Problem 1 Show that following limits does not exist.

(a) \(\lim_{(x,y) \to (0,0)} \frac{x+y}{x^2+y} \)

(b) \(\lim_{(x,y) \to (0,0)} \frac{x^2+xy}{x^2+y^2} \)

Solution: (a) First, we consider the line \(y = x \) and compute the limit along this line:
\[
\lim_{x \to 0} \frac{2x}{x^2 + x} = \lim_{x \to 0} \frac{2}{x + 1} = 2
\]
On the other hand, considering the curve \(y = x^2 \) we see that
\[
\lim_{x \to 0} \frac{x + x^2}{2x^2} = \lim_{x \to 0} \frac{1 + x}{2x} = \frac{1}{2}
\]
therefore, the limit does not exist.

(b) Again computing the limit along \(y = 0 \) we get
\[
\lim_{x \to 0} \frac{x^2}{x^2} = 1.
\]
On the other hand, computing the limit along \(y = -x \) we get
\[
\lim_{x \to 0} \frac{x^2 - x^2}{2x^2} = 0
\]
hence, the limit does not exist.

Problem 2 Let \(f(x, y) = x^y \) for \(x > 0, y > 0 \). Compute \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \partial y} \).
Solution

\[\frac{\partial f}{\partial x} = yx^{y-1} \]
\[\frac{\partial f}{\partial y} = \ln(x)x^y \]
\[\frac{\partial^2 f}{\partial x^2} = (y^2 - y)x^{y-2} \]
\[\frac{\partial^2 f}{\partial y^2} = (\ln(x))^2 x^y \]
\[\frac{\partial^2 f}{\partial x \partial y} = \frac{1}{x} x^y + \ln(x)yx^{y-1} + y\ln(x)x^{y-1} \]

Problem 3 Let \(G(x, y) = x^2 + xy^2 - \frac{y^2}{2} \) and \(p = (-1, 1) \in \mathbb{R}^2 \).

(a) Calculate the equation of the plane tangent to the graph of \(G \) at the point \(p \).

(b) Calculate the gradient of \(G \) at the point \(p \) (that is, compute \(\nabla G(-1, 1) \)).

(c) Find a critical point of \(G(x, y) \) on the domain \(\mathbb{R}^2 \) and determine whether it is a local maximum, local minimum, or neither (Hint: The Hessian will help here.)

Solution

(a) The equation of the tangent plane to the graph of \(G \) at \(p \) is of the form

\[z - z_0 = A(x - x_0) + B(y - y_0) \]

where \(A = \frac{\partial G}{\partial x}(p) \) and \(B = \frac{\partial G}{\partial y}(p) \) and \(z_0 = G(p) \). Computing these values:

\[z_0 = G(-1, 1) = -\frac{1}{2} \]
\[A = \frac{\partial G}{\partial x}(-1, 1) = (2x + y^2)|_{x=-1,y=1} = -1 \]
\[B = \frac{\partial G}{\partial y}(-1, 1) = (2xy - y)|_{x=-1,y=1} = -3 \]
Thus, the equation of the plane is given by
\[z + \frac{1}{2} = -(x + 1) - 3(y - 1). \]

(b) The Gradient of \(G \) is given by
\[\nabla G(-1, 1) = \left[\begin{array}{c} \frac{\partial G}{\partial x} \\ \frac{\partial G}{\partial y} \end{array} \right]_{x=-1, y=1} = \left[\begin{array}{c} -1 \\ -3 \end{array} \right] \]

(c) To find the critical point(s) we need to solve
\[\nabla G(x, y) = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \]
That is
\[2x + y^2 = 0 \]
\[y(2x - 1) = 0 \]
The second equation implies that either \(y = 0 \) or \(2x - 1 = 0 \). If \(y = 0 \) then \(x = 0 \) by the first equation. If \(2x - 1 = 0 \) then \(x = \frac{1}{2} \) and from the first equation \(y^2 = -1 \) which has no real solutions. Thus the function \(G(x, y) \) has only one critical point in \(\mathbb{R}^2 \) which is \((0, 0)\).

Now, we apply the second derivative test:
\[Hes(G)(x, y) = \left[\begin{array}{cc} G_{xx} & G_{xy} \\ G_{yx} & G_{yy} \end{array} \right]_{x=0, y=0} = \left[\begin{array}{cc} 2 & 2y \\ 2y & 2x - 1 \end{array} \right]_{x=0, y=0} = \left[\begin{array}{cc} 2 & 0 \\ 0 & -1 \end{array} \right] \]
Since the determinant of the Hessian \(D = -2 < 0 \) by second derivative test the point \((0, 0)\) is a saddle point i.e. it is neither a local min or max.

Problem 4 \textit{Given the system}
\[\frac{dx}{dt} = x + y \]
\[\frac{dy}{dt} = 4x - 2y \]
(a) Solve the system for the particular solution that passes through the point \((x, y) = (1, 0)\).

(b) Find all equilibrium solutions and determine their stability.

(c) Draw the solution passing through the point \((x, y) = (1, 0)\) on the direction field for all \(t \in \mathbb{R}\). Also draw the solution passing through the point \((x, y) = (1, 1)\) for all \(t \in \mathbb{R}\). (Use the Java applet to produce the direction filed)

Solution (a) We rewrite the system in the matrix from
\[
\frac{d\vec{x}}{dt} = A\vec{x}
\]
where
\[
A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix} \quad \text{and} \quad \vec{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}
\]

Given this system, we can write the general solutions as follows: If \(A\) has two distinct real eigenvalues \(\lambda_1, \lambda_2\) and \(\vec{u}_1, \vec{u}_2\) are the corresponding eigenvectors then the general solution to the above system is given by
\[
\vec{x}(t) = c_1\vec{u}_1e^{\lambda_1 t} + c_2\vec{u}_2e^{\lambda_2 t}.
\]

To find eigenvalues we solve the characteristic equation \(det(\lambda I_2 - A) = 0\) which is \(\lambda^2 + \lambda - 6 = 0\). Thus, eigenvalues of \(A\) are \(\lambda_1 = 2\) and \(\lambda_2 = -3\). For the eigenvalue \(\lambda = 2\) the eigenvector equation \(A\vec{u} = 2\vec{u}\) leads to the system \(x + y = 2x\) and \(4x - 2y = 2y\). Remember these two equations are ALWAYS the same equation when finding the eigenvectors, and any vector \(\vec{u}\) that satisfies either equation one works. The first equation leads directly to \(x = y\). Choose \(x = 1\), so that \(y = 1\), and an eigenvector for \(\lambda_1 = 2\) is \(\vec{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\). If we do the same thing for \(\lambda_2 = -3\), we will get the equation \(x + y = -3x\), and if we choose \(x = 1\), we get \(y = -4\), and for \(\lambda_2 = -3\), we get \(\vec{u}_2 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}\).

Hence the general solution to this system is
\[
\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ -4 \end{bmatrix} e^{-3t}
\]

For our particular solution, we have a starting point \(\vec{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\). Throw that into the general solution evaluated at \(t = 0\), to get the
values of the two unknown constants \(c_1 \) and \(c_2 \) that correspond to the solution that passes through the point \((1,0)\). Hence,

\[
\begin{bmatrix}
1 \\
0
\end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -4 \end{bmatrix}
\]

This leads to the two equations \(1 = c_1 + c_2 \) and \(0 = c_1 - 4c_2 \). Solving these two leads to \(c_1 = \frac{4}{5} \) and \(c_2 = \frac{1}{5} \). Hence our particular solution is

\[
\vec{x}(t) = \frac{4}{5} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + \frac{1}{5} \begin{bmatrix} 1 \\ -4 \end{bmatrix} e^{-3t}
\]

(b) The only equilibrium of a linear system where the matrix \(A \) has non-zero determinant (like this one) is the origin. And since the two eigenvalues here are real, distinct, non-zero, and of different signs. Thus, the origin is a saddle and unstable.

(c) On the next page, the solution passing through the point \((x,y) = (1,0)\) is drawn on the direction field for all \(t \in \mathbb{R} \). The solution passing through the point \((x,y) = (1,1)\) is also drawn. Note that these two points are marked.