2}\)

(Hint: Rewrite as \(\frac{e^x - 1 - \sin x}{(e^x - 1)\sin x}\) and apply L’Hospital’s rule.)

(c) (10 points) \(\lim_{x \to \infty} e^x \sin \left(\frac{1}{x}\right) \)

Answer

\(\infty\)

(Hint: Rewrite as \(\frac{\sin(\frac{1}{x})}{e^{-x}}\) and apply L’Hospital’s rule.)
This page is intended for use as scrap paper.