Exam #2, November 1, Calculus II (107), Fall, 2013, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device.

Name (signature): ______________________________ Date: _________________

Name (print): _________________________________

TA Name and section: __________________________

NO CALCULATORS, NO PAPERS, SHOW WORK. (46 points total, not counting 2 bonus points)

Write something even if not sure of answer. 1 out of 2 points for anything that might have been on path to correct answer. Must have work to back it up though on exam.

Throughout the exam we will use the function:

\[f(x, y) = 3x^2 - y - 2y^2 \]
1. (2 points) What is $\frac{\partial f}{\partial x}$ at the point $(1,0)$?

2. (2 points) What is $\frac{\partial f}{\partial y}$ at the point $(1,0)$?

3. (2 points) What is the gradient of f, i.e. ∇f?
4. (2 points) Compute the slope of \(f \) in the positive \(x \) direction at the point \((1, 0)\).

5. (2 points) Compute the direction of maximum slope of \(f \) at \((1, 0)\).

6. (2 points) Compute the slope of \(f \) at \((1, 0)\) in the direction it is maximal.
7. (2 points) (Bonus points, possibly hard question, might want to put it off for now) Give a parametric equation for the tangent line to the graph of f (in 3-space) for $(x, y) = (1, 0)$ in the maximal direction. Express your answer with smallest integers, no fractions or radicals.
8. (2 points) Find the equation (in the form $y = mx + b$) for the tangent line to the level curve at $(1, 0)$.
9. (2 points) Find the equation for the tangent plane to f for the point (1, 0).

10. (2 points) Find the one critical point for f.

11. (2 points) What is $f(x, y)$ at the critical point?
12. (2 points) What is the Hessian of $f(x, y)$ at the critical point?

13. (2 points) What kind of critical point is the critical point: local maximum, local minimum, or saddle?
14. (2 points) If \(x = -1 = y \), and \(\frac{dx}{dt} = 1 = \frac{dy}{dt} \), what is \(\frac{df}{dt} \)?

15. (2 points) If \(x = e^t \) and \(y = e^{-t} \), what is \(\frac{df}{dt} \) at the point \((x, y) = (e, 1/e)\)?
16. (2 points) If A is a 2×2 matrix such that $Au = -u$ and $Av = -2v$ for u and v non-zero vectors, what is the general solution for the system of differential equations: \[
\begin{pmatrix}
\frac{dx}{dt} \\
\frac{dy}{dt}
\end{pmatrix} = A \begin{pmatrix}
x \\
y
\end{pmatrix}.
\]

17. (2 points) What kind of equilibrium point is $(0, 0)$ in the previous problem?
18. (2 points) In this graph of the direction field for a system of differential equations, what kind of equilibrium point is (0, 0)?
19. (2 points) In this graph of the direction field for a system of differential equations, what kind of equilibrium point is $(0, 0)$?
20. (10 points total) Consider the function f on the domain $x^2 + y^2 \leq 1$. What is the minimum value f takes (2 points) and what point does it take this value (2 points)? What is the maximum value f takes (2 points) and on what two points does it take this value (4 points, 2 each). (Can use Lagrange multiplier or reduce to Calculus I a couple of different ways.)
More space for problem.