THE SECOND REAL JOHNSON-WILSON THEORY
AND NONIMMERSIONS OF RP^n, PART II

NITU KITCHLOO AND W. STEPHEN WILSON

Abstract. This paper is a continuation of the study begun in [KW]. We analyze $ER(2)^{16+8}(RP^{2n})$ and compute $ER(2)^*(RP^{16K+1})$ and use these to prove more nonimmersion theorems for RP^n including many in fairly low dimensions. In particular, we get 12 new nonimmersion results for RP^n where $n < 192$, the range included in the tables [Dav]. These complement the 10 already found in [KW].

April 7, 2008

1. Introduction

This paper is a continuation of [KW], which we refer to as Part I. We make free use of the notation and results of Part I.

The main theorem of [Dav84] states that for

$$n = m + \alpha(m) - 1 \quad k = 2m - \alpha(m)$$

there does not exist an axial map:

$$RP^{2k-2k-2} \times RP^{2n} \longrightarrow RP^{2k-2n-2}$$

and so, by [Jam63], $RP^{2n} \not\subseteq \mathbb{R}^{2k}$ for these n and k.

This is proven using the equivalent of $E(2)^*(-)$ by showing that the $u^{k-1-n} = 0$ on the right would have to go to a nonzero element on the left. That prevents the existence of the axial map. In Part I we constructed a purely algebraic surjection

$$ER(2)^{16+8}(RP^{2k-2k-4}) \longrightarrow E(2)^{16+8}(RP^{2k-2k-2})$$

that allowed us to show the axial map

$$RP^{2k-2k-4} \times RP^{2n} \longrightarrow RP^{2k-2n-2}$$

did not exist if we added the restrictions to k and n that $n \equiv 7$ or 0 mod 8 and $-k - 2 \equiv 1, 2, 5$ or 6 mod 8. This improved some nonimmersions results by 2.

In this paper we are able to include the $n \equiv 3$ and 4 mod 8 cases by analyzing $ER(2)^{16+8}(RP^{2n})$ and constructing a similar algebraic map

$$ER(2)^{16+8}(RP^{2k-2k-4}) \longrightarrow E(2)^{16+8}(RP^{2k-2k-2})$$

with the previous restrictions on k.

In order to describe $ER(2)^{16+8}(RP^{2n})$ properly we need to define and study an element $y \in E(2)^8(RP^\infty)$. The simple version of our answer, similar to our understanding of $ER(2)^{16+8}(RP^{2n})$ in Theorem 1.6 of Part I, is:
Theorem 1.1. A 2-adic basis for $ER(2)^{16s+8}(RP^{2n})$ consists of the elements
$\alpha^2\alpha^kw^j$, with $0 \leq k$ and $0 < j < n$, yu^i, with $0 \leq j < n - 4$, and, when
$n \equiv 3$ or 4 modulo 8, no other elements, with $yu^{n-3} = 0$,
$n \equiv 2$ or 5 modulo 8, α^kyu^{n-3}, with $yu^{n-2} = 0$,
$n \equiv 1$ or 6 modulo 8, α^kyu^{n-3}, and yu^{n-2}, with $yu^{n-1} = 0$,
$n \equiv 7$ or 0 modulo 8, yu^{-3}, yu^{-2}, and yu^{-1}, with $yu^n = 0$, and no others.

In addition to this we need some information about $ER(2)^*(-)$ of products and then we are able to prove:

Theorem 1.2. When the pair $(m,\alpha(m))$ is, modulo 8, $(0,3), (5,6), (4,7)$ or $(1,2)$,
then
$RP^{2(m+\alpha(m))} \not\in \mathbb{R}^{2(2m-\alpha(m)+1)}$.

Don Davis points out that by combining this with Theorem 1.9 of Part I, we really have the result for $(m,\alpha(m))$ equal to $(0,3)$ and $(1,2)$ mod 4.

The most interesting pair to us is $(m,\alpha(m)) = (0,3)$. Let $m = 8 + 16 + 2^j$, then
$2(m + \alpha(m)) = 54 + 2^{i+1}$ and $2(2m - \alpha(m) + 1) = 92 + 2^{i+2}$. So, we get
$RP^{54+2^{i+1}} \not\in \mathbb{R}^{92+2^{i+2}}$.

The lowest dimensional cases are
$RP^{118} \not\in \mathbb{R}^{220}$ and $RP^{182} \not\in \mathbb{R}^{348}$

However, the importance to us is that it gets on Don Davis’s tables, [Dav]. Notice also that for these cases there is only a knowledge gap of 1 between best known nonimmersions and best known immersions.

Next we move on to compute $ER(2)^*(RP^{16K+1})$, analyze $ER(2)^{8s}(RP^{16K+1})$, and construct an algebraic map

$ER(2)^{8s}(RP^{16K+1}) \rightarrow E(2)^{8s}(RP^{16K+2})$

that allows us to do similar things for nonimmersions when, in our axial maps, $-k - 1 \equiv 1$ mod 8. The theory $E(2)^*(-)$ cannot make use of the odd spaces because the top cell is not connected algebraically, but for $ER(2)^*(-)$ the connection is strong for $16K + 1$ and $16K + 9$. We have not done the computation for $16K + 9$ because, although there are surely more nonimmersions there, they are not of low enough dimension to inspire us to do the work, whereas the $16K + 1$ case gives lots of nice new low dimensional results.

Theorem 1.3. A 2-adic basis for $ER(2)^{16s}(RP^{16K+1})$ is given by the elements
α^kw^j, $0 \leq k$, $0 < j \leq 8K + 1$, with $w^{8K+2} = 0$.

A 2-adic basis for $ER(2)^{16s+8}(RP^{16K+1})$ is given by the elements
$\alpha^2\alpha^kw^j$, $0 \leq k$, $0 < j < 8K$,
$\alpha^2\alpha^kw^{8K} = \alpha^{k+1}yu^{8K-3}$
$\alpha^2\alpha^kw^{8K} \not\in \mathbb{R}^{2k+1}$
yu^j, $0 \leq j < 8K$ with $yu^{8K} = 0$.

Using this we get:

Theorem 1.4. For the mod 8 pairs $(m,\alpha(m)) = (6,6), (1,4), (2,6), (5,4)$ we have:
$RP^{2(m+\alpha(m)-1)} \not\in \mathbb{R}^{2(2m-\alpha(m)+1)}$.

Let’s look at the numbers. First, the pair (1, 4). The lowest possible nonimmersions we get from this are

\[RP^{56+2^i+1} \not\in \mathbb{R}^{93+2^i+2} \]

which also implies another new result:

\[RP^{57+2^i+1} \not\in \mathbb{R}^{93+2^i+2} \]

The lowest dimensional examples are:

\[RP^{120} \not\in \mathbb{R}^{221} \quad RP^{121} \not\in \mathbb{R}^{221} \quad RP^{184} \not\in \mathbb{R}^{349} \quad RP^{185} \not\in \mathbb{R}^{349} \]

The next pair to look at is (5, 4). From this we get

\[RP^{16+2^i+1+2^j} \not\in \mathbb{R}^{13+2^i+2^j+2^j+2} \]

When \(i = 3 \), this is:

\[RP^{32+2^i+1} \not\in \mathbb{R}^{45+2^i+2} \]

The lowest dimensional examples are:

\[RP^{96} \not\in \mathbb{R}^{173} \quad RP^{160} \not\in \mathbb{R}^{301} \]

When \(i = 4 \), this is:

\[RP^{48+2^i+1} \not\in \mathbb{R}^{77+2^i+2} \]

which also implies that

\[RP^{49+2^i+1} \not\in \mathbb{R}^{77+2^i+2} \]

The lowest dimensional examples are:

\[RP^{112} \not\in \mathbb{R}^{205} \quad RP^{113} \not\in \mathbb{R}^{205} \quad RP^{176} \not\in \mathbb{R}^{333} \quad RP^{177} \not\in \mathbb{R}^{333} \]

In the tables, [Dav], the best known results for nonimmersions for \(RP^n \) for \(n < 192 \) are listed. Of these, 95 are solved completely because it is known that \(RP^n \) immerses in the next higher dimension. Of the remaining 96 cases we improve on 12 in this paper, \(n = 96, 112, 113, 118, 120, 121, 160, 176, 177, 182, 184, \) and 185, making for a total of 22 when combined with 10 from Part I, \(n = 48, 62, 80, 94, 110, 126, 144, 158, 174, \) and 190.

The tables also list what is known for \(n = d + 2^i \) (\(d < 2^i \)) for \(0 \leq d < 64 \). Of these 64 cases, 24 are known completely. Of the remaining 40 we improve on 10, 6 from this paper, \(d =32, 48, 49, 54, 56, \) and 57, and 4 from Part I, \(d =16, 30, 46, \) and 62.

We are fairly confident that \(ER(2)^*(-) \) will not give any more results in these low dimensions. Before attacking the present cases in this paper, computer computations were made on all of the cases we believed we could approach below 192 and we have now proven all of the results that seemed to be there.

Thanks to the Fields Institute for Mathematics for supporting the second author for a week of intense computation (by hand) for this paper. Also, thanks to Martin Bendersky, Don Davis and Jesus González for their support and inspiration. Special thanks to the referee for a very careful reading and numerous helpful suggestions.
2. Injections

\[ER(2)^*(X) \] has already been computed for \(X = RP^\infty, RP^{2n} \), and \(RP^\infty \wedge RP^\infty \). However, we need a more detailed analysis.

Theorem 2.1. The map \(ER(2)^{16+8}(RP^\infty) \to E(2)^{16+8}(RP^\infty) \) is an injection with cokernel given by \(v_2^i u^{(1-\bar{s})} \).

Proof. Recall that a 2-adic basis for \(E(2)^*(RP^\infty) \) is given by
\[v_2^i \alpha^k u^j \quad 0 \leq i < 8 \quad 0 \leq k \quad 1 \leq j. \]
The elements of degree 8 mod 16 are
\[v_2^i \alpha^k u^j \quad 0 \leq k \quad 1 \leq j. \]
From Theorem 8.1 of Part 1 we can read off the elements of \(ER(2)^{16+8}(RP^\infty) \).

From the \(x^1 \)-torsion we have
\[\alpha_2 \alpha^k u^j \quad 0 \leq k \quad 1 \leq j. \]
From the \(x^3 \)-torsion we have
\[w \alpha^k u, \quad k \geq 0, \text{ and } w u^j, \quad 1 < j. \]
Mapping these elements to \(E(2)^*(RP^\infty) \) we have
\[\alpha_2 \alpha^k u^j \to 2v_2^i \alpha^k u^j \equiv v_2^i \alpha^{k+1} u^{j+1} \]
plus higher filtration terms,
\[w \alpha^k u \to v_2^i \alpha^{k+1} u \]
and
\[w u^j \to v_2^i \alpha^k u \equiv v_2^i u^{j+2}, \quad j > 1 \]
modulo higher terms. From this we can see the injection and that the only terms missed are \(v_2^i u^{(1-\bar{s})} \).

\[\square \]

Theorem 2.2. The map \(ER(2)^{16+8}(RP^\infty \wedge RP^\infty) \to E(2)^{16+8}(RP^\infty \wedge RP^\infty) \) is an injection with cokernel given by \(v_2^i u_1^{(1-\bar{s})} u_2^{(1-\bar{s})} \).

Proof. We have both \(E(2)^*(RP^\infty \wedge RP^\infty) \) and \(ER(2)^*(RP^\infty \wedge RP^\infty) \) written down in Theorem 17.1 of Part I. A 2-adic basis for \(E(2)^*(RP^\infty \wedge RP^\infty) \) is given by
\[v_2^i \alpha^k u_1^i u_2 \quad 0 \leq s < 8 \quad 0 \leq k \quad 0 < i \]
\[v_2^i u_1^i u_2 \quad 0 \leq s < 8 \quad 0 < i \quad 1 < j. \]
The elements in degree 16 * +8 are those with \(s = 4 \). We can also write down \(ER(2)^*(RP^\infty \wedge RP^\infty) \) and the map to \(E(2)^*(RP^\infty \wedge RP^\infty) \) in degrees 16 * +8:

From the \(x^1 \)-torsion we get
\[\alpha_2 \alpha^k u_1^i u_2 \to 2v_2^i \alpha^k u_1^i u_2 \equiv v_2^i \alpha^{k+1} u_1^{i+1} u_2 \]
\[\alpha_2 u_1^i u_2 \to 2v_2^i u_1^i u_2 \equiv v_2^i u_1^{i+1} u_2^{j+2} \quad 0 < i \quad 1 < j, \]
all modulo higher filtrations. From the \(x^3 \)-torsion we get:
\[w \alpha^k u_1^i u_2 \to v_2^i \alpha^{k+1} u_1^i u_2 \quad 0 \leq k \]
\[w u_1^i u_2^{(1,2,\bar{s})} \to v_2^i u_1^{i+2} u_2^{(1,2,\bar{s})} \quad 1 < i \]
\[w u_1^i u_2 \to v_2^i u_1^i u_2^{j+2} \quad 1 < j. \]
From this we see the injection and that the only elements missed are those stated.
Note that there are no elements in degrees 16 \ast +8 divisible by \(x \).

\[\square \]

Corollaries 8.3 and 17.3 of Part I give us an isomorphism for these spaces in degrees 16\ast so we get:

Corollary 2.3. The map \(ER(2)^{8*}(X) \rightarrow E(2)^{8*}(X) \) is an injection for \(X = RP^\infty \) and \(RP^\infty \land RP^\infty \).

Not much more work is required to prove:

Proposition 2.4. The map \(ER(2)^{16+i}(X) \rightarrow E(2)^{16+i}(X) \) is an injection for \(X = RP^\infty \) and \(RP^\infty \land RP^\infty \) when \(i = 0, 1, 2, 3, 4, 5 \) and 8.

From this we know that there are no elements divisible by \(x \) in any of these degrees.

3. \(y \), A NEW ELEMENT

We need to introduce a new element that we have good control over. We know we have an isomorphism of \(ER(2)^{16*}(RP^\infty) \) and \(E(2)^{16*}(RP^\infty) \) and that we have the same relation, \(0 = 2u + F \alpha u^2 + F u^4 \), in both. We can use this to solve for \(u^4 \) as:

\[
 u^4 = -F(2u) - F(\alpha u^2) = 2ug + \alpha u^2h
\]

where \(g \) and \(h \) are invertible power series. As it stands, \(g \) and \(h \) are not uniquely determined, but if we insist that none of the terms of \(h \) be divisible by 2 (we can move such terms to \(g \)) then we can make our choice of \(g \) and \(h \) unique.

Recall that in \(E(2)^*(-) \) we have set \(v_2^4 = 1 \). We now multiply this relation, when viewed only as being in \(E(2)^*(RP^\infty) \), by \(v_2^4 \), which is a unit in \(E(2)^*(-) \), to get a relation

\[
 v_2^4u^4 = v_2^4(2ug + \alpha u^2h) = (2v_2^4)ug + (v_2^4\alpha)u^2h.
\]

The image of the element \(\alpha_2 \) from \(ER(2)^*(E(2)^*) \) is \(2v_2^4 \) and the image of \(w \) is \(v_2^4\alpha \) so, in this relation, all of the terms on the right hand side are in the image from \(ER(2)^*(RP^\infty) \) and we can use them to define a new element

\[
 y = \alpha_2ug + wu^2h
\]

that reduces to \(v_2^4u^4 \in E(2)^8(RP^\infty) \). (The lack of uniqueness of \(g \) and \(h \) would not affect anything here. It does not matter whether we convert \(2v_2^4 \) to \(\alpha_2 \) or \(v_2^4\alpha \) to \(w \) if we have a \(v_2^4\alpha \) that could be factored either way because \(\alpha_2\alpha = 2w \in ER(2)^* \), [KW07].)

Although we struggled with this element a great deal in our original computations and then managed to eliminate it for our work in Part I, it was only with the work of Bruner, Davis and Mahowald in [BDM02, DM] that we realized its importance for our work with nonimmersion theorems.

The element \(y \) has many interesting properties. We collect a few here.

Theorem 3.1. There is an element \(y \in ER(2)^8(RP^\infty) \) that maps to \(v_2^4u^4 \in E(2)^8(RP^\infty) \). We have relations:

\[
 y^2 = u^8 \quad \alpha y = wu^4 \quad wy = \alpha u^4 \quad 2y = \alpha_2u^4 \quad \alpha_2y = 2u^4 \\
 \alpha_3y = \alpha_1u^4 \quad \alpha_1y = \alpha_3u^4 \quad xy = xwu^2h \quad x^3y = 0.
\]
Proof. We have already constructed y with the property that it reduces to $v_2^4 u^4$. The first five relations take place in degrees 8^* where we have an injection of $E(2)^{8^*}(RP^\infty) \to E(2)^{8^*}(RP^\infty)$ so we can prove the relations by substituting $v_2^4 u^4$ for y, $2u_2^2$ for α_2 and $v_2^3 \alpha$ for w. They all follow quickly then. The next relation is in degree 4 modulo 16 and we have an injection here too as well from Proposition 2.4 so it also follows by replacing α_1 with $2v_2^2$. Only the next relation requires anything else. It is in degree -4 modulo 16 and we do not have an injection in this degree. We have to resort to the definition (which we could also have used for the other relations).

$$\alpha_1 y = \alpha_1 (\alpha_2 u g + w u^2 h) = (\alpha_1 \alpha_2) u g + (\alpha_1 w) u^2 h =$$
$$= (2\alpha_3) u g + (\alpha \alpha_3) u^2 h = \alpha (2 u g + \alpha u^2 h) = \alpha_3 u^4.$$

This uses the relations in the coefficient ring: $2\alpha_3 = \alpha_2 \alpha_2$ and $\alpha \alpha_3 = \alpha_1 w$, from [KW07].

$$y = \alpha_2 u g + w u^2 h,$$

so, since $x \alpha_2 = 0$, we get the next relation. Since $x^3 w = 0$, the last one follows.

We know $E(2)^* (-)$ and $E(2)^* (-)$ for RP^∞ and $RP^\infty \wedge RP^\infty$. From Theorem 3.4 of Part I we know that we have a Künneth theorem for $RP^\infty \wedge RP^\infty$. The standard map $RP^\infty \times RP^\infty \to RP^\infty$ induces a coproduct that can be computed from the formal group law, i.e. $u \to u_1 + f u_2$. However, things are much nicer than that:

Theorem 3.2. The coproduct of u, up to a unit, is $u_1 - u_2$. The coproduct of y, up to a unit, is

$$y_1 - 2\alpha_2 u_1^3 u_2 + 3\alpha_2 u_1^2 u_2^2 - 2\alpha_2 u_1 u_2^3 + y_2.$$

Proof. Because we have injections in degrees 8^*, it is enough to prove this for the image in $E(2)^* (-)$. The first statement is well-known and comes from the fact that $0 = [2](X) = X + F X$. This implies that $X + F Y$ is divisible by $X - Y$ (because plugging in $Y = X$ gives zero) and so $X + F Y = (X - Y) g$ where g is a power series in X and Y that is invertible, i.e. a unit. Since the coproduct is given by the formal group law, we have $u \to u_1 + f u_2 = (u_1 - u_2)$ up to a unit.

To compute the coproduct of y up to a unit we can just compute for u^4. Up to a unit this is $u_1^4 - 4u_1^3 u_2 + 6u_1^2 u_2^2 - 4u_1 u_2^3 + u_2^4$. Multiply this by v_2^4 and replace $v_2^4 u_1^4$ with y_1 and $2v_2^4$ with α_2.

\[\Box\]

4. Rewriting $E(2)^* (RP^\infty)$

We would like to rewrite our answer for $E(2)^{16^* + 8}(RP^\infty)$ using our new element y. Recall, from Theorem 8.1 of Part I, our description of $E(2)^* (RP^\infty)$.

The x^1-torsion generators are given by:

$$\alpha_i \alpha^k u^j \quad 0 \leq i < 4 \quad 0 \leq k \quad 1 \leq j$$

where $\alpha_0 = 2$.

The x^3-torsion generators are given by:

$$w^\epsilon \alpha^k u, \quad \epsilon + k > 0, \quad w u^j \quad 1 < j, \text{ and } u^j \quad 3 < j.$$
From \(y = \alpha_2 u g + w u^2 h \) it is easy to see that we can replace the \(x^3 \)-torsion generators, \(w u^j, \; 1 < j \), using \(y u^{j-2} \).

We would also like to replace some of the \(x^1 \)-torsion generators,

\[
\alpha_2 \alpha^k u^j
\]

with \(\alpha^{k+1} y u^{j-3} \). This last element is not \(x^1 \)-torsion though. When we are in \(ER(2)^* (RP^{2n}) \) and \(j \) is big enough, this can be \(x^1 \)-torsion.

\[
y = \alpha_2 u g + w u^2 h
\]
\[
\alpha_2 u g = y - w u^2 h
\]
\[
\alpha_2 u = y g^{-1} - w u^2 h g^{-1}
\]
\[
\alpha_2 u^3 = y u^2 g^{-1} - w u^4 h g^{-1}
\]

We know that \(w u^4 = \alpha y \) so this is:

\[
\alpha_2 u^3 = y u^2 g^{-1} - \alpha y h g^{-1}.
\]

The lead term (i.e. the term with lowest filtration) here is \(\alpha y \) and the whole right hand side must be \(x^1 \)-torsion even if the lead term isn’t. When the higher filtration terms are all zero, we can replace \(\alpha_2 \alpha^k u^j \) with \(\alpha^{k+1} y u^{j-3} \).

This is enough to give us what we want.

5. \(ER(2)^{16+8} (RP^{2n}) \)

We have, for \(ER(2)^{16+8} (-) \) a theorem similar to Theorem 13.4 of Part I for \(ER(2)^{16*} (-) \).

Theorem 5.1. For all \(n > 3 \) there is a short exact sequence:

\[
(5.2) \quad 0 \longrightarrow ER(2)^{16+8} (RP^{2n-2}) \longrightarrow ER(2)^{16+8} (RP^{2n}) \longrightarrow \text{ER}(2)^{16+8} (RP^{2n}/RP^{2n-2}) \longrightarrow 0.
\]

We have elements \(\alpha_2 \alpha^k u^j \in ER(2)^{16+8} (RP^{2n}), \; 0 \leq k, \; 0 < j < n \). We also have elements \(y u^j \) for \(0 \leq j < n - 4 \).

Depending on \(n \) modulo 8 there are other elements in \(ER(2)^{16+8} (RP^{2n}) \).

For \(n = 8K + 4 \) and \(8K + 3 \) there are no other elements and \(y u^{8K+1} = 0 \).

For \(n = 8K + 2 \) there is an \(x^5 \)-torsion element, \(z_{16K-38}, \) that reduces to \(v_2 u^{8K+2} \) in the Bockstein spectral sequence such that

\[
x^2 \alpha^k z_{16K-38} = \alpha^k y u^{8K-1}
\]

with \(y u^{8K} = 0 \).

For \(n = 8K + 1 \) there is an \(x^5 \)-torsion element, \(z_{16K-22}, \) that reduces to \(v_2 u^{8K+1} \) in the Bockstein spectral sequence such that

\[
x^2 \alpha^k z_{16K-22} = \alpha^k y u^{8K-2}
\]

and an \(x^7 \)-torsion element, \(z_{16K-4}, \) that reduces to \(v_2^6 u^{8K+1} \) in the Bockstein spectral sequence such that

\[
x^2 u z_{16K-22} = x^4 z_{16K-4} = y u^{8K-1}
\]

with \(y u^{8K} = 0 \).

For \(n = 8K \) there are \(x^7 \)-torsion elements, \(z_{16K-20}, \) and \(z_{16K-18} \) that reduce to \(v_2^3 u^{8K-1} \) and \(v_2^3 u^{8K} \) respectively in the Bockstein spectral sequence such that

\[
x^4 z_{16K-20} = y u^{8K-3}
\]
and
\[x^4 u z_{16K-20} = yu^{8K-2} \]

and
\[x^4 u^2 z_{16K-20} = x^6 z_{16K-18} = yu^{8K-1} \]

with \(yu^{8K} = 0 \).

For \(n = 8K + 7 \) there are \(x^7 \)-torsion elements, \(z_{16K-36} \), and \(z_{16K-34} \) that reduce to \(v_2^6 u^{8K+6} \) and \(v_2^3 u^{8K+7} \) respectively in the Bockstein spectral sequence such that
\[x^4 z_{16K-36} = yu^{8K+4} \]
\[x^4 u z_{16K-36} = yu^{8K+5} \]

and
\[x^4 u^2 z_{16K-36} = x^6 z_{16K-34} = yu^{8K+6} \]

with \(yu^{8K+7} = 0 \).

For \(n = 8K + 6 \) there is an \(x^5 \)-torsion element, \(z_{16K-8} \), that reduces to \(v_2 u^{8K+6} \) in the Bockstein spectral sequence such that
\[x^2 \alpha^k z_{16K-8} = \alpha^k yu^{8K+3} \]

and an \(x^7 \)-torsion element, \(z_{16K-36} \) that reduces to \(v_2 u^{8K+6} \) in the Bockstein spectral sequence such that
\[x^2 u z_{16K-8} = x^4 z_{16K-36} = yu^{8K+4} \]

with \(yu^{8K+5} = 0 \).

For \(n = 8K + 5 \) there is an \(x^5 \)-torsion element, \(z_{16K+10} \), that reduces to \(v_2 u^{8K+5} \) in the Bockstein spectral sequence such that
\[x^2 \alpha^k z_{16K+10} = \alpha^k yu^{8K+2} \]

with \(yu^{8K+3} = 0 \).

This gives us our Theorem 1.1.

Proof. We have computed the Bockstein spectral sequence for all of the spaces \(RP^{2n-2} \), \(RP^{2n} \), and \(RP^{2n} / RP^{2n-2} \). From this we can just read off the elements in degree 16 + *8. In every case the \(x^1 \)-torsion elements \(\alpha \omega^j u^l \) for \(j < n - 1 \) correspond using the map induced by \(RP^{2n-2} \rightarrow RP^{2n} \). Likewise for the elements \(\omega \alpha^j u, \) and \(yu^l, 0 \leq j \leq n - 5 \) so we will ignore these elements. In the proof we are constantly using the fact that we already know all of the groups. We also make use of the fact that the map \(ER(2)^* (RP^{2n} / RP^{2n-2}) \rightarrow ER(2)^* (RP^{2n}) \) was computed explicitly in (13.1) of Part I.

First note that \(\alpha_0 \alpha^k u^{n-1} = 2\alpha^k u^{n-1} = \alpha^{k+1} u^n \).

For \(n \equiv 4 \mod 8 \), there is nothing else in \(ER(2)^{16+*8} (RP^{2n-2}) \). All that is left of (5.2) is \(\alpha^k z_{2n} \in ER(2)^{16+*8} (RP^{2n} / RP^{2n-2}) \) and \(\alpha_0 \alpha^k u^n-1 \) and \(yu^{n-4} \) in \(ER(2)^{16+*8} (RP^{2n}) \). Since there are no elements of higher filtration, we can use Section 4 to replace \(\alpha_0 \alpha^k u^{n-1} \) with \(\alpha^{k+1} yu^{n-4} \). Note that \(\alpha^k yu^{n-4} \) is represented by \(v_2^3 \alpha^k u^n \) in the Bockstein spectral sequence. The long exact sequence forces \(\alpha^k z_{2n} \rightarrow \alpha^k yu^{n-4} \) but so does our direct computation using (13.1) of Part I.

Because \(u z_{2n} = 0 \) we must have \(yu^{n-3} = yu^{8K+1} = 0 \). Because \(z_{2n} \) maps to \(yu^{8K} \), this element goes to zero in \(ER(2)^{16+*8} (RP^{2n}) \) when \(n \equiv 3, 2, 1, \) and 0 modulo 8.

For \(n \equiv 3 \mod 8 \), \(ER(2)^{16+*8} (RP^{2n} / RP^{2n-2}) = 0 \). We must have \(\alpha^k yu^{n-4} \rightarrow x^2 \alpha^k u^{n-1} v_2 \). [Technically, we need to worry that perhaps \(yu^{n-4} \) goes to \(x^2 \alpha^k u^{n-1} v_2 \) for some \(k \). If this is the case, then the boundary homomorphism on \(x^2 u^{n-1} v_2 \) must
be nontrivial but we can check that there is nowhere for it to go. Consequently we will ignore this kind of possibility in the rest of this proof.

For \(n \equiv 2 \mod 8 \) things are a little more complicated. The only elements in \(ER(2)^{16s+8}(RP^{2n}/RP^{2n-2}) \) are \(x^2w\alpha^kz_{2n-18} \) and we can compute directly that they go to \(x^2\alpha^k\alpha^nu^v_2 \). The element \(\alpha^k\alpha^nu^v_4 \) must go to \(x^2\alpha^k\alpha^nu^v_{v_2} \). The only possibility left is for \(x^2\alpha^k\alpha^nu^v_{v_2} \) to go to \(x^4w\alpha^k\alpha^nu^v_{v_2} \). Remember from above that this last element is \(\alpha^nu^v_3 \).

For \(n \equiv 1 \mod 8 \), we compute the map to \(ER(2)^{16s+8}(RP^{2n}) \) directly and we have

\[
\begin{align*}
 w\alpha^kz_{2n-18} &\rightarrow \alpha^k\alpha^nu^v_4 \\
 x^2w\alpha^kz_{2n} &\rightarrow x^2\alpha^k\alpha^nu^v_{v_2}
\end{align*}
\]

Keep in mind that this last represents \(\alpha^k\alpha^nu^v_3 \). The element \(\alpha^nu^v_4 \) must map to \(x^4v^6u^v_2 \), \(x^2v^2u^v_3 = \alpha^nu^v_1 \) to \(x^4v^6u^v_1 \), and \(x^4v^6u^v_1 \) to \(x^6v^6u^v_1 \).

For \(n \equiv 0 \mod 8 \) we compute \(x^6z_{2n-18} \rightarrow x^6u^v_2 = \alpha^nu^v_3 \) and \(w\alpha^kz_{2n} \rightarrow \alpha^k\alpha^nu^v_4 \). That leaves \(\alpha^nu^v_4 \rightarrow x^4u^v_{v_2} \), \(x^4u^v_{v_2} = \alpha^nu^v_3 \rightarrow x^4u^v_{v_2} \), and \(x^4u^v_{v_2} = \alpha^nu^v_3 \rightarrow x^6u^v_{v_2} \).

Because \(\alpha^nu^v_4 \) is hit above, we must have \(\alpha^nu^v_3 \) is hit above, we must have \(\alpha^nu^v_1 = 0 \).

For \(n \equiv 6 \mod 8 \) we compute \(x^2\alpha^kz_{2n-18} \rightarrow x^2\alpha^k\alpha^nu^v_3 = \alpha^ku^v_3 \) and \(x^4z_{2n} \rightarrow x^4u^v_{v_2} = \alpha^nu^v_3 \). All that is left is \(\alpha^k\alpha^nu^v_4 \rightarrow x^2\alpha^k\alpha^nu^v_{v_2} \).

Because \(\alpha^nu^v_3 \) and \(\alpha^nu^v_2 \) are hit above, we must have \(\alpha^nu^v_1 = 0 \).

The \(n \equiv 5 \mod 8 \) case is simple again with \(\alpha^kz_{2n-18} \rightarrow \alpha^k\alpha^nu^v_4 \) and \(x^2\alpha^kz_{2n} \rightarrow x^2\alpha^k\alpha^nu^v_3 \).

\[\square \]

6. Algebraic Maps

We can now see, from Theorem 5.1 and Theorem 1.6 of Part I, that we have purely algebraic maps, no topology used or implied, of

\[ER(2)^{8s}(RP^{2n}) \rightarrow E(2)^{8s}(RP^{2n+2}) \quad n \equiv 1, 2, 5, 6 \mod 8. \]

These maps are neither injective nor surjective. However, they are close enough to surjective for our purposes since the only elements they miss are the \(v^4_1u^{1-3} \).

These low powers of \(u \) are never involved with our nonimmersion results.

7. Last of the Even Spaces

The goal of this section is to prove Theorem 1.2.

We begin again with the main theorem of [Dav84], for

\[n = m + \alpha(m) - 1 \quad k = 2m - \alpha(m) \]

there does not exist an axial map:

\[RP^{2n} \times RP^{2k-2} \rightarrow RP^{2k-2n} \]

and so \(RP^{2n} \not\subset \mathbb{R}^{2k} \). This is proven by using the equivalent of \(E(2)^s(\cdot) \) and showing that the \(u^k_{2k-1-n} = 0 \) on the right would have to go to a nonzero element.
on the left. That same element would prevent the existence of an axial map,
\[RP^{2n+2} \times RP^{2k-2} - \rightarrow RP^{2K-2n-2} \]
and likewise
\[RP^{2n+2} \times RP^{2k-2} - \rightarrow RP^{2K-2n-4}. \]
Furthermore, if \(u^{2K-1-n} \) went to nonzero then we must also have \(u^{2K-1-n-1} = 0 \) going to a nonzero element. If \(n+1 \equiv 3 \mod 8 \), then, from Theorem 1.1, we know \(yu^{2K-1-n-5} = 0 \) in \(ER(2)^*(RP^{2K-2n-4}) \) and, if \(-k-2 \equiv \{1,2,5,6\} \mod 8 \) we have a purely algebraic surjection \(ER(2)^*(RP^{2K-2k-4}) - \rightarrow E(2)^*(RP^{2K-2k-2}). \)
Our element \(yu^{2K-1-n-5} \) maps to \(v_2^3 u^{2K-1-n-1} \). We know \(v_2^3 \) is a unit so the result of Davis shows that this element maps nontrivially to \(E(2)^*(RP^{2n+2} \times RP^{2K-2k-2}). \) This obstruction can be written in terms of a 2-adic basis. We show that the same 2-adic basis exists in \(ER(2)^*(RP^{2n+2} \times RP^{2K-2k-2}) \) and so our \(ER(2)^*(-) \) obstruction improves the result.

When this is accomplished, we will have a proof of the following.

Proposition 7.1. When \(n = m + \alpha(m) - 1 \) and \(k = 2m - \alpha(m) \), with \(n+1 \equiv 3 \mod 8 \) and \(-k-2 \equiv \{1,2,5,6\} \mod 8 \), there is no axial map
\[RP^{2n+2} \times RP^{2k-2} - \rightarrow RP^{2K-2n-4}. \]
and so \(RP^{2n+2} \not\in \mathbb{R}^{2k+2}. \)

To derive the proof of Theorem 1.2 from this we have to untangle some equations to get our \((m,\alpha(m))\) pairs. We have
\[n+1 = m + \alpha(m) \equiv 3 \mod 8 \]
and
\[-k-2 = -2m + \alpha(m) - 2 \equiv \{1,2,5,6\} \mod 8. \]
The equation for \(k \) gives
\[2m - \alpha(m) \equiv \{5,4,1,0\} \mod 8. \]
The equation for \(n \) gives
\[m + \alpha(m) \equiv 3 \mod 8. \]
Adding, we have
\[3m \equiv \{0,7,4,3\} \mod 8. \]
Multiply by 3 to get
\[m \equiv \{0,5,4,1\} \mod 8. \]
Substituting into
\[\alpha(m) \equiv -m + 3 \mod 8 \]
we get
\[\alpha(m) = \{3,6,7,2\} \]
and this gives us \((m,\alpha(m))\) pairs \((0,3),(5,6),(4,7)\) and \((1,2)\) mod 8.

To complete our proof of Theorem 1.2, all we have to do is show that the 2-adic basis elements for \(E(2)^*(RP^{2n+2} \times RP^{2K-2k-2}) \) that the obstruction can be written in terms of, i.e. those \(u_1 u_3 \) with \(i+j \) big, also form a 2-adic basis for \(ER(2)^*(RP^{2n+2} \times RP^{2K-2k-4}) \) and that the same powers of \(u_1 \) and \(u_2 \) are zero in each.
The basis for $E(2)^*(RP^{2n+2} \times RP^{2^k-2k-2})$, in degrees $16 \ast +8$, is given by $v_2^i \alpha^k u^i_2 u^j_2$ with $i \leq n + 1$ and $v_2^j u^i_2 u^j_2$ with $i \leq n + 1$ and $1 < j \leq 2K-1 - k - 1$.

We need to discuss the obstruction just a little in order to be careful with our comparison. Recall from Theorem 3.2 that the coproduct of $v_2^i u^i_2$ is, up to a unit, $(u_1 - u_2)^{2^n-1-n-1}$. The algorithm, Remark 15.3 of Part I, never lowers the powers of the u's so the obstruction must be a linear combination of the 2-adic basis elements $v_2^i u^i_2 u^j_2$ with $i \leq n + 1$, $1 < j \leq 2K-1 - k - 1$, and $i + j \geq 2K-1 - n - 1$. (The missing $v_2^i u_1^{(1,2,3)} u_2^{(1,2,3)}$ never figure in here.)

We need to show that the elements of the same name in $ER(2)^*(RP^{2n+2} \times RP^{2^k-2k-4})$ are part of its 2-adic basis. This is easy for most of these elements. Consider the elements $u^i_1 u^j_2 y_2$ with $3 < i \leq n+1$ and for $3 < j \leq 2K-1 - k - 6$. These reduce nontrivially (and independently) to $v_2^j u_2^{2^i-1-k-5} y_2$ in $E(2)^{8*}(-)$. That's not quite enough though. We also need the elements $v_2^j u_2^{2^i-1-k-5} y_2$ for $3 < i \leq n + 1$. For the submodules of our groups generated by the u_i, in the range of our obstruction where $u_1^i u_2^j$ has $i + j$ big, we have identical 2-adic bases. In addition, we need $u_1^{i+1} u_2^j y_2 = 0$ and $u_1^j u_2^{2^i-1-k-4} y_2 = 0$. The two groups are really isomorphic as $Z_{(2)}[\alpha, u_1, u_2]$ modules.

The following result finishes off what we need.

Proposition 7.2. When $q \equiv 1, 2, 5$ or 6 modulo 8 and $m \leq 8K$ and $8K + 8 < q$, the element $u^m u_2^{q-3} y_2 \in ER(2)^*(RP^{2m} \wedge RP^{2q})$ is nonzero. When $i \geq 4$ we have $u_i^1 u_2^{q-2} y_2 = 0$. When $m \equiv 3 \mod 8$, $u^m u_2^{q-2} y_2 = 0$.

Proof. The element $y u^{q-3}$ is represented in the spectral sequence for $ER(2)^*(RP^{2q})$ by $x^2 v_2^i u^i q$ (from Theorem 5.1) so the element $u^m u_2^{q-3} y_2$ is represented by $x^2 u^m v_2^i u_2^j$. Thus it is enough to show that the element $v_2^j u_2^m u_2^i$ survives in the spectral sequence to E^3. In Theorem 19.2 of Part I we have computed the entire E^2-term of the spectral sequence and this term is there with no restrictions on q. There can be no differentials on this element since it is the product of two honest elements (this does use the restriction on q).

All we need to do now is show this element is not in the image of d^2. The differential d^2 has degree $35 \equiv -13$. Our element $u^m u_2^i v_2^j$ has degree $-16(m+q)-6$ so the source that would have to hit it would have to have degree $-16(m+q)-41$, in particular, it must be odd degree. From Theorem 19.2 of Part I, the odd degree elements in the E^2-term of our Bockstein spectral sequence are:

$$v_2^2 \alpha^k z^{-16q-17}$$

$$v_2^{2s} u_1^i z^{-16q-17} \quad 0 < i < m$$

and

$$v_2^{2s+1} \alpha^k u_1^{m-1} z^{-16q-17}$$

The only elements with degree equal to -9 modulo 16 are:

$$v_2^4 \alpha^k z^{-16q-17}$$

and

$$v_2^4 u_1^i z^{-16q-17} \quad 0 < i < m.$$
For the next statement of the proof we use the fact that \(u_{2}^{m-2} y_{2} \) is divisible by \(x^{4} \) and that \(x^{3} u_{1}^{4} = 0 \). For the final statement we use the fact that \(v_{1}^{m+1} \) is divisible by \(x^{4} \) and that \(x^{3} y_{2} = 0 \).

\[\square \]

This completes the proof of Theorem 1.2.

8. \(ER(2)^{+} (RP^{16K+1}) \)

We begin our computation by setting up the Bockstein spectral sequence. \(E^{1} \) is just \(E(2)^{+} (RP^{16K+1}) \), which is nothing more than

\[E(2)^{+} (RP^{16K}) \oplus E(2)^{+} (S^{16K+1}). \]

So, we have a 2-adic basis, (it isn’t really necessary to use this notation for the torsion free part and so it isn’t necessary to go to the 2-adic completion of \(ER(2) \); it is just convenient notation now), letting \(2 = \alpha_{0} \).

\[E^{1} \]

\[v_{2}^{i} \alpha^{k} u^{j} \quad 0 \leq i < 8 \quad 0 \leq k \quad 0 < j \leq 8K. \]

\[v_{2}^{i} \alpha_{0}^{q} \alpha^{k} u_{16K+1} \quad 0 \leq i < 8 \quad 0 \leq q \quad 0 \leq k. \]

All of the first part is even degree and all of the second part is odd degree. The differential \(d^{1} \) is even degree so it is induced by the maps

\[RP^{16K} \to RP^{16K+1} \to S^{16K+1} \]

where we already know it. Thus we can just read off our \(d^{1} \) from Theorem 13.2 Part I, for the \(RP^{16K} \) part and Section 5 Part I for the \(S^{16K+1} \) part.

\[d^{1}(v_{2}^{2s-5} \alpha^{k} u^{j}) = 2v_{2}^{2s} \alpha^{k} u^{j} \equiv v_{2}^{2s+1} \alpha^{k} u^{j+1} \quad j \leq 8K \]

(modulo higher powers of \(u \)).

\[d^{1}(\alpha_{0}^{q} v_{2}^{2s+1} \alpha^{k} u_{16K+1}) = \alpha_{0}^{q+1} v_{2}^{2s-2} \alpha^{k} u_{16K+1} \]

\(E^{2} \) is given by:

\[v_{2}^{2s} \alpha^{k} u \quad 0 \leq k, \quad v_{2}^{2s} u^{j} \quad 1 \leq j \leq 8K, \quad v_{2}^{2s+1} \alpha^{k} u^{8K} \quad 0 \leq k \]

\[v_{2}^{2s} \alpha^{k} u_{16K+1}. \]

We confront a new problem now. The differential \(d^{2} \) has degree 35 and we have both odd and even degree elements so it could be nonzero. If so, by naturality it must have its source in the \(RP^{16K} \) part and its target in the \(S^{16K+1} \) part. Furthermore the source cannot be something in the image from the \(E^{2} \) for \(ER(2)^{+} (RP^{\infty}) \) because we know that \(d^{2} \) is zero on all of those elements. All we are left with for possible sources is

\[v_{2}^{2s+1} \alpha^{k} u^{8K} \quad 0 \leq k \]

The differential \(d^{2} \) is trivial on \(v_{2}^{2} \) and \(\alpha \) so it commutes with multiplication by these elements. Since \(v_{2}^{2} \) is a unit, if there is a \(d^{2} \) then it must be nonzero on \(v_{2}^{2} u^{8K} \) which has degree \(-6 - 16(8K) = 16K - 6 \). The degree of the target must be this plus 35, or \(16K + 29 \equiv 16K - 19 \). The possible targets have degrees \(-12s - 32k + 16K + 1 \). Working modulo 16 we need \(-3 \equiv -12s + 1 \) so we see that \(s = 3 \) and we have \(16K - 19 \equiv -36 - 32k + 16K + 1 \), which gives \(-19 \equiv -36 - 32k + 1 \) modulo 48.
This is $16 \equiv -32k$ which suggests the solution of $k = 1$ (other alternatives are $k = 3q + 1$).

If there is a d^2, we would conjecture that it starts with

$$d^2(v_2^u s^K) = v_2^6 \alpha_{t_{16K}+1}$$

and this would lead to

$$d^2(v_2^{x+1} \alpha^k u^s^K) = v_2^{s+2s} \alpha^{k+1} t_{16K+1}.$$

We now know what to look for. If we can show that the element $\alpha_{t_{16K}+1}$ is in the image from S_1^{16K+1} and that x^2 times it must be zero, then our conjectured d^2 is correct.

If we look carefully at $ER(2)^*(S_1^{16K+1})$, we see that there are a number of known 2-torsion free elements, namely, all of $w^0 \alpha^k t_{16K+1}$, $\alpha_{(1,3)} \alpha^k t_{16K+1}$ and $\alpha_{2t_{16K}+1}$. If we look at

$$RP^{16K} \longrightarrow RP^{16K+1} \longrightarrow S_1^{16K+1},$$

we know that $ER(2)^*(RP^{16K})$ is all torsion so our torsion free elements must all inject into $ER(2)^*(RP^{16K+1})$. From this we know that the element $\alpha_{t_{16K}+1}$ is in $ER(2)^*(RP^{16K+1})$, but we don’t yet know if x^2 kills it.

For that we need the diagram:

\[
\begin{array}{ccc}
RP^{16K} & = & RP^{16K} \\
\downarrow & & \downarrow \\
RP^{16K+1} & \longrightarrow & RP^{16K+2} \longrightarrow S_1^{16K+2} \longrightarrow \text{image} \\
\downarrow & & \downarrow \\
S_1^{16K+1} & \longrightarrow & RP^{16K+2}/RP^{16K} \longrightarrow S_1^{16K+2} \\
\end{array}
\]

Each row and column is a cofibration giving rise to a long exact sequence. Our goal is to show that $x^2 u_{t_{16K}+1}$ in $ER(2)^*(RP^{16K+1})$ is zero. It is the image of the same named element in $ER(2)^*(S_1^{16K+1})$. From Corollary 9.3 of Part I we know that the element

$$\alpha_{t_{16K}+1} \in ER(2)^*(RP^{16K+2}/RP^{16K})$$

maps to $x_{t_{16K}+1}$ in $ER(2)^*(S_1^{16K+1})$. Consequently, $x_2 \alpha_{t_{16K}+1}$ must map to our element of interest, $x_2 \alpha_{t_{16K}+1}$.

Rather than go through S_1^{16K+1} on our way to RP^{16K+1} we can now go through RP^{16K+2}. The element $z_{16K} \in RP^{16K+1}$ maps to u^sK_+1 ((13.1) Part I) and so $x_2 \alpha z_{16K} \in RP^{16K+2}$ maps to $x_2 \alpha u^sK_+1$. Since $2x = 0$, we can use the relation ((1.3) Part I) on α^2 and we will get $x_2 u^sK_+3$ plus even higher terms, but we know that u^sK_+3 is zero in $ER(2)^*(RP^{16K+2})$ (Theorem 1.6 Part I). So, it follows that we have $x_2 \alpha_{t_{16K}+1} = 0$ in $ER(2)^*(RP^{16K+1})$ and we can compute our d^2 as we conjectured.

Although $x_2 z_{16K} \in RP^{16K+2}$, it comes from S_1^{16K+2} and so goes to zero in $ER(2)^*(RP^{16K+1})$.

We get more information out of that computation. It shows us that u^sK_+1 is represented in the spectral sequence by $x_{t_{16K}+1}$ because both come from z_{16K}. Multiply u^sK by α_2 and in $E(2)^*(RP^{16K+2})$ this is $v_2^6 u^sK_+1$. Consequently,
\(\alpha_2 \alpha^k \kappa^{8K}\) is represented by \(v_2^k \alpha^{k+1} \kappa^{8K+1}\) and in \(RP^{16K+1}\) this is represented by \(v_2^k \alpha^{k+1} x^{16K+1}\). From our discussion in Section 4 we can replace this \(\alpha_2 \alpha^k \kappa^{8K}\) with \(\alpha^{k+1} y^{8K-3}\).

We now have our \(E^3:\)

\[
v_2^{2s} \alpha^k u \quad 0 \leq k, \quad v_2^{2s} u^j \quad 1 < j \leq 8K, \quad v_2^{2s} \iota_{16K+1}.
\]

The differential \(d^3\) is even degree again so the even and odd degree parts don’t mix. In \(S^{16K+1}\), \(d^3\) takes \(v_2^k\) to \(\alpha v_2^k\) but this element is not there, so there is no \(d^3\) on the odd part. On the even part we already know the \(d^3\) differentials:

\[
d^3(v_2^{6,2} \alpha^k u) = v_2^{(0,4)} \alpha^{k+1} u
\]
\[
d^3(v_2^{6,2} u^j) = v_2^{(0,4)} \alpha u^j = v_2^{(0,4)} u^{j+2} \quad 1 < j \leq 8K - 2
\]

We get:

\(E^4:\)

\[
v_2^{(0,4)} u^{(1-3)}, \quad v_2^{(6,2)} u^{(8K-1,8K)}, \quad v_2^{2s} \iota_{16K+1}.
\]

Our \(d^4\) is odd degree again and so must go from the \(RP^{16K}\) part to the \(S^{16K+1}\) part if at all. The differential \(d^4\) has degree 21 and must be zero on things in the image from \(RP^\infty\) so a nonzero differential must start out on

\[
v_2^{(6,2)} u^{8K-1}
\]

and hit one of

\[
v_2^{2s} \iota_{16K+1}.
\]

The source degrees are \(-36 - 16(8K - 1) = 16K - 20\) and \(16K + 4\). Adding 21 to see what degree our target would have to be we get \(16K + 1\) and \(16K + 25\). Since \(v_2^k\) commutes with \(d^4\), if we have a \(d^4\) it must be

\[
d^4(v_2^{6} u^{8K-1}) = \iota_{16K+1} \quad d^4(v_2^{2} u^{8K-1}) = v_2^{4} \iota_{16K+1}.
\]

In our discussion of \(d^2\) we showed that \(\iota_{16K+1}\) lives in \(ER(2)^* (RP^{16K+1})\). So, because it comes from \(ER(2)^* (S^{16K+1})\) it has no differential on it. The only question is what differential hits it. We have already computed \(d^1, d^2,\) and \(d^3\) so we know that \(x^{3} \iota_{16K+1} \neq 0\) in \(ER(2)^* (RP^{16K+1})\). If \(x^4 \iota_{16K+1} = 0\), then \(\iota_{16K+1}\) must be hit by \(d^4\) and our differential must be as above.

The argument here is the same as before using the diagram (8.1). The element \(z_{8K-16}\) maps to \(x^{16K+1}\) in \(S^{16K+1}\) so we want to study \(x^3 z_{8K-16}\) and we will again get to \(RP^{16K+1}\) by way of \(RP^{16K+2}\) where \(x^3 z_{16K-16}\) maps to \(x^3 u^{8K+1} = 0\) (because \(x^3 u^4 = 0\)).

This computes our \(d^4\) and we have left for our \(E^5:\)

\[
v_2^{(0,4)} u^{(1-3)}, \quad v_2^{(6,2)} u^{8K}, \quad v_2^{(2,6)} \iota_{16K+1}.
\]

\(d^5\) is once again even degree and the dimensions don’t work for the odd part so it is zero there and \(RP^{8K}\) determines it is zero on the even part.

We have to consider the possibility of a \(d^6\) which is of degree 7. Again, it must go from even to odd by naturality. It would commute with \(v_2^k\) so if \(d^6\) is nonzero on \(v_2^{2} u^{8K}\) it will be nonzero on the other element. The degree here is \(-12 + 16K\).
Add 7 to look for the target to get $-5 + 16K$. Elements that are in odd degrees are in degrees $16K + 1 - 12$ and $16K + 1 - 36$ so there can be no d^0.

All we have left is d^7 and we know, for starters, that $d^7(v_2^3u^{1-3}) = u^{1-3}$. We can also read off from RP^{8K} that $d^7(v_2^6u^{8K}) = v_2^6u^{8K}$.

The only issue remaining is how d^7 works on $v_2^{[2,6]}t_{16K+1}$.

The element yu^{8K-1} is represented by $x^4v_2^6u^{8K+1}$ in the Bockstein spectral sequence for $ER(2)^\ast(RP^{16K+2})$ and by $x^6v_2^6u^{8K}$ in the Bockstein spectral sequence for $ER(2)^\ast(RP^{16K})$ (Theorem 5.1).

It must pass through $ER(2)^\ast(RP^{16K+1})$ nontrivially and it must be divisible by x^4 in here. The only even degree candidates for such an element in the Bockstein spectral sequence for $ER(2)^\ast(RP^{16K+1})$ are $x^{4,6}v_2^6u^{8K}$ and $x^8v_2^{16}t_{16K+1}$. The degree of yu^{8K-1} is $16K \pm 24$ which is 8 mod 16. Checking $x^{4,6}v_2^6u^{8K}$ and $x^8v_2^{16}t_{16K+1}$ we see that, modulo 16, their degrees are $8, -10, 0,$ and 8 respectively so the only possibilities are $x^4v_2^6u^{8K}$ and $x^8v_2^{16}t_{16K+1}$. However, modulo 48, these are $-20 - 36 + 16K$ and $-36 - 36 + 16K$, or, $16K - 8$ and $16K - 24$ so it must be represented by $x^5v_2^{[6]}t_{16K+1}$ so our last undecided differential must be $d^7(v_2^{[6]}t_{16K+1}) = v_2^6t_{16K+1}$.

From Theorem 5.1 we already have $yu^{8K} = 0$ in $ER(2)^\ast(RP^{16K+2})$ and so it is also zero in $ER(2)^\ast(RP^{16K+1})$.

This concludes our computation of $ER(2)^\ast(RP^{16K+1})$ using the Bockstein spectral sequence and we collect our results here.

Theorem 8.2. The Bockstein spectral sequence for $ER(2)^\ast(RP^{16K+1})$ is as follows.

\mathbb{E}^1

\[
\begin{align*}
v_2^i\alpha^k u^j & \quad 0 \leq i < 8 \quad 0 \leq k \quad 0 < j \leq 8K, \\
v_2^i\alpha^k t_{16K+1} & \quad 0 \leq i < 8 \quad 0 \leq q \quad 0 \leq k.
\end{align*}
\]

$d^1(v_2^{2s-5}\alpha^k u^j) = 2v_2^{2s}\alpha^k u^j \equiv v_2^{2s}\alpha^{k+1}u^{j+1} \quad j < 8K$

(modulo higher powers of u).

\mathbb{E}^2

\[
\begin{align*}
v_2^{2s}\alpha^k u & \quad 0 \leq k, \quad v_2^{2s}u^j \quad 1 \leq j \leq 8K, \quad v_2^{2s+1}\alpha^k u^{8K} \quad 0 \leq k \\
v_2^{2s}\alpha^k t_{16K+1} & \\
d^2(v_2^{2s+1}\alpha^k u^{8K}) = v_2^{6+2s}\alpha^{k+1}t_{16K+1}.
\end{align*}
\]

\mathbb{E}^3

\[
\begin{align*}
v_2^i\alpha^k u & \quad 0 \leq k, \quad v_2^i u^j \quad 1 \leq j \leq 8K, \quad v_2^i t_{16K+1} \\
d^3(v_2^i\alpha^k u) = v_2^{6+2s}\alpha^{k+1}u \\
d^3(v_2^{6}u^j) = v_2^{(6,2)}\alpha u^j = v_2^{(6,2)}u^{j+2} \quad 1 \leq j \leq 8K - 2
\end{align*}
\]

\mathbb{E}^4.

\[
\begin{align*}
v_2^i\alpha^k u & \quad 0 \leq k, \quad v_2^i u^j \quad 1 \leq j \leq 8K, \quad v_2^i t_{16K+1} \\
d^3(v_2^i\alpha^k u) = v_2^{(6,2)}\alpha u^j = v_2^{(6,2)}u^{j+2} \quad 1 \leq j \leq 8K - 2
\end{align*}
\]
we showed that \(z\) which is 2 and is represented by Theorem 8.3.

A 2-adic basis for the elements in \(v\) and 2, 0

\[
E^5 = E^6 = E^7.
\]

\[
v_2^{(6, 2)}u^{(8K - 1)} = v_2^{(0, 4)}t_{16K + 1}.
\]

\[
d^4(v_2^{(0, 4)}u^{8K - 1}) = v_2^{(0, 4)}t_{16K + 1}.
\]

We identify all of the elements in degree 8*. This completes the proof of Theorem 1.3.

Theorem 8.3. A 2-adic basis for the elements in \(ER(2)^{8*}(RP^{16K + 1})\) is given by the following.

From the \(x^1\)-torsion elements we have \(\alpha^ku^j\), \(0 < k\), \(1 < j \leq 8K\) represent elements with the same name. Also, \(\alpha_2\alpha^ku^j\), \(0 \leq k\), \(0 < j < 8K\) is represented by \(2\alpha^ku^j\equiv v_2^{\alpha^k+1}u^{j+1}\) modulo higher powers of \(u\).

From the \(x^2\)-torsion we have \(\alpha^ku^{8K + 1}\), \(k > 0\), is represented by \(\alpha^kx_{16K + 1}\) and \(\alpha_2\alpha^ku^{8K} = \alpha^{k+1}yu^{8K - 3}\) is represented by \(v_2^{\alpha^k+1}x_{16K + 1}\).

From the \(x^3\)-torsion we have \(\alpha^{k+1}u\) represents the element with the same name and \(v_2^{\alpha^k+1}u\) represents \(w\alpha^ku\).

The elements \(u^j\), \(3 < j \leq 8K\) represent the elements with the same name and \(v_2^{u^j}\), \(3 < j \leq 8K\) represents \(yu^j-4\).

From the \(x^4\)-torsion we have \(x_{16K + 1}\) represents \(u^{8K + 1}\) and \(v_2^{x_{16K + 1}}\) represents \(yu^{8K - 3}\).

From the \(x^7\)-torsion we have \(u^{(1-3)}\) represents elements of the same name and \(x^4v_2^0u^{8K}\) represents \(yu^{8K - 2}\). Finally, \(x^5v_2^0x_{16K + 1}\) represents \(yu^{8K - 1}\).

We also have \(u^Kv_2^2 = 0 = yu^K\).

\[
\text{Proof.}\] We can find all of the elements in degrees 8* by looking at the Bockstein spectral sequence. If we check the elements that are \(x^1\)-torsion, i.e. the image of \(d^1\), the elements in degrees 8* are just \(2v_2^{(0, 4)}\alpha^kw^j\), and these are, modulo higher filtrations, \(v_2^{(0, 4)}\alpha^{k+1}w^{j+1}\), \(0 < j < 8K\). These can be written as \(\alpha_i\alpha^kw^j\) with \(i = 0\) and 2, \(0 < j < 8K\).

Elements in degree 8* coming from the \(x^2\)-torsion are represented by \(x\) times \(v_2^{(0, 4)}\alpha^{k+1}x_{16K + 1}\). In our computation of \(d^2\) in the Bockstein spectral sequence we showed that \(z_{16K - 16}\) mapped to \(x_{16K + 1}\). We also showed it mapped to \(u^{8K + 1}\). This was only \(x^2\)-torsion if we multiplied by \(\alpha^{k+1}\). This gives us our \(\alpha^{k+1}u^{8K + 1}\) which is \(2\alpha^ku^{8K}\).

From the proof of Theorem 5.1 we know that \(w\alpha^{k}z_{16K - 16}\) maps to \(\alpha^{k+1}yu^{8K - 3}\) and is represented by \(v_2^\alpha\alpha^{k+1}u^{8K + 1}\), or, \(x\) times \(v_2^{\alpha^k+1}x_{16K + 1}\). This identifies our remaining 8* degree elements coming from the \(x^2\)-torsion.

The only elements that come from the \(x^3\)-torsion are again standard elements, \(w^\epsilon\alpha^ku\) with \(\epsilon + k > 0\), \(u^j\) with \(3 < j \leq 8K\), and \(yu^j\) with \(0 < j \leq 8K - 4\).
From the x^4-torsion we get $x^4v_2^{(0,4)}v_{16K+1}$ in the expected degrees. We have already identified each of these as u^{8K+1} and yu^{8K-3} respectively.

Of course our x^7-torsion $u^{(1-3)}$ is standard.

We have only the x^7-torsion elements $v_2^6u^{8K}$ and $v_2^6v_{16K+1}$ remaining to consider. The only elements in the appropriate degrees are x^4 times the first and x^5 times the second. We have already identified the last one as yu^{8K-1}. We have not identified the necessary element yu^{8K-2} which we now see must be $x^4v_2^6u^{8K}$.

We have already shown $u^{8K+2} = 0 = yu^{8K}$.

We have a Corollary:

Corollary 8.4. There is a purely algebraic map

$$ER(2)^{8s}(RP^{16K+1}) \longrightarrow E(2)^{8s}(RP^{16K+2})$$

which only misses the elements $v_2^6u^{(1-3)}$.

9. **Axial Maps and Odd Spaces**

Recall that Don Davis uses $E(2)^*(-)$ to show that the axial map

$$RP^{2k-2k-2} \times RP^{2n} \longrightarrow RP^{2k-2n-2}$$

does not exist when $n = 2(m + \alpha(m) - 1)$ and $k = 2(2m - \alpha(m))$ giving him

$$RP^{2(m+\alpha(m)-1)} \not\subseteq \mathbb{R}^{2(2m-\alpha(m))}.$$

From the previous section we know that there is an algebraic map, which, for our purposes, is surjective enough, when $-2k - 2 \equiv 2 \mod 16$:

$$ER(2)^*(RP^{2k-2k-3}) \longrightarrow ER(2)^*(RP^{2k-2k-2})$$

We will be able to use our standard tricks to show that

$$RP^{2(m+\alpha(m)-1)} \not\subseteq \mathbb{R}^{2(2m-\alpha(m))+1}.$$

when

$$-k - 1 \equiv 1 \equiv -2m + \alpha(m) - 1 \mod 8$$

and

$$m + \alpha(m) - 1 = n = \{3, 4, 7, 0\}.$$

Presumably one could compute $ER(2)^*(RP^{16K+9})$ and prove a similar theorem with $-k - 1 = 5$. Although the results are probably new they are not of sufficiently low dimensions as to interest us.

Before we proceed let’s check out the numbers here. We have

$$2m - \alpha(m) \equiv -2 \mod 8$$

$$m + \alpha(m) \equiv \{4, 5, 0, 1\}$$

Adding we get

$$3m \equiv \{2, 3, 6, 7\}.$$

Multiply by 3 (always mod 8)

$$m \equiv \{6, 1, 2, 5\}.$$

Then

$$\alpha(m) \equiv \{6, 4, 6, 4\}.$$

This is Theorem 1.4 in the introduction.
The rest of the paper is dedicated to the proof that there is no axial map
\[\text{RP}^{2K-2k-3} \times \text{RP}^{2n} \longrightarrow \text{RP}^{2K-2n-2} \]
so that the derivation of Theorem 1.4 in this section holds. This proof breaks up into two separate pieces. The case for \(n \equiv 7 \) or 0 is done in the next two sections and \(n \equiv 3 \) or 4 is done in the last section.

10. The 16\# cases

By now our arguments should seem fairly standard. Don Davis has computed the obstruction to the axial map
\[\text{RP}^{2K-2k-2} \times \text{RP}^{2n} \longrightarrow \text{RP}^{2K-2n-2} \]
in \(E(2)^*(\text{RP}^{2K-2k-2} \times \text{RP}^{2n}) \). We will show that the same 2-adic basis that the obstruction lives in is also in \(ER(2)^*(\text{RP}^{2K-2k-3} \times \text{RP}^{2n}) \) and that the same powers of \(u_1 \) and \(u_2 \) are zero.

We assume throughout that \(2 \equiv K-2k-3 \) is equal to 1 mod 16.

In the case of \(n \equiv 7 \) or 0 mod 8, we have isomorphisms
\[ER(2)^{16\#}(\text{RP}^{2n}) \longrightarrow E(2)^{16\#}(\text{RP}^{2n}). \]

We use the fact that \(u_1^{2K-1-n} \) is zero in \(ER(2)^*(\text{RP}^{2K-2n-2}) \).

All we have to do now is show that the elements corresponding to a 2-adic basis where Davis’s obstruction lives also exist in
\[ER(2)^{16\#}(\text{RP}^{2n} \wedge \text{RP}^{2K-2k-3}). \]

As in previous cases, because the algorithm always increases the number of \(u \)'s and because the coproduct of \(u \) can be computed as \(u_1 - u_2 \) up to a unit, we just need the elements \(u_1^i u_2^j \) to be nonzero when \(i + j \) is big. (We don’t really have to worry about the \(\alpha u_1^i u_2^j \) terms because they don’t have enough \(u \)'s in them.)

Most of the \(u_1^i u_2^j \) are obviously nonzero and independent because they reduce to \(E(2)^+(-) \). The only elements this doesn’t work for are taken care of by the following theorem.

Theorem 10.1. When \(n \leq 8M < 8M + 8 < 8K \), in
\[ER(2)^{16\#}(\text{RP}^{2n} \wedge \text{RP}^{16K+1}), \]
the element \(u_1^n u_2^{8K+1} \) is nonzero.

If this element is nonzero, since the elements \(u_1^i u_2^{8K+1} \) are defined and \(u_1^n \) times them is nonzero, they too are all nonzero.

We already know that \(u_1^n = u_2^{8K+2} \) so the 2-adic basis for big products of \(u_1 \) and \(u_2 \) are the same for both cohomology theories and their respective spaces \((n \equiv 7 \) or 0 modulo 8).

This result, proven in the next section, will complete the proof of the nonexistence of the axial map mentioned at the end of the last section for the \(n = 7, 0 \) cases.
11. Products with an Odd Space

We study the Bockstein spectral sequence for
\[ER(2)^*(RP^{2n} \wedge RP^{16K+1}) \]
where \(2n < 16K + 1 \). The \(E^1 \)-term is, as usual, just
\[E(2)^*(RP^{2n} \wedge RP^{16K+1}) \]
This has a few more pieces than we are used to because
\[E(2)^*(RP^{16K+1}) \simeq E(2)^*(RP^{16K}) \oplus E(2)^*(S^{16K+1}) \]
Since \(E(2)^*(S^{16K+1}) \) is free, it doesn’t affect the Tor term, only the tensor product term. So our \(E_1 \) is, from Theorem 14.3 of Part I,
\[E(2)^*(RP^{2n}) \otimes E(2)^*(RP^{16K}) \oplus E(2)^*(RP^{2n}) \otimes E(2)^*(S^{16K+1}) \]
\[\oplus \Sigma^{-16(8K)−1}E(2)^*(RP^{2n}) \]
Keep in mind that
\[E(2)^*(RP^{2n}) \otimes E(2)^*(S^{16K+1}) \simeq \Sigma^{16K+1}E(2)^*(RP^{2n}) \]
The \(-16(8K)−1\) looks silly and can be replaced with \(16K−1 \) since we are working modulo 48.

We need our 2-adic basis for our \(E_1 \)-term.
\[v_2^2\alpha^k u_1^i u_2 \quad 0 \leq k \quad 0 < i < n \quad s < 8 \]
\[v_2^2 u_1^i u_2^i \quad 0 < i < m \quad 1 < j \leq 8K \quad s < 8 \]
and
\[v_2^2\alpha^k u_1^i \zeta_{16K+1} \quad 0 \leq k \quad 0 < i < n \quad s < 8 \]
\[v_2^2\alpha^k u_1^i \zeta_{16K−17} \quad 0 \leq k \quad 0 < i < n \quad s < 8 \]
We know that \(x_{16K+1} \) represents \(u_2^{8K+1} \) so \(xu_1^{16K+1} \) represents \(u_1^n u_2^{8K+1} \). There can be no differential on \(u_1^n u_1^{16K+1} \) because it is a product of elements. All we have to do is show that it is not in the image of \(d^1 \). Since \(d^1 \) is even degree, we only have to worry about it on the odd degree elements since \(u_1^n u_1^{16K+1} \) is odd degree.

\(d^1 \) has degree 18 so if \(d^1 \) is to hit \(u_1^n u_1^{16K+1} \) it must start on some \(\alpha^k u_1^i \zeta_{16K−17} \) because they are the only elements in the appropriate degree mod 16. Since \(d^1 \) commutes with \(\alpha \), we would have to have \(u_1^n u_1^{16K−17} \) hitting \(u_1^n u_1^{16K+1} \) and since \(d^1 \) commutes with multiplication by \(u_1 \) we would have to have \(d^1 \) be nontrivial on \(\zeta_{16K−17} \).

In the Bockstein spectral sequence for \(ER(2)^*(RP^{16M+16} \times RP^{16K+2}) \), \(8M+8 < 8K \) we have, from Theorem 19.2 of Part I, that \(d^1(z_{16K−33}) = 0 \). From Theorem 1.2 of [GW], \(z_{16K−33} \) maps to \(u_1 z_{16K−17} \) in the spectral sequence for \(RP^{16M+16} \times RP^{16K} \). Since this passes through the spectral sequence for \(RP^{16M+16} \times RP^{16K+1} \), \(z_{16K−33} \) maps to \(u_1 z_{16K−17} \) here as well so \(d^1(u_1 z_{16K−17}) = 0 \), i.e. \(u_1 \) multiplied times \(d^1(z_{16K−17}) \) is zero. All elements killed by multiplication by \(u_1 \) go to zero under the map to \(RP^{8M} \times RP^{16K+1} \), and so, in here, our \(d^1(z_{16K−17}) = 0 \) and our result follows by naturality.

This concludes our proof for the \(n = 7, 0 \) cases.
We continue to assume that $2^K - 2k - 3$ is equal to 1 mod 16.

We now switch to the cases of $n \equiv 3, 4$ mod 8. We now have $yu^{2K-1-n-4} = 0$ in $ER(2)^*(RP^{2K-2n-2})$ and this maps to $v^2 u^{2K-1-n} = 0$ in $E(2)^*(RP^{2K-2n-2})$.

We know from [Dav84] that this goes to nonzero in $E(2)^*(RP^{2n} \times RP^{2k-2})$.

We will, as usual, show that the 2-adic basis elements that this obstruction can be written in terms of also live in $ER(2)^*(RP^{2n} \times RP^{2k-2})$.

The discussion now is nearly identical to that for the even products we studied first in this paper. The end result that we need to complete the work is:

Theorem 12.1. When $m \leq 8M$ and $8M + 8 < 8K$, the element

$$u_1^m u_2^{8K-3} y_2 \in ER(2)^*(RP^{2m} \wedge RP^{16K+1})$$

is nonzero. When $i \geq 4$, $u_1^i u_2^{8K-2} y_2 = 0$. When $n \equiv 3$ or 4 modulo 8, $u_1^{n+1} u_2^j y_2 = 0$.

Proof. We have already written down the E^1-term for this. The element that represents $u_1^m u_2^{8K-3} y_2$ is $v^2 u_1^m u_1^{16K+1}$. All we have to do is show that $v^2 u_1^m u_1^{16K+1}$ is not the target of a d^1. If there is such a differential for $8M + 8$, just like in the last case, $d^1(z_{-16n+17})$ must be nonzero and u_1 times the target must be zero. All such target elements go to zero when we map down to $m \leq 8M < 8M + 8$ and so the differential is trivial there.

For the last statements we note that $u_2^{8K-2} y_2$ is divisible by x^4 and x^3 kills u_1^4 and that u_1^{n+1} is divisible by x^3 and x^3 kills y_2. \hfill \Box

This concludes the proof of the final cases.

References

Department of Mathematics, University of California, San Diego (UCSD), La Jolla, CA 92093-0112
E-mail address: nitu@math.ucsd.edu

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
E-mail address: wsw@math.jhu.edu