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TOWARDS BP,X
W. Stephen Wilson

Let MU = {MU(n)}n be the Thom spectrum for the unitary group. We have
a generalized homology theory [A]

MUX = 7, (MUAX) ,

with MU, = Z[xz, Xy ...] . When localized at p , MU*X(P) is determined
by another generalized homology theory, BP,X , called Brown-Peterson homology.

It has representing spectrum BP . We can define generalized cohomology
theories

MU*X = {X, MU}*

BP*X = {X, BP}*

and again, MU*X(p) is determined by BP*X . The coefficient ring, BP, , is

BP, = Z(p)[vl’ Vo ]

n
lv | =20"-1)

During the 1970's there were many applications of BP in algebraic
topology. In particular, applications to stable homotopy came with a deeper
understanding of stable operations. For example, see [MRW]. However, the
ability to compute BP,X for commonly occurring X was missing. I expect
this situation to change dramatically during the 1980's; and things are
already off to a good start. Before I discuss recent developments I want to
review what is known.

The BP homology of spaces with few cells can be computed and used to
great advantage in stable homotopy. Typical examples are the V(n) spaces
which exist in limited quantities for small n and certain primes. The

defining property of a V(n) is that the mod (p) cohomology
= B0 00 Zaced)

where the Qi are the Milnor Bocksteins [Mil]. Equivalently [S]

H*V(n) = En+1

BP,V(n) = BP*/In+1 5

I = (p, Vis e s vn) . But note, for future use, that
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BP,V(n-1) = BP*/In
while
n
BP*V(n-1) = zz(P ‘1)/(P‘1)‘HBP*/IH .

At any rate, the BP homology of spaces with very few cells can usually be
computed, and frequently used for applications.

Next, there is a collection of artificial spaces constructed to demon-
strate particular properties of BP,X , with very little additional interest.

There are also some scattered, unsystematic results around.

The most accessible spaces are those with no torsion in homology. The
Atiyah-Hirzebruch spectral sequence collapses and we automatically have the
BP, module structure (it's free). So in a very real sense these examples are
trivial. However, much more can be done. For example, the algebra structure
of H*(X, BP*) does not give the algebra structure of BP*X because of ex-
tension problems. These are very important extension problems and it is
necessary to understand them completely in order to have such basics as the

Landweber-Novikov algebra
MU*MU

and its dual MUMU . Furthermore, BP was useless until these extension
problems could be solved for BP,BP ; which is what Quillen accomplished with
his construction of BP . More recently, for the Q-spectrum MU = MU, ,
[Rwl] studies MUMU, , where there are two products (but no torsion) to give
extension problems. But still, these examples are studies in the subtleties
of trivialities.

The first serious example, due to Landweber [Ll]’ has been with us quite

a while. He computes
MU*(BZ/(kl) x BZ/(kz) X 400X BZ/(kn))

The fibration

BZ/(k) — €p” X gp”
gives a short exact sequence in MU*(-) .

MU*CP” = MU*[[x]] ,

X € MUZEPm .
Let [k](x) = k*(x) . Then
MU*BZ/ (k) = MU*[[x]]/([k]1(x)) ,

and Landweber shows
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MU*(BZ/(kl) X oane X BZ/(kn))
= MU*[[x), Xp5 o0, LS VAQLIUHCID PRI [k 1(x))

He succeeds in proving this by showing there is a Kinneth isomorphism for
these spaces; a rare phenomenon.
Despite very early interest [CF], homology versions of the above were not

successful until 1980 when David Johnson and the author computed
BP, (<"BZ/(p)) ,

the first example of a BP homology calculation for a sequence of standard
spaces with progressively more complicated BP, module structure.
(n=1, 2, 3, were known.)

The BZ/(p) are basic spaces in algebraic topology and immediate
geometric consequences follow. This determines (for p an odd prime)

Mso, x"Bz/(p)

which gives the bordism classes of oriented manifolds with free an/(p)
actions.

I have a basic interest in developing the computability of BP,(-) . The
best place to begin is with the standard spaces of algebraic topology, and,
as above, applications will follow. Other important spaces are BOn and
MOn » and it is my recent computation of BP,(-) and BP*(-) (p = 2) for
these spaces that I want to talk abaut.

Before I discuss the answers, I want to describe the technique for the

spaces anZ/(p) 5 BOn , and MOn « We use the Adams spectral sequence
EE* = ExtA(H*(BPAX), z/ (@) =, (BPAX) = BP,X .
H*BP is the reduced p-th powers, so by a change of rings we have

ES* = Ext (H*X, Z/(p)) ,

where E = E(Qo, Ql’ ««.) , an exterior algebra on the Milnor Bocksteins. A
major simplification can be made for the above mentioned spaces. ExtE is
determined by ExtEn in these cases. This comes out in the computations, but
it is a very comforting fact to know in advance, which for BOn it was, by
Ron Ming's work [Min]. Ming goes even further and shows that
ExtE*(H*BOn, Z2/(2)) 1is generated over BP, by Exto , which is unreasonable
to hope for, but it helps the properly paranoid believe that the spectral
sequence can be made to collapse because the only elements to check are the
accessible Exto elements.

So, to compute for these spaces, compute the Ext over En , a nice
finite exterior algebra with none of the complications of the Steenrod

algebra. Then show E2 = E_, and in some sense we are done.
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However, collapsing is hard. To do the Johnson-Wilson collapsing for
BP*anZ/(p) we have to go back to the Ravenel-Wilson computation of the
Morava K-theories of Eilenberg-MacLane spaces. In [RWZ] the Morava structure

theorem is used to compute vn-lBP*K(Z/(p), n) . Comparing
=3
BP,x"'BZ/(p) + v_~ BPK(Z/(p), n) ,

Ravenel-Wilson prove what we call the Conner-Floyd conjecture [CF], i.e. that
certain elements are non-zero in BP*anZ/(p) . Johnson-Wilson show that if
E2 # E_ , these elements must get hit by differentials, so E2 =E_ . The
hardest part of BOn is the collapsing. Part of the proof is a comparison of

xMBz/(2) - BO_ .

However, the computations for these two are not done in a compatible way, so
the proof is very complicated.

I owe a debt to the work of Ron Ming and the successful efforts of the
joint work with David Johnson for motivating my attempt at this problem. The
collapsing of the spectral sequence is entirely dependent upon the collapsing
for anZ/(Z) , which again is entirely dependent on the computation of
K(n),K, in [RWZ].

Collapsing for BP*anZ/(p) and BP*BOn is trivial. So, we have
"computed" BP,X , BP*X , X = anZ/(p) . BOn , MOn . The cofibration

BO -+~ BO_ - MO
n-1 n n

gives a short exact sequence in both BP,(-) and BP*(-)

The Adams spectral sequence answer is a beginning, (an important begin-
ning), but not really an acceptable answer. What we need is an internal
BP,(-) description of the answer, with the Adams spectral sequence com-
putation just a step in the proof.

For x"BZ/(p) we have this. Let BP.BZ/(p) =N, G, N = N and

[{I]

BP,
Ln the free module on generators in degree 0 < 2i < 2pn
THEOREM (Landweber [Lz])
5P 0 BE, 1 A
0~ N@BP*BP*X + BP,(BZ/(p)AX) - Torl (N, BP,X) - 0 O

THEOREM (Johnson-Wilson) There is a filtration on BP*anZ/(p) such that

the associated graded object is one copy of N" , and many copies of Nk 5

k <& ni, O
SKETCH PROOF First we show

THEOREM (Johnson-Wilson)

BP, n, _ n
Tor1 (N, N) LnN .

Inductively we use the Kunneth short exact sequence and this computation of

Tor . We cannot do this without using the additional information that we know
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the orders of the groups BP*anZ/(p) from our Adams spectral sequence com-
putation. This is all we use from it. [}

0f course we give an accounting of the number of copies of Nk in the
complete statement of the theorem. Our counting can be reproduced by making
the unjustified assumption that the Kunneth short exact sequence splits; just
use the Tor theorem inductively.

Getting a good description for BOn is still work-in-progress at a very
preliminary stage. However, it looks like it will turn out nicely. We have

maps
BOn_ZXBO2 - BOn
and
n
xBZ/(2) - BOn §
THEOREM BP*BOn is generated by the images

BP,BO_, ® BP,BO, > BP,BO  and

2
BP,x"'BZ/(2) - BP,BO_ o

This explains the proof of the collapsing of the spectral sequence. For

the first part of the theorem it is enough to use the 'co-Pontrjagin' classes

€ BP4iBO2 .

We can say more, the symmetric group zn acts on BP*anZ/(Z) and our

X441

map clearly factors (all x , all o e zn )
BP,x"'BZ/(2) + BP x""BZ/(2)/x = ox » BP,BO_ .

However, the second map is not injective because " torsion is created, so

we should go to
BP,x"BZ/(2) + BP,x"BZ/(2)/x = ox - BP,BO_

I

1 BP,«"BZ/(2)/x = ox > V] 'BP,BO_

BP,x"BZ/(2) + Vr-ll

Y
Perhaps this last map injects and solves that problem for us.
Let's go to BP*BOn , or better, MU*BOn . There is no problem at p
odd but the description appears more complete using MU . We have the

universal bundles and the complexification map

CWT—)(;
n C
l z

Bo________ﬂ:::gg
n

)*

C—0_ A8

3

n
where =« 1is the complex conjugate and (CHQGJ* = (cé@@) . We know
MU*BUn = MU*[[Cl, e Cn]] = MU*[[C*, ... , C;]] where Ck is the Chern

class and C* is the Chern class of the conjugate bundle. Thus we have a map.

k
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MU*BOn+ MU*[[Cl, vae s Cn]]/(Ck = Ci)

THEOREM This map is surjective, C
This explains why it is trivial to get the ASS to collapse.
CONJECTURE  This map is an isomorphism, O
It appears that eventually a good description of the answer will be
available, using the Adams spectral sequence in an essential way in the proof.
Both BP*anZ/(p) and BP*BOn have reasonable answers coming from
x"Cp”  and BU . The answers for BP*anZ/(p) and BP,BO_ are not so
easily comprehended. There is a relationship, "perverted duality,'" between
these cohomology and homology groups.

H*X , for anZ/(p) N BOn , and MOn , can be adequately described as

an E module by: There are E generators

F=F0®F1®..‘®Fn

* ~
H*X EOFO@EIFI@...@EnFn.

For any E module with such a representation we can easily compute the graded

object associated with a filtration of
Ext  (H*X, Z/(p))

We just get a BP*/Ik for each basis element F 0f course this type of

x °
cohomology decomposition does not occur in general and it is partially re-
sponsible for the computability of BP,X for these X .
We now have a duality analogous to that for V(n-1) discussed earlier.
For each Ek that occurs (for all Fk) we have a BP*/Ik and a
k ,
P D/ -1 gy

CExtE(z/(p), H*X) =>BP*X .) So our "duality" gives a shift by different
degrees, depending on k , and our reasonable BP*X demands a radically
different BP.X .

To conclude, we state the E module structure for H*BOn as above by

in our associated graded computations for Extp .

giving the F, . We have H*B0n<: H*anZ/(Z) as the symmetric functions on

k
tl, e s tn .
THEOREM A basis for F, , O < k < n , as above, is given by all

k
2i.+1 2i_+1 2ik+1 231 232 2j

1 2
Lt t et T2 g

1 2
Sym

. . . . ! : . <
with 0 < 1)1, e i, 0 < Jp €38 e s Jq » where, if the number

of j's equal to ju is odd, then there is some s > 0 , such that

» k+q<n,

2i 425 < 2j €0 @ g 4
s u s
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