BOUNDARY HOMOMORPHISMS IN THE GENERALIZED ADAMS SPECTRAL
SEQUENCE AND THE NONTRIVIALITY OF INFINITELY MANY
yt IN STABLE HOMOTOPY

D.C. Hohnson, H.R. Miller, W.S. Wilson,
and~'R.S. Zahler

We apply the computation announced in [8] to prove the fol-
lowing result on the nontriviality of an infinite subset of the
family {yt: > O} in the stable homotopy of the sphere.
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The elements 7 have been detected for 't = aptb,
O<a<bgp-1l, by E. Thomas and R.S. Zahler [12,13]. Several
programs for detecting the whole gamma family are currently
under way, but as far as we know, none has yet succeeded.

Our approach is to reduce the theorem to an algebraic ques-
tion in E2 of the Adams spectral sequence for BP homology
and then appeal to [8] and arithmetic to deduce the result.
The arithmetic actually shows T # 0 for other values of t
in a set of density zero.

Our methods allow a systematic detection of elements in in-

finite families in stable homotopy. Ws illustrate this by pro-
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ving that all the elements in the alpha and beta families are
nontrivial, assuming only the existence of the self-maps required
for their construction. The same technique could be used to
detect the known members of the epsilon family, again assuming
their construction.

The link between algebra and homotopy theory is provided in
the first section by a folk theorem relating algebraic and geo-
metric connecting homomorphisms. The second section defines the
stable homotopy elements of interest to us and uses [8] to detect

many of them.
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1. Algebraic Boundaries and Geometric Boundaries.

Our goal in this section is to prove a general result (1.7)
relating connecting homomorphisms in E2 and in the abutment of
generalized homology Adams spectral sequences.

We recall the construction [3, III, §15] of an Adams spec-

tral sequence based on a homotopy-associative ring spectrum E
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: : (0] 0 (0] s+1
with unit M :S —E. Let F =S apnd “tor: s>OletaSE

complete the cofibration sequence

S s+1 S s
(A7) F EAF F F
in which ks has degree -1 and
S S
js=nAFS:F :SOAF—-EAFS.

The sequences (l.l) splice together to form an Adams resolution

O : 5
for S_. When smashed with a connective spectrum X, they form

an Adams resolution for X. Note that

(1i2) B, (1 AX) = 0.

S ; ;
If we apply w*( ), we obtain an exact couple whose associated

spectral sequence is the E-homology Adams spectral sequence

* %

B (X).
1

1 : : S
Define a filtration of n*(X) by

s S

(1.3) PorS(x) = image {rS(F°AX) —ni(0}.

: s_s s s
Lift xeFrO(X) to yerS(FPAX) . Then (5_AX)YEn[BAF AX) =

]

= E (X) is a permanent cycle and projects to an element of

* — 0

S, s
& +l"S
=<}

(X) which depends only on x modulo F a

(iX) ot Thu's we

have a homomorphism of bigraded modules

* S * %
(1.4) Eofrr*(X)——'E°° (X))
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0] , - :
Now suppose E, = E_(S’) 1is commutative and E,(E) 1is

flat over E,. The left unit ﬂL :E*-—’E*(E) is split by the

it .
multiplication map so the cokernel, E*(F 0o byi(la2) . is also

flat. Then E*(EJW ®E:E*(_) gives a homology theory naturally
*

equivalent to E*(FJ'A—). Using the observation that

Ft ~ Fl/\Ft_l, we prove inductively that:

T E, (F5) ® L By (X
*

t
(5250 E . (F AX)
for any connective spectrum X. Then [2,3]
(B E (% ).

This Ext 1is an Ext of comodules over the "coalgebra" E*(E);

it is computed using extended E,(E) comodules as injectives.

%

- £
Definition 1.6. The class x:eExtE (E)

(E*,E*(X)) is said
*

S :
to converge to X(Eﬂ*(x) provided that

(i) x 1is a permanent cycle representing the class
- t, *
{x}EE " (X);
®

(atal) = -5 EFtﬂf(X); and

t+1 S

i)

(iii) The homomorphism (1.4) sends the coset X+F
to {i}
We define a map f : X—Y to be E-proper provided that

E,(f) = 0. (This terminology was suggested by Larry Smith.) If

in the cofibration sequence
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the map h is E-proper, we obtain a short exact sequence

O—=EZ(W)
In turn, this induces a long exact sequence

**
Bxty (g (By By (w>)——-Ext (B, /B, (X))

\/

E (E)(E vE (X))

where the connecting homomorphism & is as in [4, p. 55] and

has bidegree (1,0).

Theorem 1.7. (Geometric Boundary Theorem) Let E be a

homotopy associative ring spectrum with unit such that E, is

commutative and E*(E) is flat over B is commutative and

; £ g h :
E*(E) is flat over E,. Let W X Y SW be a cofibre
sequence of finite spectra with h an E-proper map. If
= . S =
X € ExtE*(E)(E*,E*(Y)) cqnverges to x Eﬂ*(Y), then 6(x) con-

verges to h_(X) EWf(W)-

Proof. Smash the Adams resolution for the sphere with the

cofibration sequence W—=X-—Y. Part of the resulting diagram
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St ;
is displayed in (1.8). Let yen*(F AY) Dbe such that (]t/\Y)y
o t,*
represents X 1in E2 (Y) and
(E15e 0] (10...1t_lAY)y=x.

By (t1. 59 L the' Ui /\Ft/\— row in (1.8) is short in homotopy,

so O = (E /\Ft/\h)(jt/\Y)y = (jt/\W)(Ft/\h)y and there exists

Sl
ylEﬂ*(F AW) such that

> &
(@ESIl0) (1t/\W)yl = (F Ah)y.

We come now to the main geometric step.

Claim 1.11. There is an element y2 enf(E /\Ft/\ X) such

that

. t
(Jt/\Y)Y = (BEINE /\g)yz,

IE t+1
(kt/\X)y2 = (F /\f)yl.

To see this, pass to the Spanier-Whitehead dual cofibration

sequence DWe—DX<+—DY. Take maps y# and yﬁ dual to y and

Yq- We have

=1
DX &—— DY &S/ DWW
!

|

H#1 H# -1 #

Yz: Vi S Y,
¥

i t e |
EAF $—F «——F T°,

Let yg’ comple te the map of cofibrations (see [16], p. 170).
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*4: satisfies the con-

S E
Then the map Y, € 7, (EAF AY) dual to
ditions of the claim.

Now it is easy, using the definition of the connecting

homomorphism &, to chase (1.8) and see that

S t+1
j A
(jt+l/\W)yl€1r*(E F A W)
= - t+1 s
represents §(x). Because it factors through F AW it is a
: ! s+1 s :
permanent cycle. Since (1S/\W)(F A D)= (BN R)F(1 SN for
>

all s, we have by (1.9) and (1.10)

(1 veud, AW)Y. = (i.oei, . AW (FCAR)y =h-(i ...i, . A¥)y=h(x).

] = 0] t=1

Phat is, 6(§) represents h(x).

t+1 t+1
EAF /\W—-E/\FJr AX

= @

Ft+l t+1 t+1

NW =———»IF AN X =————»F A

e

BAER- AW ="=EANE AX—>=EAE AY

7 i

2. Detecting Stable Homotopy Families.

In this section we show how the Miller-Wilson results may



54

be combined with the geometric boundary theorem to detect stable
homotopy. First we recover known results on homotopy elements
of BP filtration 1 and 2; then we prove our main theorem on
the gamma family.

Recall that  BE, ( ) is the Brown-Peterson homology theory

associated with the prime p ; it has coefficient ring
L i . n "
BP, = Z(p)_vl,vz,..._ with lvnl = 2(p -1). Define
In = (p,vl,...,vn_l) with the convention that vO = p and
IO =" (@) All of the results.of Section 1 hold for - BP.- In

fact, there is an Adams spectral sequence

* % S
Ext BP, ,
BP*(BP)( o

converging to nr(X)Q Z(P). Henceforth we shall delete 'BRJBP)”
from ‘our  Ext . notation,

Let Wi=1) =+8 . FEor .n =10yl,2, or 3, andi p>2n; there

is a cofibre sequence

S
[V
o

2p"-2

n
(ol & V(n-1) = I 2

V(n-1) > V(n)

V(n-1) ,

in which hn is BP-proper, inducing the short exact sequence

v

o e e e ol e o
n * n * n+l




55

On the E2 level of the Adams spectral sequence, these

short exact sequernces induce exact triangles

* K Y Vn **
Bt (BP S BE S In) ——— EXt (BP*,BP*/In)

(2.2) no\ Py
L)

* %

EXt (BP*,BP*/In )

+1

where 6n has bidegree (l,2—2pn).

Now we need to quote two theorems.

Theorem 2.3. (Landweber 7], or see {5]) Let n>O0; then

’

o, * ~ . -
Ext (BP, ,BP AR =TR Y T
* n p

* %
Thus Ext (BP*,BP*/IH) is a module over IF [v . When

*
(BP*,BP*)

Il ¢

Z concentrated in degree zero.

el

Theorem 2.4. (Miller-Wilson [8 passim) Let "n = @,1,2, or

1,=*

Sy o G o;épn(x) < Ext (}39*,131)*/1n ) ., then s (X)) A0k

+1 +lpn

Lemma 2.5. «Let' n =10,1,2% or 3, %and  p>2na.  df

S y
g EﬂS(V(n)), s> 0, is such that

= L ; = i :
0 BP*(gn) _,{omBP*BP(BP* BP*/In+l, FvamlJ

8 S
then O;éhnqn«:n*(v(n—l)). Furthermore O;éhn_lhngncﬂ*ﬂﬂn—zn

Fort in.# 0.
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proof. By (2.3) the exact sequence induced by (2.2) begins,

Eoriins =107

Py 6

P - L
2.6 0O—=2 7 F v, ]-—— Ext (BP, ,BP,)
5ot (p) (p) p I x P
and for = n =03
v o )
=iy et m S s DS i o ol
0 piE R p- n+l
(207
v

’ ’

n
Ext (BP*,BP*/In) ——— Ext (BP*,BP*/In) <

In either case, Gn(BP*(gn)) Z0 since gn has positive degree.

By Theorem 1.7, § BP*(gn)) is a permanent cycle converging to

o

hngn; see (1.6). Differentials increase homological degree by
at least two, so hngn survives nontrivially.
Now by (2.7) ., vnén(BP*(gn)) = 0. Thus by (2.4), 5n(BP*@h”

cannot be in the image of e, (in (2.2)). Hence, by exact-

=1

ness of (2.2),

*

. : 24,
0#6_ .6 (BP (g )) €Ext (BP, ,BP, /I _

By Theorem 1.7, 5n— 1)

(BP, (g )) 1is a permanent cycle which
150 * =

converges to hn—lhngn; see (l1.6). A glance at (2.3) shows that

6n_16n(BP*(gn)) cannot be hit by any differential so

BP i ivi
On—lﬁn( *(gn)) survives nontrivially to E°° and hn—lhngn # 0.
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Beffiiiniitiion 2.8 =

I t t-1 :
= and = &7 Skt A si
g, = @ N Aandaig s g (using
the same symbol for a stable map and its suspension)
We now consider some examples. For
S O
e SRR

t>0

and p>2,
is defined as the composition

SZ(p—l)t

£
a ' ) h
2(p=il)t 1
R R T R CEee
Notice that
t
B a =
BP*(-l o)

vte Tl e
1 p- 1-

(BP_,BP,/(P)) .
By Lemma 2.5 we have:

Corollary 2.9

(Toda [14]) . gtiéo for all
£ >0

and | p> 3, BtETrS

For

t>0-

5 (So) is defined
2(p -1)t-2(p-1) -2
as the composition

&
2 a.a 2 ¢ h h
2 (p =)k 170 2pr=1)t 2 ik 2p-1 3
el L O e e e - V(1) e e
Notice that
BP (¢ta a ) vt eIF [V
TR 2 ;

By Lemma 2.5 we have

corollary 2.10 (Smith [loj) .

,st;éo for all t> 0
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Jex
Remark 2=Ll. " In (87 BExt (BP*,BP*/In) and the maps p

are described completely for n = 0,1,2, and 3. We have stated
in (2.4) only the minimal result necessary to study the beta and
gamma families. Using the more complete information availble in
[8] one can use techniques similar to these to detect all of the
epsilons of oka [9], Smith [11], and Zahler [17] assuming only

the spaces and self maps used in their definition.

et  p>5 @and t>0. There are elements

and

S
T ST 2
2(pl =1 t=2(pe=1)=2l(p=1) =3

defined by the following diagram.

£
3 @
salE ey e ey
|
2
. S2(p -1)+1 (1)
(2..1:2)) azalaO l hl
2= L
- G2 (p-1)+2 (p-1) +2 ‘o)
t { %
0
S2(p3—l)t Y S2(p a0 (p-1)w3
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Observe that

*
’

tons Sara T .
BP, (¢,3,3,8) = v3tIFp[v3j Ext ' (BP,.BP,/(p,v,.v,)).
By Lemma 2.5 we have the following folk result.
corollary 2.13. yé;éo for alls £>0.
In this case, the proof of Lemma 2.5 showed that
o 25 W E)
0#8,8,(vy) €EXt (BP_,BP, /(PR)) .
3 2
where w(t) = 2(p -1)t-2(p -1)-2(p-1).
Lemma 2.14. Suppose for some t>0 that
7 (&
Ext” " )(BP*,BP*) = 0.
h #0.
Then ¥ 0
Proof. With k = w(t) we have
€ 2,k 3
0#6,6,(v;) € Ext” ' "(BP,,BP, /(pP))
and the exact sequence
(5
2, P 2.k ;
o=ext? ¥(ep, ,Bp,) —2= Bxt? ' (8P, ,BP,/(p)) — = Ext>'"(BP_.BP,).

Thus 606162(V§) #0. By Theorem 1.7, this is a permanent cycle.

’

ey
Since EXt l(BP*,BP*) =0 for i # O modulo 2(p-1l), no non-

zero differential (bidegree = (r,r-1)) has range Ext3mﬂt%M;BP*L



So 505162(v§) survives nontrivially to E and by (1.7) con-—
-]

verges to yt.

2,w(t) 3
We are not so lucky as to have Ext (BP*,BP*; =0 ~For

all t. 1In [6] it was opserved that Extz'w(l)

(BP*,BP*) = 0O,
giving a confirmation of the theorem of Thomas and Zahler [12]

that Y1 #0. From Theorem B of [8] and the discussion following

it we have

Theorem 2.15 (Miller-Wilson). Let p>2. Extz'n(BP*,BP*)

is the direct sum of Jj nontrivial cyclic Z(p)—modules where j

is the number of times n appears in the following list.

(i) fp°(palldilg = isworsoxil <p®
(i1) [a(p+l)-1l]q
(i1i)  [ap(p+l)-ilqg 0<i<p

. Z . - -1
(1iv) Laps(p+l)—1]q si> 1, O<<15§ps+ps -1

where l<a, (a,p)y = L, a = 2(p=1).

Proposition 2.16.  For «r = 2,8, .4 ,p=l, s>0, and
s 3 s 2 AT
k =w(rp ) =2(p -1)rp -2(p -1)-2(p-1), Ext (BE, wBPR)ses SO0
Proof. It is easy to check that k = w(rps) is not in the

above list. For example: k/g = rps—l modulo (p+1l); a(p+l)-1

i

-1 modulo (p+1l): rps £ 0 modulo (p+1) since 2<r<p-1l; and
thus k cannot be of form (ii). The other cases require equally

elementary and entertaining arguments.

This gives us our main result.
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Corolillary 521 7 58y Si£0 Bt iee=121,31 Lo, p=1 F land 9 is > 0
rp

Proof. (2:14) and. (2.16) .
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