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1. Introduction

Our results are concerned with a very general algebraic pairing as-
sociated with the bar spectral sequence for Q-spectra. To illustrate our
main result, let 4, ={%}.., be a connective multiplicative Q-spectrum.
Recall that Q%, ,, = %, and we are given maps o: 4 A4, — 4, .. We are
interested in studying E4 %9, ={E+% }«.z, where E4(—) is a multiplicative
homology theory. If E4(—) has a Kiinneth isomorphism for the spaces
Y%, then E4 Y, is a “Hopf ring”, i.e., a ring object in the category of Ey
coalgebras (see [4]). Our main analysis is of how the pairing

G117, — G (L.1)

behaves with respect to the bar construction. Let ¥/ be the zero compo-
nent of ¥. Each ¥/, is the bar construction of ¥, =Q%/,,, the Moore
loops on ¥, ,, i.e., B4, = %', is B on the Moore loops Q¥/, ,. Let F*BY%,
be the bar filtration for ¥/, ,, then the map 1.1 preserves filtration in the
sense that

F°'B4. A%, — F°'BY, ... (1:2)
Since the bar spectral sequence
E;‘*(E*fgk)é E*(g;n&l

is a spectral sequence arising from filtered spaces ([6],[7]), 1.2 implies
that there is a pairing

o: Eis(Ex%) ®k, ExY, = E;»(E4%:.») (1.3)

with d"(x e y) = d"(x) ° y. This pairing is compatible with the map
o ExYi+1®g, Ex%, = ExYiin+1.
Recall that
F'BY/F 'B% =3 A% A - NG, (1.4)

s-copies

Both authors were partially supported by the N.S.F. and the second author is an Alfred P.
Sloan Research Fellow.
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A more detailed analysis of 1.1 reveals that the map

(F*B%,/F*"'B%)AY, > F'BY, . ,/JF°"'B% ..,

I# I (1.5)
SAG A ANGAYG, > ANYG N NG
s-copies s-copies

is induced in the obvious way by the pairing
<gk A (gn = (gk-f-n'

If the E4(—) Kinneth isomorphism holds for spaces %, then
Ei +(E+%,) is the bar construction on E.%.. Furthermore EZ(E4+%.)=
Torf#% (E, Ey) and the spectral sequence is one of Hopf algebras. Thus
the map 1.3 is quite easy to compute on E' and E? using 1.5. In this case
the pairing is compatible with the Hopf ring structure.

This type of pairing was first observed in [5] for the case 9=
HKZ/(p*), ™), the mod p* Eilenberg-MacLane spectra. The use of this pair-
ing is necessary for the computation of the Morava K -theories of Eilenberg-
MacLane spaces. The Kiinneth isomorphism always holds for the Morava
K-theories, K(n)y(—), ([2],[5]), and for standard mod p singular homol-
ogy. In fact, the mod p homology of the Eilenberg-MacLane spaces can
be computed using this pairing without any need to use chains or
cohomology operations. The Kiinneth isomorphism can be obtained in
other situations as well; for example, if %, is the )-spectrum associated
with complex cobordism, then there is a Kiinneth isomorphism for these
spaces for any complex orientable Ey(—).

We continue with the same notation and definitions as above for the
statement of our theorems.

TueoreM 1.6 Let S A6 — F be a pairing of connective spectra.
(i) There exists the following homotopy commutative diagram:

F'BA, A6, — F°'B%.,

B, N6, — BF, .,
r I

. ’ a!
of i AC— Firnir

(ii) The map

(F'Bs(,/F*~'Bsd,) A €, — F*B%, ,,/F°*'BF,. .,
= i:
AN AANG, > AF A AT

e )

s-copies s-copies.




HOPF RINGS IN THE BAR SPECTRAL SEQUENCE 509

is induced in the obvious way by
o0 NG, = Fr i

This geometric result implies our main theorem on the bar spectral
sequence.

TueoreM 1.7. Let { A6 — F be a pairing of connective spectra.
(i) There is a pairing

i E{«(Exs) ®p,Ex6, = Ec+(ExFysn),

with d"'(xey)=d"(x)ey and E% «(E+%,)=> E+%Y; ., the bar spectral se-
quence. This is compatible with

ol E*‘ﬂk+l®E*E*cgn e E*gon-\‘—k-kl-
@) If E;V*H(E*%,)-—VE*(E" NG N AEG) is isomorphic to

s-copies
Ey(3*) Qp, @1 Ex(9) for 4=s4.,%, and F.,,

and * is the iterated reduced coproduct with §*(x)=Y xV®---®x,
x € E4%,, then the map of (i),

ol E;‘*(E*dk) ®E*E*<gn L2 Ei,*(E*ngm),
is given by
(1 ® - ®y) o x =L £(y1 ° xV)®- - -y, * x*)
where the © on the right is for
o: Eyxsdy QexExC, = ExFiin,
and the signs are computed from the usual conventions.

Although the result seems to be new, the proof of Theorem 1.6 is really
fairly simple. In fact, when shown the result, most experts quickly
produce their own proof. Our original proof used Segal’s machine built
pairings. To do so it was necessary to show all pairings arise in this
fashion. The referee has produced a far more transparent proof, and it is
the referee’s proof that we present in this paper. We thank the referee on
behalf of the readers as well as ourselves for allowing us to use his proof.
The referee also observes that the spectrum € in 1.6 and 1.7 can be
replaced by a space. This is clear in the proof.

Despite the simplicity of the proof, the power of the pairing, as
demonstrated in [S], is enormous. This power motivated our presenting
this more general result in hopes that by making it availabie it will lead to
even richer applications. In fact, a number of applications are already in
progress.
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2. Proofs

The proof of Theorem 1.6 consists of a series of simple observations.
Let f A€ — F be a pairing of spectra. There is then a map

H 1 NC = Fyiier (2.1)
If Q is the Moore loop functor, there is an induced map
Qi )AE, = UAl 1 A 6) = QF i (2.2)

The first map in the sequence sends a loop in &}, and a point ¢ in €, to
the loop in the smash product that is the image of the loop in &} ., x 6,
that lies over the original loop and is contained in &}, ®c. For each c in
€,, the map

Qo1 = QF) i1

induced by the map (2.2) at level ¢ is a map of topoligical monoids. Thus
the map (2.2) induces a map of simplicial topoligical spaces from the
smash product of 4, with the bar construction on Q& , to the bar
construction on Q& ., ,;. On passing to the geometric realizations of the
simplicial spaces, one obtains a map

(BQd) 1)) A6, > BOAF, 11 (2.3)

that preserves the bar filtration as required.

For connected spaces it is well-known that there is a natural homotopy
equivalence BQ— Id (e.g., [1],6.16; [9],2.3,2.8), so BQ} , and
BQ%,, ..., are equivalent to &}, and %/, ., respectively. Further, the
map (2.3) corresponds to the map (2.1) under this equivalence.

The fact that the filtration quotients have the homotopy types indicated
in Theorem 1.6 (ii) is also well-known.

This completes the proof of Theorem 1.6. Theorem 1.7 follows im-
mediately.

There are two machines for producing pairings of spectra, one due to
May ([3]IX) and one due to Segal ([8], §5). In the spectra built by these
machines, the spaces &, and %,,, carry E.- space or I' space structures
that allow one to form bar constructions B&, and B%, ,,, after converting
the E.-structure to a monoid structure in one of the standard ways or by
directly using the I'-space structure. For the machines of May and Segal
there are “multiplicative” homotopy equivalences of monoids between
&y, F.., and the monoids of Moore loops Q& .1, QF, ..., respectively
([9],2.3,2.8,3.7,3.10). It follows that there are maps

Bsd, — BO, BF,, > BQ%, 1y

that induce homotopy equivalences on all filtrations and filtration quo-
tients of the bar filtration. Thus, Theorems 1.6 and 1.7 apply also to the
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bar construction on the machine-provided monoid structure as well as to
the Moore loop structure on &, = Q& .. In particular, it is legitimate to
apply the results to the machine-built Eilenberg-MacLane spectra in [§].
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