ON NOVIKOV'S EXTl MODULO AN INVARIANT PRIME IDEAL

*
Haynes R. Miller and W. Stephen Wilson( )

This note is a statement of some results on

'

X
0 tBP*BP

(BP*,BP*/In) which we talked about informally at the
summer 1974 homotopy-theory conference at Northwestern University.
Proofs will appear elsewhere. For details on the Brown-Peterson
spectrum BP and on BP*BP and BP_BP, we refer the reader to

8 i o

We shall use the generators v, of Hazewinkel [3], so that

BP, ~ Z )[vl,v G e

AeEe 2
. n —% 4
with |vn| = 2p -2, and BP,~BP . ‘The ideals
I, = (Pwvyseeouv 1) O<n<w

are the prime ideals of BP_ invariant under the coaction of
*
BP_BP (or the action of BP BP); see [5, 9, 4]. We point out

that

* % * *
Ext , (BP ,BP /In)::EXt
BP BP

* %

BP*BP(BP*'BP*/In)'

*
*) Both authors were partially supported by the NSF at the time

of this research.
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and henceforth denote this algebra by

* %k
Ext (BP*,BP*/In).

Multiplication by V. .@on BP*/In is a BP _BP-comodule map.

In fact, we have

Theorem (Landweber [14]; see also Johnson-Wilson [47). For

0<n<eo,

0,*
Ext (BP*,BP*/IH):ng[vn].

*
(BP*,BP*/In) splits up as an Eb[vn]—module

ik
Thus Ext
into a direct sum of vn—torsion and vn—torsion—free submodules.

For p odd, we describe the vn—torsion summand completely, and

exhibit all but one generator for the vn—torsion—free summand.

The short exact sequence of comodules (where ¥SIT p)
Vi
0o—BP,/I —BP, /I —=BP_/I —0
*" Tn o1 * Tn+l

gives rise to the "Bockstein" exact couple

* % Vn * %
Ext (BP,,BP,/X ) —Ext (BP, ,BP,/T )

6n Pn

* %

Ext (BP*,BP*/In )

il
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in which 6n has bidegree (l,2—2pn).

Henceforth let p be an odd prime. Recall [1] that
2,...], ltnl = 2p"-2. 1In the cobar construction
for BP.BP ([7]) with coefficients in BP*/In, n>0, [tfl] is

BP, BP ~BP_[ tl, t

cycle representing a nonzero class

i
l,pq
hi € Ext (BP*,BP*/In) ;

g = 2p-2. Clearly hi is taken to hi by the reduction [

Note that

* % / * %
t B ,BP ~ EX ’
Ext (BP,,BP /I ) ~E tP*(]Fp F)
where P_ is the Hopf algebra of Steenrod reduced powers. Thus

*
Extl' (BP*:BP*/IM) is additively generated by {hi: iz_O} [[6il5

(At the other extreme recall that Novikov [10] has computed

*

Ext ' (BP,,BP,/I)).)

Theorem A. Let p Dbe odd and O<n<w. All relations in
1 %
the Eb[vn]—submodule Ofa Exta’ (BP*,BP*/IH) generated by

{hi: iz})} are consequences of

corollary A'. The hi for O<i<n generate distinct

free ]Fp[vn] -module summands.

The next theorem describes the vn—torsion submodule of

1,* s

Ext~’ (BP*,BP*/In),()<r1<w. For r>0, write r = ap® with
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(a,p) =1, and if s#0 write S =kn+i+1 with O<i<n.
Let
p° LE gt
a(r) = q (r) = . k-1 o
P + (p-1) P if a # 1
2=0

In particular, for n =1 witp S>1 and a % 1. q(aps) =

s s—l_

P +p 15

Theorem B. rLet P be odd ang O<n<ew. The vn—torsion
*
submodule of Extl' (BP*,BP*/In) is a sum of cyclic Eb[v 7=
n

modules on generators

n+1 n
l,2r(p™ =1) =2q(r) (p"-1)
cn(r) € Ext (BP*,BP*/In)

satisfying, for a such that (a,p) =1 ang a # 1.
: a(r) _
(1) vn cn(r) =0
q(r)-1 5 r
v cn(r) = Gn(vn+l) Z0
sy . P (p-1)
(a4h) hs+n = cn(p )+vn hs s>0
(iii) (e (5510 =0
ot Pp Cn p B S+n
0 a-1
pn(cn(ap L) .= n+1l'n
S_.s-1
. 2av2ap p By if n =1 and g57.
pn(Cn(ap )) = i
avap P h Ootherwise.
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Most of our understanding of the vn—torsion—free part of

* .
Extl' (BP*,BP*/In) derives from the following theorem of Morava.

Theorem (Morava [8]). Let p be odd. The rank of
*
Extl' (Bp, ,BP,/I ) over T [v ] is 1 for n =1, and n+1
* *" Tn p-n

for 1l <n«o.

Corollary A' gives us all but one generator of
ll* . .
Ext (BP*,BP*/In) mod vn—tor51on if n>1l. For the last

generator we can only offer:

Conjecture. For p odd and l<n<we, there is an element
L At% .
w € EXt (BP*,BP*/In) generating a free Eg[vn]—module
summand and reducing to

n
Lpte. 4P T

pn(wn) = vn+l n-1

Our principal evidence for this conjecture is its truth for
n. .= 2..and 3.

These results have applications in stable homotopy. It is
; . t . 2%
immediate from Theorem B that Goél(vz)séo in  Ext (BP*,BP*)

for t>0. This implies the theorem of L. Smith [127 that

: S
_Bt#O linee Mo FOT = €510,

Recall [10] that the image of

4

1,* *
po * Ext™' (BP,,BP,)—=Ext ' (BP,,BP,/(p))

: : 2,% .
is generated by {v?ho :kg;o}. Since Ext™' (BP_,BP ) is
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p-torsion, the exact sequence

6
1,* %) 1,% o 2,% 2%
Ext ' (BB, BB,)—=Ext ' (BB Bp/(p) —=Ext" " (BP,.,BP ) —E Bxt (BB, ,BP, )

allows us to compute the kernel of multiplication by p in

*
’

Ext (BP*,BP*). This gives a complete list of cyclic Z -

(p)
module summands, but no information on their orders. Using this

*

3 : , 35
list it is easy to see that § 6.6 (v #0 in BExt (BB, ;BP,).

(OFAakate 3)

This implies the result of E. Thomas and R.S. Zahler [13] that
; S

71 £.0. in g,

In a following note with D.C. Johnson and R.S. Zahler we

describe this technique in more detail and use it to show the

nontriviality of a sporadic but infinite collection of yt's.

Acknowledgement. Raph Zahler first noticed that §

s-—
is divisible by v? l. This result helped stimulate our

interest in Extl and we would like to thank Raph for bringing

it to our attention.
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This announcement will appear in the proceedings for the
summer 1974 homotopy-theory conference held at Northwestern
University, to be published as a monograph of the Mexican Mathe-

matical Society.
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