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Video Guide for Linear Algebra 110.201 
 

Spring 2021 
 

W. Stephen Wilson 
 

 
Week # 1 

 
 
Text:  Chapter 1.  12 videos, 112 minutes. 
 
Overview: 
 
Defines systems of linear equations, puts them in matrix notation, and shows how to solve 
them using row-reduced echelon form.  Along the way introduces the notion of the rank of a 
matrix and the concept of perpendicular using the dot product.   
 
Videos: 
 
1part01.mp4 (7:20) 
 
A simple system of 2 linear equations in 2 unknowns: solves them 2 different ways, and explains 
their geometric meaning. 
 
1part02.mp4 (7:27) 
 
Examples of simple systems of 2 linear equations in 2 unknowns with 1 solution, infinite 
solutions, and no solutions, and explains their geometric meaning. 
 
1part03.mp4 (8:37) 
 
Turns the previous examples into matrices and introduces row reduction to find solutions. 
 
1part04.mp4 (7:53) 
 
Moves on to n equations in m unknowns.  Puts this in matrix form and gets a start on row 
reduction. 
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1part05.mp4 (16:27) 
 
Works an example with 4 equations and 5 unknowns, translates the problem to a matrix and 
demonstrates row-reduced echelon form to solve the system. 
 
1part06.mp4 (6:51) 
 
Works a simple system for a real-life problem where only integer solutions are acceptable.  A 
“cultural aside” (i.e. content not required, but video is). 
 
1part07.mp4 (4:49) 
 
Defines the row-reduced echelon form of a matrix, (rref(A)).  Introduces the coefficient matrix 
and the augmented matrix and defines the rank of a matrix.  It uses these definitions to discuss 
when there is only one solution, infinite solutions or no solutions, to a system of linear 
equations. 
 
1part08.mp4 (7:27) 
 
Reinterprets our old simple systems of 2 linear equations in 2 unknowns as a problem about 
vectors in Euclidean space. 
 
1part09.mp4 (8:55) 
 
Reinterprets a system of n equations in m unknowns as a problem about vectors in Euclidean 
m-space.  Introduces linear combinations and the notation for systems of linear equations, 
Ax=b.  Then develops some of the properties of this notation. 
 
1part10.mp4 (5:43) 
 
Introduces the dot product and how it shows up in our new notation, Ax=b. 
 
1part11.mp4 (12:19) 
 
Introduces perpendicular using the dot product and reduces some problems about 
perpendicular vectors to systems of linear equations that we know how to solve. 
 
1part12.mp4 (9:25) 
 
Introduces the standard basis for Euclidean n-space and shows some advantages for using it, for 
example that Ae_j is the j-th column of A. 
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Weeks # 2 and 3 
 

 
Text:  Chapter 2.  22 videos, 188 minutes. 
 
Overview: 
 
We define and study linear transformations and associate them with matrices, in particular, we 
need to know how to compute the matrix for a linear transformation given various ways of 
describing the linear transformation.  Numerous examples are worked to illustrate.  In 
particular, we need the inverse of a linear transformation and its matrix (when they exist).  
Matrix multiplication is developed to study the composition of linear transformations. 
 
Videos: 
 
2part01.mp4 (7:12) 
 
We define a linear transformation from Euclidean n-space to Euclidean m-space by way of a 
matrix.  We then study the identity matrix from several different perspectives. 
 
2part02.mp4 (7:47) 
 
We relate the matrix of a linear transformation to what it does to the standard basis and 
connect the matrix of a linear transformation to the matrix for a system of linear equations. 
 
2part03.mp4 (8:15) 
 
We take a look at an example of a matrix that rotates the plane and then study all linear 
transformation from Euclidean 3-space to 1-space.  Our final example is to find the matrix for 
the cross product, i.e. T(z) = v x z for a fixed v in Euclidean 3-space. 
 
2part04.mp4 (10:42) 
 
We study various examples of linear transformations, including all linear transformation from 
the reals to the reals (i.e. Euclidean 1-space). 
 
2part05.mp4 (9:06) 
 
We use matrices to study the properties of linear transformations and then use those 
properties to give a new definition of a linear transformation and show that these two 
definitions are equivalent. 
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2part06.mp4 (9:46) 
 
We compute the matrices for arbitrary rotations in the plane and one called the “shear.” 
 
2part07.mp4 (2:29) 
 
A short video that revisits and improves on the matrix for a shear from the previous lecture. 
 
2part08.mp4 (11:24) 
 
We look at the linear transformation obtained by dropping perpendiculars to a line. 
 
2part09.mp4 (12:38) 
 
In this video we work a concrete problem where we have a line in 3-space and we compute all 
linear transformation from 3-space to 3-space where the image is perpendicular to the line.  In 
particular, we compute the projection dropping perpendiculars (used to solve a special case) as 
in the previous video for 2-space. 
 
2part10.mp4 (3:12) 
 
A short video on reflection and dilation.   
 
2part11.mp4 (9:59) 
 
We define, discuss, and prove the properties of the inverse of a linear transformation coming 
from a matrix. 
 
2part12.mp4 (10:25) 
 
More properties of the inverse and how to compute the matrix for the inverse. 
 
THIS IS A GOOD POINT TO BREAK BETWEEN WEEK # 2 AND WEEK # 3. 
 
2part13.mp4 (8:00) 
 
We compute the matrix for the inverse of an arbitrary invertible linear transformation from 2-
space to 2-space. 
 
2part14.mp4 (6:30) 
 
We work some simple examples of problems related to invertible matrices. 
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2part15.mp4 (15:03) 
 
The composition of linear transformations coming from matrices is shown to be a linear 
transformation, and so, it must have a matrix.  We compute the matrix from the two given 
matrices, and this defines and justifies the formulas for the multiplication of matrices. 
 
2part16.mp4 (8:36) 
 
Gives a different perspective on the product of matrices that makes it easier to compute. 
 
2part17.mp4 (7:15) 
 
A short excursion into an application of the multiplication of matrices:  the chain rule for 
multivariable calculus (a cultural aside).  Then more properties of matrix multiplication are 
developed (associativity, distributivity, etc.). 
   
2part18.mp4 (7:32) 
 
An example of a linear transformation given in an unusual way where we compute the matrix 
using our basic principles. 
 
2part19.mp4 (9:54) 
 
A problem involving matrix multiplication that is reduced, like all things in this course, to solving 
a system of linear equations. 
 
2part20.mp4 (4:57) 
 
Same as above, different problem. 
 
2part21.mp4 (10:18) 
 
Same as above, different problem. 
 
2part22.mp4 (7:01) 
 
Yet another, this time the composition of rotations is shown to give the correct matrix. 
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Weeks # 4 and 5 
 

 
Text:  Chapter 3.  23 videos, 200 minutes. 
 
Overview: 
 
Subspaces of Euclidean n-space are defined.  Two important ones are defined, namely the 
kernel and the image.  To study these further, the idea of linear independence is developed and 
basis is defined.   Having a basis allows us to define the dimension of a subspace.  This leads to 
the major result that for a linear transformation defined on Euclidean n-space, the sum of the 
dimensions of the kernel and the image are n.  Once we have bases, we can define vectors in 
the subspace in terms of them, giving us coordinates.  We then need to study the different 
matrices a linear transformation gives rise to depending on the choice of basis.   
 
Videos: 
 
3part01.mp4 (7:49) 
 
Lots introduced:  linear combinations, span, Image(T).  We show that the columns of a matrix 
span the Image(T). 
 
3part02.mp4 (9:09) 
 
The kernel is defined and we show how to compute it after we develop its properties, such as 
its connection with rank.  Next, we study invertible matrices using rank and row reduced 
echelon form of the matrix A and connect this with the kernel and the image. 
 
3part03.mp4 (5:36) 
 
Some examples of the kernel and image are discussed. 
 
3part04.mp4 (11:22) 
 
This is a major video.  It defines subspaces, linear independence, linear dependence, bases, and 
develops these concepts. 
 
3part05.mp4 (8:14) 
 
This is a computation based course (there is no understanding if you can’t computer), and so in 
this video we learn how to decide if a set of vectors is linear independent or linearly dependent. 
 



 7 

3part06.mp4 (7:59) 
 
A computation to find a basis. 
 
3part07.mp4 (7:49) 
 
We do several simple things here.  First, we define the orthogonal complement of a subspace 
and show it is also a subspace.  Then we do a small example of computing the basis for the 
image of a linear transformation and for the kernel.  Then we prove a new property of a linear 
transformation:  Then image of a linearly dependent set is also linearly dependent. 
 
3part08.mp4 (7:52) 
 
In this video a number of basic facts are developed.  We show that there is at most n linearly 
independent vectors in Euclidean n-space.  Then we show that if we have linearly independent 
vectors and another vector not in the span, then adding it to our vectors they are still linearly 
independent.  We show that orthogonal vectors are linearly independent.   
 
3part09.mp4 (10:55) 
 
We define and develop the concept of the dimension of a subspace, non-trivial and 
fundamental.  All bases of a subspace have the same number of vectors. 
 
3part10.mp4 (10:24) 
 
We apply what we just learned to Euclidean n-space and give more properties of a basis. 
 
3part11.mp4 (9:24) 
 
How to find a basis for the kernel (by example). 
 
3part12.mp4 (10:06) 
 
How to find a basis for the image.  BIG result:  relations between dimension of kernel and 
image. 
 
THIS IS A GOOD POINT TO BREAK BETWEEN WEEK # 4 AND WEEK # 5. 
 
3part13.mp4 (10:06) 
 
A concrete (but longwinded) example of computing bases for the kernel and image. 
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3part14.mp4 (4:44) 
 
A short discussion about basis, rank, invertibility, and their connections. 
 
3part15.mp4 (9:25) 
 
Another concrete example.  Given a bunch of vectors that span a subspace, find a subset of the 
vectors that gives a basis. 
 
3part16.mp4 (5:36) 
 
An example is worked where the question has to be reduced to solving equations, but the 
connection isn’t obvious to begin with. 
 
3part17.mp4 (8:18) 
 
An example is worked where vectors are given:  are they a basis?  Same question with a 
variable inserted. 
 
3part18.mp4 (6:10) 
 
In IMPORTANT new concept is introduced, namely, the concept of coordinates using a basis.  
This concept is difficult and easy to confuse.  It will plague us for the rest of the semester.  The 
sooner you understand it, the better off you are.  This is introduced with a simple example. 
 
3part19.mp4 (12:28) 
 
The simple example of orthogonal projection onto a line in the plane is used to show how 
useful the above concept of coordinates in a non-standard basis can be. 
 
3part20.mp4 (8:55) 
 
MAJOR VIDEO!  We show how a linear transformation has a matrix with respect to any basis, 
and the matrix is different from the standard matrix using the standard basis, but the linear 
transformation is the same.  We show how to relate the two matrices using different bases.  
Again this is a place that students often get confused about.  
 
3part21.mp4 (9:00) 
 
We define and study similar matrices (because they arose in the previous video).  We compute 
a previously studied example from this perspective. 
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3part22.mp4 (7:20) 
 
An example:  How to find the matrix for a linear transformation given a new basis. 
 
3part23.mp4 (13:04) 
 
We work two examples, (1) finding the coordinates of a vector in terms of a new basis.  (2) 
Given a nice transformation defined in terms of our new coordinates, what is the matrix in 
terms of standard coordinates. 
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Week # 6 
 

 
Text:  Chapter 4 (minus one video).  8 videos, 75 minutes. 
 
Overview: 
 
The notion of abstract linear space (vector space) is introduced and we to for them what we 
have already done for Euclidean space. 
 
Videos: 
 
4part01.mp4 (8:21) 
 
We define linear space, i.e. vector space.  This abstracts Euclidean n-space.  Examples are given. 
 
4part02.mp4 (7:36) 
 
More examples. 
 
4part03.mp4 (7:37) 
 
We continue repeating stuff we’ve already done in this more abstract setting, including 
invertible, i.e. isomorphic, linear spaces, with some new examples that setting allows for. 
 
4part04.mp4 (6:11) 
 
We show that all finite dimensional abstract linear spaces are isomorphic to Euclidean n-space.  
Then we work an example of checking to see if some vectors in an abstract space are a basis. 
 
4part05.mp4 (10:07) 
 
We first work a simple example of finding the matrix for a linear transformation given a 
particular basis in an abstract linear space.  Then we show how to compute the matrix for 
T:VàV given a basis for V.  Then we should how to relate this matrix to the matrix we get if we 
use a different basis to compute a matrix.  The diagram at the end is really important. 
 
4part06.mp4 (6:11) 
 
A computational example in our new setting, getting a matrix and a basis for image and kernel. 
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4part07.mp4 (13:31) 
 
Another exotic example beat to death. 
 
4part08.mp4 (15:23) 
 
Another longwinded example where the basis vectors don’t “look right”.  This requires keeping 
a clear head and always going back to definitions.  Important. 
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Week # 7 
 

 
Text:  Sections 5.1 and 5.2 (plus one video left from 4.3).  7 videos, 72 minutes. 
 
Overview: 
 
This week focuses on orthogonal vectors and orthogonal subspaces, in particular, we find how 
to do orthogonal projection and we also learn how to take a basis and construct an 
orthonormal basis from it. 
 
Videos: 
 
4part09.mp4 (18:16) 
 
Another endless example of the sort you are expected to know how to do.  In this case we 
really work everything using 2 different bases and do the appropriate comparison. 
 
5.1-part1.mp4 (7:09) 
 
We review orthogonality in Euclidean space. 
 
5.1-part2.mp4 (8:29) 
 
We continue the study of orthogonal vectors in Euclidean space, including the concept of the 
orthogonal complement.   
 
5.1-part3.mp4 (8:58) 
 
Here we study orthogonal projection onto a subspace of Euclidean space and even find 
formulas for this. 
 
5.1-part4.mp4 (9:47) 
 
The Pythagorean theorem done right (in n-space), and consequences like the Cauchy-Schwartz 
inequality. 
 
5.1-part5.mp4 (6:57) 
 
Amazing!  We can calculate the angle between two vectors in n-space.  This also explains the 
foundation for correlation coefficients. 
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5.2-part1.mp4 (11:51) 
 
In the previous videos, we often needed to have an orthonormal basis in order to do our 
computations.  In this video we show how to bend a given basis to our will and turn it into and 
orthonormal basis.  This is called the Gram-Schmidt process, and you need to be able to do it.  
As a bonus, this process gives us a way to factor an arbitrary matrix with linearly independent 
columns into the product of two very nice matrices.  We will see other examples of this kind of 
analysis later. 
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Week # 8 
 

 
Text:  Sections 5.3, 5.4, and most of 5.5.  11 videos, 118 minutes. 
 
Overview: 
 
These sections study orthogonal transformations and orthogonal projections, with applications 
to problems of least squares, line of best fit for a scatter plot, and general data fitting.  At the 
end, inner products on linear spaces are introduced and applied. 
 
Videos: 
 
Section 5.3 
 
01-review-and-goal.mp4 (11:04) 
 
This is review, mainly of 5.1, consolidating what we need for the next few videos. 
 
02-more-review.mp4 (3:56) 
 
Again, more review, this for 5.2. 
 
03-orthogonal-transformations.mp4 (8:42) 
 
Orthogonal transformations.  They are rigid, so show up often in certain types of real worlds.  
Anyway, we study their properties.  These special transformations preserves the lengths of 
vectors. 
 
04-orthogonal-transformations.mp4 (9:08) 
 
We find the special type of matrices associated with orthogonal transformations using an 
orthonormal basis. 
 
05-orthogonal-transformations.mp4 (9:09) 
 
We define the transpose of a matrix and develop its properties.  In the process, we discover 
that the dimension of the subspace spanned by the rows of a matrix is the same as the 
dimension of the subspace spanned by the columns, even though they are subspaces of 
different dimensional Euclidean spaces! 
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06-orthogonal-projection-matrix.mp4 (12:04) 
 
We compute the inverse of an orthogonal matrix (easy).  Then we find the matrix for an 
orthogonal projection to a line in Euclidean space.  We generalize this to finding a matrix (nice, 
non-computational, theoretical version) for the orthogonal projection to a subspace.  But, of 
course, you have to be able to translate this kind of thing into real numbers. 
 
Section 5.4 
 
This sequence needs an explanation.  I was once involved with K-12 education pretty 
thoroughly, and one of the things that drove us all mad was the education establishment 
introducing the line of best fit for a scatter plot.  This group wouldn’t teach multiplication to 
students unless they understood it completely, but here they were, having students do line of 
best fit in middle school.  The line of best fit is quite sophisticated, so I have a sequence of 
videos doing somewhat more than the book does.  I will label those that are optional.  I would 
like you to watch all of them, but that is just because I am ludicrously proud of the sequence.  If 
you do that, it will take a lot of time. So, they are not all required. The whole sequence of 9 
videos is 92 minutes, a bit much.   
 
leastsquares01.mp4 (7:45) OPTIONAL 
 
This starts off using material we have not yet covered, but you might want to come back to it 
when you have covered it.  We will eventually generalize the dot product to more abstract 
linear spaces, and this video discusses a motivating example. 
 
leastsquares02.mp4 (14:12) OPTIONAL 
 
Discusses least squares from the perspective of the Pythagorean theorem. 
 
leastsquares03.mp4 (7:09) OPTIONAL 
 
This video sets up the problem of the line of best fit for a scatter plot and connects it to least 
squares via the Pythagorean theorem.  It is optional because we do it again later. 
 
leastsquares04.mp4 (4:49) OPTIONAL 
 
We describe how to set up a problem and compute a quadratic approximation to a scatterplot.  
This clearly generalizes to other cases as well.  The book does this, but I’m asking a lot of you 
already, and, I know you’ve read the book. 
 
leastsquares05.mp4 (6:59) OPTIONAL 
 
We connect the linear algebra version of least squares to the calculus version. 
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leastsquares06.mp4 (6:29) OPTIONAL 
 
This describes orthogonal projection if we have an orthonormal basis.  Something of a review. 
 
leastsquares07.mp4 (18:01) REQUIRED 
 
This video is the core of 5.4.  It does a lot.  An example of what it does is to consider a system of 
equations, Ax=b, that has no solution.  The best possible approximation to a solution is the 
solution to the problem where you take orthogonal projection (solving a least squares problem) 
of b to in the image of A.  This does a lot of what we have already done, but without the 
advantage of an orthonormal basis.  Lots of good formulas and even some good theorems. 
 
leastsquares08.mp4 (21:42) REQUIRED (first 7 minutes anyway) 
 
This really sets up the problem of finding the line of best fit for a scatter plot.  The first 7 
minutes does all you need to see, although the rest is also in the book, so you should see it one 
place or the other.  This actually shows you how the silly formulas in statistics books come 
about from linear algebra, orthogonal projection and the Pythagorean theorem. 
 
leastsquares09.mp4 (4:38) OPTIONAL 
 
This goes back and looks at a similar result using calculus and shows how you can do it using 
linear algebra and what we have developed here. 
 
Section 5.5 
 
5.5-part1.mp4 (5:59) 
 
The dot product in Euclidean space is generalized to an inner product on a linear space.  Linear 
spaces were already a great leap forward in abstraction but this compounds the abstraction 
with an entirely new level.  Survive this and you can do anything. 
 
5.5-part2.mp4 (7:35) 
 
We give an example of one of our new inner products. 
 
5.5-part3.mp4 (9:50) 
 
Our new inner product allows us to talk about the length of a vector and orthogonality, 
including the concept of an orthonormal basis and orthogonal projection.   
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Week # 9 
 

 
Text:  The rest of 5.5 and then Sections 6.1 and part of 6.2.  10 videos, 75 minutes. 
 
Overview: 
 
We finish up section 5.5 with a long computation.  Then, in sections 6.1 and 6.2, we define 
determinants and learn how to compute them.  The videos give an alternate approach from the 
book. 
 
Videos: 
 
5.5-part4.mp4 (9:25) 
 
An example of our orthogonal projection in our new situation.  We want to give a linear 
approximation of e to the x on [0,1], but unlike Taylor series, our approximation is best possible 
for [0,1], not just near a point.  Before we can do this, we have to find an orthonormal basis for 
linear polynomials using our new inner product. 
 
5.5-part5.mp4 (4:59) 
 
We give an alternate way of finding the orthonormal basis in the previous problem. 
 
5.5-part6.mp4 (11:53) 
 
We finally find the linear approximation for e to the x on [0,1] using the results of the previous 
videos. 
 
det-part1.mp4 (7:08) 
 
We give an alternative approach to determinants, different from that in the book.  Still, read 
the book. 
 
det-part2.mp4 (10:10) 
 
How to compute determinants. 
 
det-part3.mp4 (7:27) 
 
We study determinants from the perspective of the elementary matrices that give the row 
operations. 
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det-part4.mp4 (6:14) 
 
We compute some determinants. 
 
det-part5.mp4 (8:01) 
 
We show that the determinant of the product of matrices is the product of the determinants. 
 
det-part6.mp4 (6:28) 
 
We show that the determinant of the transpose of A is the same as the determinant of A. 
 
det-part7.mp4 (4:44) 
 
Compute a determinant with an unknown in the matrix, something we have to get used to. 
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Week # 10 
 

 
Text:  The last part of 6.2 and 6.3.  7 videos, 50 minutes. 
 
Overview: 
 
We present a good way to compute determinants and then explain what determinants mean 
geometrically, connecting them up with the chain rule in Calculus III. 
 
Videos: 
 
det-part8.mp4 (3:51) 
 
The determinant of an upper triangular matrices is easy, and reducing the determinant of a 
matrix to that of an upper triangular matrix is easier than the above approaches.  Another way 
to compute the determinant.   
 
det-part9.mp4 (5:56) 
 
We connect the definition of determinant that we have used to that used by the book. 
 
6.3-part01.mp4 (10:04) 
 
We begin to explain what the determinant really does.  To begin with here, we show that if the 
determinant is 0, then the matrix is not invertible, i.e. has rank < n.  Then we show that in the 
2x2 case, the determinant computes the area of the parallelogram determined by the column 
vectors. 
 
6.3-part02.mp4 (7:09) 
 
We generalize the above to n-dimensions.  The determinant of A is the n-dimensional volume 
of the n-dimensional parallelepiped given by the columns.  An alternate interpretation is that 
the determinant of A gives the volume of the image of the n-dimensional unit cube under the 
linear transformation defined by A. 
 
6.3-part03.mp4 (7:08) 
 
We are interested in the m-dimensional volume defined by m-vectors in n-space where m < n.  
We use our old factorization of the non-square matrix that we had from the Gram-Schmidt 
process.  However, we do some theory to get a formula that avoids having to do any of that.  
Neat stuff. 
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6.3-part04.mp4 (7:00) 
 
You need determinants in Calculus III for the change of variables theorem that allows you to 
simplify the computation of various multiple integrals.  Our interpretation of the determinant 
as multiplying volumes explains why the determinant shows up in the change of variables 
formula.  We can then go back to Calculus I and see that the change of variables there is the 
same, it is just that the determinant is of a 1x1 matrix.  This is a major reason for doing 
determinants in this course, to prepare you for Calculus III. 
 
6.3-part05.mp4 (9:09) 
 
We show how we can use determinants to find a nice closed formula for the solution to Ax=b 
when the determinant of A is non-zero, i.e. when there is a unique solution. 
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Weeks # 11 and # 12 
 

 
Text:  Chapter 7 (minus Section 7.6).  9 videos, 80 minutes. 
 
Overview: 
 
We introduce a really nice way to analyze a linear transformation through eigenvalues and 
eigenvectors, at least when it works. 
 
At the end, there is an optional sequence applying what we learn to Fibonacci numbers. 
 
Videos: 
 
7part1.mp4 (9:12) 
 
We define eigenvectors and eigenvalues and begin their study. 
 
7part2.mp4 (9:28) 
 
We do the general theory of how to find eigenvectors and eigenvalues if they exist and then do 
an explicit computation finding some. 
 
7part3.mp4 (12:29) 
 
We finish up the problem in the previous video and find ourselves with a basis of eigenvectors.  
We show how much nicer the linear transformation looks if we use this basis, and we connect it 
with the matrix that originally gave us our linear transformation. 
 
7part4.mp4 (10:03) 
 
Considering the nxn case, we define the characteristic polynomial.  We can then talk about 
algebraic versus geometric multiplicity for eigenvalues.   
 
THIS IS A GOOD POINT TO BREAK BETWEEN WEEK # 11 AND WEEK # 12. 
 
7part5.mp4 (9:17) 
 
We study the ideal case when we have a basis of eigenvectors for T:VàV, and set up a way to 
determine if such a basis exists. 
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7part6.mp4 (5:58) 
 
Recall that similar matrices arise when we study a linear transformation from the perspective of 
different bases.  We now study similar matrices in the context of eigenvalues and eigenvectors. 
 
7part7.mp4 (6:08) 
 
A summary of what we know so far about eigenvectors and eigenvalues. 
 
7part8.mp4 (6:10) 
 
A summary of how to compute such things. 
 
7part9.mp4 (12:20) 
 
We introduce complex numbers for eigenvalues and eigenvectors because we need this later 
on in the course.  We illustrate with an example. 
 
OPTIONAL sequence of videos studying Fibonacci numbers using the techniques from this 
chapter.  The first 2 videos can be safely ignored if you are really interested. 
 
Fibonacci01.mp4 (6:39) DOUBLE OPTIONAL 
 
We define Fibonacci numbers and give a fancy formula for them that looks weird.  This can be 
skipped, even in this sequence. 
 
Fibonacci02.mp4 (5:41) DOUBLE OPTIONAL 
 
We prove the above fancy formula for Fibonacci numbers using induction.  This is very 
unsatisfying because it gives no idea where the formula comes from.  This video can also be 
skipped without missing the crucial lesson. 
 
Fibonacci03.mp4 (7:13) OPTIONAL 
 
This video is necessary for the sequence.  Here, we reduce finding a formula to a matrix 
problem and then further reduce it to an eigenvalue and eigenvector problem. 
 
Fibonacci04.mp4 (10:55) OPTIONAL 
 
Here we do the computation from the previous video setup and show how the truly weird 
formula comes up naturally from this perspective.  Well, not quite.  The computation is long 
and is finished up in the next video. 
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Fibonacci05.mp4 (9:39) OPTIONAL 
 
Now we see the weird formula coming out in the wash. 
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Week # 13 
 

 
Text:  Chapter 8.  24 videos, 212 minutes (most of these minutes are working out long 
computational problems). 
 
Overview: 
 
We continue our analysis of linear transformations using several different approaches.  We find 
when we have a basis of orthonormal eigenvectors.  We use this to analyze quadratic functions 
and associated geometric objects.  Then we give a thorough analysis of linear transformations 
between inner product spaces giving the singular value decomposition theorem.  Most of the 
video time is spent working longwinded examples. 
 
Videos: 
 
8part01.mp4 (5:48) 
 
We ask the question of when A has a basis of orthonormal eigenvectors, the best of all possible 
worlds. 
 
8part02.mp4 (5:21) 
 
We start on our solution to the above problem beginning with a 2x2 case. 
 
8part03.mp4 (9:49) 
 
We use our complex number results from the previous chapter to make progress on the 
problem. 
 
8part04.mp4 (10:04) 
 
We finish our solution to the problem of when A has a basis of orthonormal eigenvectors.  The 
answer is surprisingly nice (and complete). 
 
8part05.mp4 (9:18) 
 
We work an example. 
 
8part06.mp4 (10:19) 
 
A bigger more complicated example. 
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8part07.mp4 (3:04) 
 
An easy way to solve the previous problem by inspection (i.e. cheating). 
 
8part08.mp4 (9:43) 
 
We start solving another ugly problem given a symmetric matrix where we look for a basis of 
orthonormal eigenvectors. 
 
8part09.mp4 (11:52) 
 
We finish the problem from the previous video, including finding the matrix for the change of 
basis. 
 
8part10.mp4 (11:46) 
 
We apply this theorem to study quadratic functions, a serious application of the results we 
have. 
 
8part11.mp4 (10:48) 
 
We use our new understanding to show that the equations for an ellipse must give axes that 
are perpendicular to each other.  There are no weird ellipses. 
 
8part12.mp4 (8:08) 
 
We work an example of an ellipse where we can go from the formula to finding the principle 
axes for it.   
 
8part13.mp4 (4:31) 
 
We use our new knowledge to compute the points on the above ellipse that are closest and 
furthest from the origin and find the distances. 
 
8part14.mp4 (6:06) 
 
Looking at a 2-dimensional surface in 3-space defined by a quadratic form we compute the axes 
and find the closest points to the origin.   
 
8part15.mp4 (8:44) 
 
Another longwinded example of a surface in 3-space, finding the closest points to the origin. 
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8part16.mp4 (10:43) 
 
A theory video for a change.  We give (one version of) a complete analysis of linear 
transformation between linear spaces with inner products. 
 
8part17.mp4 (11:04) 
 
We take what we just learned and use it to find a decomposition of A, an nxm matrix, into a 
product of 3 matrices where each of the 3 are very nice.  This is the singular value 
decomposition theorem.  You can even compute all this stuff! 
 
8part18.mp4 (4:54) 
 
Just a short geometrical explanation of some of what is going on here. 
 
8part19.mp4 (9:34) 
 
A simple 2x2 computation to get the singular value decomposition.  This takes 2 videos even for 
this simplest of all possible cases. 
 
8part20.mp4 (9:11) 
 
We managed to compute all 3 matrices for the singular value decomposition for our simple 2x2 
case. 
 
8part21.mp4 (10:53) 
 
Another example, this time a 3x2 case.  It takes 2 videos.   
 
8part22.mp4 (8:18) 
 
We finish our decomposition and give a geometric explanation of what happened. 
 
8part23.mp4 (5:28) 
 
We easily use the previous result to write down the singular value decomposition for the 
transpose of the matrix there. This new one is a 2x3 matrix. 
 
8part24.mp4 (15:30) 
 
We do the above 2x3 matrix from scratch and check that we get the same answer as before. 
 
 
 


