In agreeing to take this exam, you are implicitly agreeing to act with fairness and honesty.

<table>
<thead>
<tr>
<th>Problems/Points</th>
<th>1/10</th>
<th>2/20</th>
<th>3/10</th>
<th>4/20</th>
<th>5/20</th>
<th>6/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Consider a 2×2 matrix

$$A = \begin{bmatrix} 4 & 5 \\ -1 & -2 \end{bmatrix}$$

(a) Compute $\text{tr}(A)$ and $\det(A)$.
(b) Find the eigenvalues of A.

2. (20 points) Solve the system of linear equations

\[
\begin{align*}
y + x &= 3 \\
z - y &= -1 \\
x + 2z &= 4
\end{align*}
\]
3. (10 points) Compute the improper integral

\[\int_{1}^{e^4} \frac{dx}{x \sqrt{\ln x}}. \]
4. **(20 points)** Consider a 2×2 matrix

$$A = \begin{bmatrix} 3 & -2 \\ 7 & -5 \end{bmatrix}$$

(a) Find the inverse matrix A^{-1} and its determinant $\det(A^{-1})$.
(b) Define a to be the number $\det(A^{-1})$. Suppose that the volume $V(t)$ of a cell at time t changes according to

$$\frac{dV}{dt} = \sin(at) \quad \text{with } V(0) = 3.$$

Find $V(t)$.
5. (20 points) Consider three vectors
\[x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad y = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad z = \begin{bmatrix} -1 \\ 4 \end{bmatrix}. \]

(a) Compute the dot products \(a := x \cdot y \) and \(b := x \cdot z \).
(b) Let \(P = (1, -1) \) be the point in \(\mathbb{R}^2 \) corresponding to the vector \(x \). Find the line that passes through this point \(P \) and is perpendicular to the vector \(n = \begin{bmatrix} a \\ b \end{bmatrix} \)

where \(a, b \) are defined in (a).
6. (20 points) (a) Solve the differential equation

\[\frac{dy}{dx} = (y - 2)(y + 1), \quad y(0) = 3. \]

(b) Find the equilibria of the above differential equation and discuss the stability of each equilibrium.