Some of these publications are protected by copyright; access is provided for noncommercial educational and research purposes only.

References

[1]    W. S. Wilson. A new relation on the Stiefel-Whitney classes of spin manifolds. Illinois Journal of Mathematics, 17:115–127, 1973.

[2]    W. S. Wilson. The Ω-spectrum for Brown-Peterson cohomology, Part I. Commentarii Mathematici Helvetici, 48:45–55, 1973.

[3]    D. C. Johnson and W. S. Wilson. Projective dimension and Brown-Peterson homology. Topology, 12:327–353, 1973.

[4]    D. C. Ravenel and W. S. Wilson. Bipolynomial Hopf algebras. Journal of Pure and Applied Algebra, 4:41–45, 1974.

[5]    D. C. Ravenel and W. S. Wilson. The Hopf ring for complex cobordism. Bulletin of the American Mathematical Society, 80:1185–1189, 1974.

[6]    W. S. Wilson. The Ω-spectrum for Brown-Peterson cohomology, Part II. American Journal of Mathematics, 97:101–123, 1975.

[7]    W. S. Wilson. The Ω-spectrum for Brown-Peterson cohomology, Part III. Unpublished, 1975.

[8]    D. C. Johnson and W. S. Wilson. BP-operations and Morava’s extraordinary K-theories. Mathematische Zeitschrift, 144:55–75, 1975.

[9]    H. R. Miller and W. S. Wilson. On Novikov’s Ext1 modulo an invariant prime ideal. In D. Davis, editor, Reunion Sobre Teoria de homotopia, Universidad de Northwestern, Agosto 1974, number 1 in Serie notas de matemática y simposia, pages 159–166, Mexico, D.F., 1975. Sociedad Matematica Mexicana.

[10]    D. C. Johnson, H. R. Miller, W. S. Wilson, and R. S. Zahler. Boundary homomorphisms in the generalized Adams spectral sequence and the nontriviality of infinitely many γt in stable homotopy. In D. Davis, editor, Reunion Sobre Teoria de homotopia, Universidad de Northwestern, Agosto 1974, number 1 in Serie notas de matemática y simposia, pages 47–63, Mexico, D.F., 1975. Sociedad Matematica Mexicana.

[11]    H. R. Miller, D. C. Ravenel, and W. S. Wilson. Novikov’s Ext2 and the non-triviality of the gamma family. Bulletin of the American Mathematical Society, 81:1073–1075, 1975.

[12]    H. R. Miller and W. S. Wilson. On Novikov’s Ext1 modulo an invariant prime ideal. Topology, 15:131–141, 1976.

[13]    D. C. Ravenel and W. S. Wilson. The Hopf ring for complex cobordism. Journal of Pure and Applied Algebra, 9:241–280, 1977.

[14]    H. R. Miller, D. C. Ravenel, and W. S. Wilson. Periodic phenomena in the Adams-Novikov spectral sequence. Annals of Mathematics, 106:469–516, 1977.

[15]    D. C. Johnson and W. S. Wilson. The projective dimension of the complex bordism of Eilenberg-Mac Lane spaces. Osaka Journal of Mathematics, 14:533–536, 1977.

[16]    D. M. Latch, R. W. Thomason, and W. S. Wilson. Simplicial sets from categories. Mathematische Zeitschrift, 164:195–214, 1979.

[17]    D. C. Ravenel and W. S. Wilson. The Morava K-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture. American Journal of Mathematics, 102:691–748, 1980.

[18]    R. W. Thomason and W. S. Wilson. Hopf rings in the bar spectral sequence. Quarterly Journal of Mathematics, 31:507–511, 1980.

[19]    W. S. Wilson. Unstable cohomology operations. In Topics in homotopy theory and cohomology theory. Proceedings of a Symposium held at the Research Institute for Mathematical Sciences, Kyoto University, Kyoto, October 27-29, 1980, volume 419, pages 18–25, Kyoto University, Kyoto, Japan, March 1981. RIMS Kokyuroku.

[20]    W. S. Wilson. Brown-Peterson homology: an introduction and sampler. Number 48 in C.B.M.S. Regional Conference Series in Mathematics. American Mathematical Society, Providence, Rhode Island, 1982.

[21]    W. S. Wilson. Towards BP*X. In S. Gitler, editor, Symposium on Algebraic Topology in Honor of José Adem, Contemporary Mathematics, pages 345–351, Providence, Rhode Island, 1982. American Mathematical Society.

[22]    W. S. Wilson. The complex cobordism of BOn. Journal of the London Mathematical Society, 29(2):352–366, 1984.

[23]    W. S. Wilson. Brown-Peterson metastability and the Bendersky-Davis conjecture. Publications of Research Institute of Mathematical Sciences, Kyoto University, 20:1037–1051, 1984.

[24]    W. S. Wilson. The Hopf ring for Morava K-theory. Publications of Research Institute of Mathematical Sciences, Kyoto University, 20:1025–1036, 1984.

[25]    D. C. Johnson and W. S. Wilson. The Brown-Peterson homology of elementary p-groups. American Journal of Mathematics, 107:427–454, 1985.

[26]    H. S. Song and W. S. Wilson. On the non-immersion of products of real projective spaces. Transactions of the American Mathematical Society, 318:327–334, 1990.

[27]    D. C. Johnson, W. S. Wilson, and D. Y. Yan. Brown-Peterson homology of elementary p-groups, II. Topology and its Applications, 59:117–136, 1994.

[28]    J. M. Boardman, D. C. Johnson, and W. S. Wilson. Unstable operations in generalized cohomology. In I. M. James, editor, The Handbook of Algebraic Topology, chapter 15, pages 687–828. Elsevier, 1995. See also the companion paper: Stable operations in generalized cohomology.

[29]    D. C. Ravenel and W. S. Wilson. The Hopf ring for P(n). Canadian Journal of Mathematics, 48(5):1044–1063, 1996.

[30]    P. J. Eccles, P. R. Turner, and W. S. Wilson. On the Hopf ring for the sphere. Mathematische Zeitschrift, 224(2):229–233, 1997.

[31]    D. C. Johnson and W. S. Wilson. On a theorem of Ossa. Proceedings of the American Mathematical Society, 125(12):3753–3755, 1997.

[32]    M. J. Hopkins, D. C. Ravenel, and W. S. Wilson. Morava Hopf algebras and spaces K(n) equivalent to finite Postnikov systems. In Paul S. Selick et. al., editor, Stable and Unstable Homotopy, volume 19 of The Fields Institute for Research in Mathematical Sciences Communications Series, pages 137–163, Providence, R.I., 1998. American Mathematical Society.

[33]    D. C. Ravenel, W. S. Wilson, and N. Yagita. Brown-Peterson cohomology from Morava K-theory. K-Theory, 15(2):149–199, 1998. See an important correction by Kashiwabara: Kashiwabara correction.

[34]    H. Sadofsky and W. S. Wilson. Commutative Morava homology Hopf algebras. In M. E. Mahowald and S. Priddy, editors, Homotopy Theory in Algebraic Topology, volume 220 of Contemporary Mathematics, pages 367–373, Providence, Rhode Island, 1998. American Mathematical Society. See also version with proofs: Commutative Morava homology Hopf algebras.

[35]    W. S. Wilson. Brown-Peterson cohomology from Morava K-theory, II. K-Theory, 17:95–101, 1999.

[36]    W. S. Wilson. K(n + 1) equivalence implies K(n) equivalence. In J.-P. Meyer, J. Morava, and W. S. Wilson, editors, Homotopy invariant algebraic structures: a conference in honor of J. Michael Boardman, volume 239 of Contemporary Mathematics, pages 375–376, Providence, Rhode Island, 1999. American Mathematical Society.

[37]    J. M. Boardman, R. Kramer, and W. S. Wilson. The periodic Hopf ring of connective Morava K-theory. Forum Mathematicum, 11:761–767, 1999.

[38]    W. S. Wilson. The impossible made easy: Learning to calculate with generalized cohomology. In 46-th Annual Japanese Topology Symposium Proceedings, Hokkaido University, pages 20–30, Hokkaido, Japan, July 1999.

[39]    W. S. Wilson. Hopf rings in algebraic topology. Expositiones Mathematicae, 18:369–388, 2000.

[40]    J. M. Boardman and W. S. Wilson. Unstable splittings related to Brown-Peterson cohomology. In J. Aguadé, C. Broto, and C. Casacuberta, editors, Cohomological Methods in Homotopy Theory, Barcelona Conference on Algebraic Topology, Bellaterra, Spain, June 4-10, 1998, volume 196 of Progress in Mathematics, pages 35–45, Basel/Switzerland, 2001. Birkhäuser Verlag.

[41]    T. Kashiwabara and W. S. Wilson. The Morava K-theory and Brown-Peterson cohomology of spaces related to BP. Journal of Mathematics of Kyoto University, 41(1):43–95, March 2001.

[42]    N. Kitchloo, G. Laures, and W. S. Wilson. The Morava K-theory of spaces related to BO. Advances in Mathematics, 189(1):192–236, 2004.

[43]    N. Kitchloo, G. Laures, and W. S. Wilson. Splittings of bicommutative Hopf algebras. Journal of Pure and Applied Algebra, 194:159–168, 2004.

[44]    N. Kitchloo and W. S. Wilson. On fibrations related to real spectra. In M. Ando, N. Minami, J. Morava, and W. S. Wilson, editors, Proceedings of the Nishida Fest (Kinosaki 2003), volume 10 of Geometry & Topology Monographs, pages 237–244, 2007.

[45]    N. Kitchloo and W. S. Wilson. On the Hopf ring for ER(n). Topology and its Applications, 154:1608–1640, 2007.

[46]    J. M. Boardman and W. S. Wilson. k(n)-torsion-free H-spaces and P(n)-cohomology. Canadian Journal of Mathematics, 59(6):1154–1206, 2007.

[47]    N. Kitchloo and W. S. Wilson. The second real Johnson-Wilson theory and non-immersions of RPn. Homology, Homotopy and Applications, 10(3):223–268, 2008.

[48]    N. Kitchloo and W. S. Wilson. The second real Johnson-Wilson theory and non-immersions of RPn, Part 2. Homology, Homotopy and Applications, 10(3):269–290, 2008.

[49]    J. González and W. S. Wilson. The BP-theory of two-fold products of projective spaces. Homology, Homotopy and Applications, 10(3):181–192, 2008.

[50]    W. S. Wilson and D.Y. Yan. Stable splitting of the complex connective K-theory of BO(n). Topology and its Applications, 159:1409–1414, 2012.

[51]    J. González, M. Velasco, and W. S. Wilson. Biequivariant maps on spheres and topological complexity of lens spaces. Communications in Contemporary Mathematics, 15(3), 2013. 33 pages.

[52]    N. Kitchloo and W.S. Wilson. Unstable splittings for real spectra. Algebraic and Geometric Topology, 13(2):1053–1070, 2013.

[53]    N. Kitchloo and W.S. Wilson. The Morava K-theory of BO(q) and MO(q). Algebraic and Geometric Topology, 15:3049–3058, 2015.

[54]    N. Kitchloo and W.S. Wilson. The ER(n)-cohomology of BO(q), and real Johnson-Wilson orientations for vector bundles. Bulletin of the London Mathematical Society, 47(5):835–847, 2015.

[55]    N. Kitchloo, V. Lorman, and W.S. Wilson. Landweber flat real pairs, and ER(n)-cohomology. 2016. Submitted.

[56]    N. Kitchloo, V. Lorman, and W.S. Wilson. The ER(2)-cohomology of BZ(2q) and CPn. Canadian Journal of Mathematics, 2017. To appear.

[57]    N. Kitchloo, V. Lorman, and W.S. Wilson. Multiplicative structure on real Johnson-Wilson theory. 2017. Submitted.