Exam #1, October 15, Calculus III, Fall, 2008, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device.

Name: ___________________________ Date: _______________

TA Name and section: _______________________

NO CALCULATORS, NO PAPERS, SHOW WORK. (22 points total)

1. (1 point) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = x^3 + y^3 + z^3$. Compute the gradient of f.

2. (1 point) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = x^3 + y^3 + z^3$. Compute the Laplacian of f.
3. (1 point) Let \(F : R^3 \rightarrow R^3 \) be given by \(F(x, y, z) = (x^3, y^3, z^3) \). Compute the divergence of \(F \).

4. (1 point) Let \(F : R^3 \rightarrow R^3 \) be given by \(F(x, y, z) = (x^3, y^3, z^3) \). Compute the curl of \(F \).
5. (1 point) Let $c : \mathbb{R} \to \mathbb{R}^3$ be given by $c(t) = (t^3, t^3, t^3)$. Compute the tangent line to c at the point $t = 1$.

6. (1 point) Let $c : \mathbb{R} \to \mathbb{R}^3$ be given by $c(t) = (t^3, t^3, t^3)$. Compute the length of the curve between $t = 0$ and $t = 1$. Do this by setting up and evaluating the integral.
7. (2 points) Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f(x, y, z) = (x^3 + y^3 + z^3, x + y + z)$. Compute the derivative of f at the point $(1, 1, 1)$.
8. (2 points) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = x^3 + y^3 + z^3$. Let $x, y,$ and z be functions of t such that $x(0) = y(0) = z(0) = 1$ and $x'(0) = 1$, $y'(0) = 2$, and $z'(0) = 3$. Compute df/dt at $t = 0$.
9. (2 points) Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be given by \(f(x, y, z) = x^3 + y^3 + z^3 \). Compute the directional derivative of \(f \) in the direction \((1, 1, 1)\) at the point \((1, 1, 1)\).
10. (2 points) Give an equation for the tangent plane of the graph of the function \(f(x, y) = xy \) at the point \((1, 1)\).
11. (2 points) Give an equation for the tangent plane for the surface given by $x^3 + y^3 + z^3 = 3$ at the point $(1, 1, 1)$.
12. (2 points) Find all points on the surface given by \(x^2 + y^2 - z^2 = 4\) that are closest to the origin. Use Lagrange multipliers.
13. (2 point) Consider the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$, $f(x, y) = \sin(x)\cos(y)$. There are an infinite number of critical points. Find the two critical points closest to the origin with $x \geq 0$ and $y \geq 0$.
14. (2 points) Calculate the second order Taylor approximation for the two critical points in the previous problem and determine whether each is a local maximum, minimum or saddle point.