THE COMPLEX COBORDISM OF BO,
W. STEPHEN WILSON -

Introduction

A surprising simplicity appears in the complex cobordism of the classifying space
of the n-th orthogonal group, MU*BO,,. There is a close relationship to the complex
cgbordism of the classifying space of the n-th unitary group, MU*BU,,. The latter is
the power series ring on the Conner-Floyd Chern classes [8]:

MU*BU, ~ MUX[[C,,....C,]1,  C.e MU%*BU,.

The complexification, £, ® C, of the universal n-dimensional real bundle £, over
BO,, induces a map of BO, to BU, covered by a map to the universal n-dimensional
camplex bundle &§:

&L ®C — &

|

BO, —— BU, .

This map gives us the Conner-Floyd Chern classes of £, ® C. The bundle {, ® C is
isomorphic to its own complex conjugate. Consequently, its Conner—Floyd Chern
class C, must be equal to the image (under this map) of the k-th Conner-Floyd
Chern class C¥ of the complex conjugate of the universal bundle (£5)*. Our result is
as follows.

THEOREM 1.

MU*BO, ~ MU*[[C,, ..., C,]]/(C, = C%, ..., C,— C¥).

The elegance of the statement of the theorem attempts to compensate for its
depressing uselessness. There are no new, interesting, complex cobordism
characteristic classes for real bundles; but only the well-studied Conner-Floyd Chern
classes. The motivation for attacking MU*BO,, was the remarkable success L. Astey
had applying complex cobordism to the generalized vector field problem [4, 5].
Intuitively, we felt that if complex cobordism held so much information for this
problem, it should show up best on the classifying space level. Theorem 1 shows
otherwise.

The answer, however, does suggest generalization: many more theories than
MU*( - ) must give this answer, and they should all come with a general nonsense
proof. The immediate thought, that any complex orientable theory will do, fails. The
result is similar in flavor to Landweber’s results about the complex cobordism of
x *BZ/(n,), which also has the simplest possible answer [12].

Received 23 February, 1983.
J. London Math. Soc. (2), 29 (1984), 352-366



THE COMPLEX COBORDISM OF BO, 353

The standard long exact sequence becomes short exact:
0 —— MU*BO,_, «—— MU*BO, «—— MU*MO, «—— 0,
giving the following result.
TueoreM 2. MU*MO, ~ (C,) = MU*BO,, the ideal generated by C,.
The problem is all 2-primary since, when localized at an odd prime,

MUJEBO; > MULEC, €00 Cags il 4 2k < n,
a well-known, obvious result. Consequently, we concentrate on the case when p = 2.
We use the equivalent Brown—Peterson cohomology for p = 2, and prove Theorem
1 for BP*BO, [3, 6, 17, 19]. Except for the fact that it works, the proof has no
redeeming value. We compute the Adams spectral sequence for BP*BO,,, which, by a
change of rings, becomes

E, ~ Ext,(Z/2, H*(BO,, Z/2)) = BP*BO, ,

where E = E(Q,, Q,, ...), the exterior algebra on the Milnor primitives. The spectral
sequence collapses and the map from BP*BU, is obviously surjective. The relations
C, = C¥ must hold. All that remains is to show that the right side of Theorem 1
injects. The left side, BP*BO,,, is computed explicitly, but inelegantly. The right side
is very elegant, but with no detail. The right-hand side is filtered and studied. We
show that it is no bigger than BP*BO,,. This completes the proof.

Along the way we compute BP,BO, (equivalently MU,BO,) and BP,MO,
using the Adams spectral sequence. An elegant description of BP,_BO, still escapes
us, but we do know that BP,BO, is generated by the images of

BP,(x"RP*) — BP_BO,
and
BP,BO,_, ® BP,BO, — BP,BO,

where it is enough to use the 4k-dimensional torsion free generators of BP,BO,. A
nice description of BP, BO, should emerge from these facts. We refrain from proving
these results in this paper. They are very complicated and, at present, lead nowhere.
They were originally necessary for showing the collapse of the Adams spectral
sequence for BP,BO,. That argument has now been replaced by Ravenel’s trick for
deducing this collapse from BP*BO,,.

Recall (p = 2)

BP, = [ 01505504 Lo =2, U555 Upe 1) s

TueoreM 3. There is a BP, module filtration on BP,BO, such that the
associated graded BP, module is generated by the reduction of elements in B~P* BO,,
which inject to H ,(BO,, Z/2). The associated graded module has a BP /I, in dimension

k q
B0 b2y s
t=1 v=k
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with0 <i; < ...<iand 0 <j; < ... <j,, k+q < n where, if the number of j equal
to j, is odd, then there is some s such that

2, +2 < 2j, < 2i,+2°*1,

Despite its satisfactory complexity, this result does no better than Theorem 1 in a
direct approach to the generalized vector field problem.

This paper owes a major debt to two sources. The approach, techniques, and
results of the recent paper [11] with David Johnson are all essential to the
computation done here. This paper is an obvious continuation of our joint work and
had we been close enough to communicate during the early stages it most likely
would have become another joint paper. Ron Ming initiated this approach to
BP,BO,, in his paper [15]. He shows that BO, is a particularly good candidate for
computation by showing that the E, term of the Adams spectral sequence for
BP,BO, is determined by

Ext, (H*(BO,, Z/2), Z/2)

where E, = E(Q,,..., Q,_;)- This hints at a possible projective dimension for
BP,BO, of n (it is), which severely restricts its complexity. Furthermore, he shows
that this Ext is generated by Ext® as a BP, module. This makes it seem likely that
one could either prove that the spectral sequence collapses or compute its
differentials.

Some philosophizing about this type of result can be found in [20].

We thank the Tata Institute of Fundamental Research in Bombay, India, the
Hebrew University, Jerusalem, Israel, and the University of Porto, Porto, Portugal,
for their support and hospitality during various stages of this research. We thank
Alex Zabrodsky for many conversations about the problem, Manuel Moreira for
some important formulas, and Doug Ravenel for his trick. We thank the referee for
several suggestions for improvements in the exposition of the proof. The author was
partially supported by the Sloan Foundation and the N.S.F.

In Section 1 we review the facts we need and set up our notation. The Adams
spectral sequence computation is carried out in Section 2 and BP*BU,/(C,— C¥) is
analysed in Section 3.

1. Preliminaries

Basic references for Brown—Peterson homology are [3, 6, 17, 19]. We are
concerned with BP for p = 2.

We use the p = 2 Adams spectral sequence. Let H*X be the mod 2 cohomology
of X. Let Z, be the 2-adic integers and let 4 be the mod 2 Steenrod algebra. The
Adams spectral sequence [1]

1.1 EX* ~ Ext**(H*X,H*Y) = (Y, X}, ® Z,
can be used to compute

1.2 BP*Y ~ {Y,BP}_, and BP,X ~ {S°,BPAX},.



THE COMPLEX COBORDISM OF BO, 355

Let
1.3 E=.FE(0¢:0 1.

be the exterior algebra on the Milnor primitives [13]. Now E is a normal subalgebra
of A and we have

1.4 Ec— A —— A//[E ~ H*BP.
By the Cartan—Eilenberg change of rings spectral sequence we can replace
155 Exti“(H*(BP A" X), H*Y) ‘with "Ext**(H*X, H*Y).

(See [7] or, for this particular case, [15].) The forms of the Adams spectral sequence
we use are

1.6 Ext¥*(H*X, Z/2) = BP X
and
1.7 Ext¥*(Z/2, H*Y) = BP*Y .

Recall that
1.8 BP, =~ Z v 05,0 v i=220—1)-and* "L, =(2,/vy, 50,5 1)

We have BP, <= Ext}*(Z/2, Z/2) ~ 7/2[v,, v,,...] = BP), where

1.9 o, € Bxt"#*'-4Z/2. Z/2)
and I, = (vg, Uy, ..., U,—)- Let
1.10 Ei=E(Q5,0z: s Ory)-

Considering this as a quotient of E, we have

Ext}*(E,, Z/2) ~ BP, /I,
Ext* (22, E) = Y 2" BRI,

We seldom compute Extg(M, N) directly, but usually use the spectral sequence
associated with a filtration. Let M and N be the associated graded R modules from
filtrations of M and N respectively. Then we have

1.12 E** ~ Ext}(M, N) = Ext}(M, N)
and
1.13 E** ~ Ext¥M, N) = Ext§(M, N),

where differentials raise cohomological degree by one.
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To do Ravenel’s trick we need the duality spectral sequence [2, 9, 10]

1.14 E5' ~ Extyp (BP, X, BP*) = BP*X
and, (see [11, 6.5])

1.15 Ext}# (BP,/I,, BP*) ~ Extg#(BP,/I,, BP*) ~ Y* BP*/I,

where s = ) 2*1_2=2k1_2. 2k

O<i<k
We review what we need about the mod 2 cohomology of various spaces. There
are many references, for example [14, 18]. Let Z/2[x,, ..., x,] be the polynomial

algebra on the x; of degree one. The mod2 symmetric functions (those invariant
under all permutations of the x;) form a subring which is a polynomial algebra
on the elementary symmetric functions o;, 1 <i<n, of degree i
(I1+0,+...40, = (1+x;)... (1 +x,)). We have

Z/2[xyy ..., X,] @ Z/2[04, ..., 0,]
1.16 12 12
H¥ x"P= o HX*BO, |

where P* is the infinite dimensional real projective space, and we identify the i-th
Stiefel-Whitney class w; e HBO,, with the symmetric function o;. We also use the
fact that the Chern classes are the elementary symmetric functions on the
2-dimensional classes y;

Z/z[J’n--an:l = Z/z[clv---’ cn]
1 1
1.17 H*x"CP* 5 H*BU,
n n
H*x"P* = H*BO,,

where the lower inclusion takes y; to x7.
The E module structure is determined by

Ox(xy) = Qu(x)y +xQu(y) ,

2k+1

Ol = A+, 0ix; = Xx;

Two monomials in the x; are equivalent if some permutation of the x; takes one
to the other. Let I = (iy, ..., i,). Let x' = x/' ... x'» and define

1.19 sp=% ol od= N

to be the symmetric function obtained by summing all monomials equivalent to
xi ... xin for example

1.20 Oty o,
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We get a basis for all symmetric functions by using all I with
1.21 iy 2, 2...21,.
We order the monomials x' by x! < x7if i, < j., 0rif i,oq = Jys1smnniy = jyand
i, <Jji. In a sum of monomials we call the smallest monomial the lead term. In
particular, a basis element of the symmetric functions
1522 2= T ity 2,2,

is determined by its lead term, x’. Note that if we have two symmetric functions f
and g, then

1.23 lead term (fg) = lead term (f) lead term (g).

We turn now to the p = 2, Conner—Floyd Chern classes for Brown Peterson
Cohomology [8, 18, 3]. We have

BP*CP® = BP[T]],  T<BP*CP

1.24 BP*X"CP* ~ BP*[[T,, T, ..., T.1]
U U
BP*BU, ~ BP*[[C,, ..., C,]]

1

14

where C, is represented by the k-th elementary symmetric function on the T.
The complex conjugate on the one dimensional universal bundle over
BU, ~ CP* is induced by the map

1.25 cpr —L cp=.
This map takes T to
1.26 HTj= % ad* '
i=0
We have that the Chern class is
1.27 Ce= Y BT T

so that the Chern class of the complex conjugate bundle is

1.28 Ct =) (THUT)..-(L).
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A little formal group manipulation suffices to prove (where I = (2, vy, ...)) that
a, = —1,
1.29 apel® i#2"—1,n>0,
a,=v,modI* i=2"-1,n>0;
but rather than present the proof here we refer the reader to [16].
THeEOREM 1.30. Let p = 2, and consider BP*BU < BP* x “CP>, then

C¥=(—1C+ ) v;5y,,. modI?.
k—1

i>0
Setting 0 = C,— C}¥, k > 0 we have relations (one for each k > 0)

i 0= Y vy y,modl?, where vy = 2.
iz0

In the ideal (C,) = BP*[[C,, ..., C,]J]/(C, —C%, ..., C,— C¥), we have the additional
relation

ey 0=1-—(—1)"+ Y v;sy_,modI*.

i>0

Proof. The first formula follows easily from 1.28 and 1.29. The relation e,
follows by dividing the k = n case by C,. Let e, be the relation obtained from the
first formula by setting 0 = C,—C¥. Recall that we are working modulo
I* = (4, 2v;, v,v;). We prove e, by induction on k. We have ¢, already. Observe that
ejise;. For0 <i <k,

0=Ce;=C; Z ViSj_14k—i = Z v; (szf+k—i,1,.“,l+321—l+k—i,l,.4.,l>,
N e’ N—

ji=0 j=z0
i=1 i
except when j = 0 and i = k— 1 when the last term has a (k) in front. Keeping this in
mind, we compute

—1
0=—ci+ ¥ Ciep;

i=1

k-2
Ci—(—1)C, + Z U;Syi1,..1t ¥y v; <s2/'+k—i,l..“,l+521—-1+k—i,1,...,1)
1

>0 S==——td=1 20
d ol e i-1 i
=+ Z Vil Saie 1,1t Ssa, 1) Foo | Sa0, 1 (K)S 1,
ji>0 N N S N )
k-2 k-1 k-2 k—1

Ci—(—1)C, + Z 0;S2jrk-1FV(K)Cy = Z ViSoi—1+k = € -

jz0 iz0

I
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We thank Manuel Moreira for some crucial observations in the finding of the
relations e,.

RemARk 1.31. For odd primes, 1(T) = — T, and we get C} = (—1)*C,.

2. The Adams spectral sequence

All of our notation and terminology is defined in Section 1. We begin with the E
module structure of H*BO,,.

THEOREM 2.1.  As vector spaces over Z/2,

n
H*BO, ~ @ E,G,,
i=0
where the E module generators are given by @ G; and a basis for G, is given by all
symmetric functions
Zx2:1+l 2!z+1 lek+1xij-i-1 xijiq’ k+q < n

with0 < iy < ...< i and 0 <j, < ... < j,; and if the number of j equal to j, is odd,
then there is some s < k such that

2i+2° < 2j, < 2ig+2571,

Proof. We show linear independence of @ E;G;. Denote the basis elements of
G, by sy, For

K = (€95 815 -5 8k—1) g =010
we define

Ok, = 0007 ... Q¢4 Ky =(1—¢gy.ces 1 —8,_4),

() =(1,...,1) = K, +K,.

and

The length of K, is )_¢;.

Lemma. (a) The lead term of Q sy, is the lead term of

2|1+2 2n+4 2ig+2k _2j; 2jq
XX < Xp T Xy e Xichg

(b) The lead terms for the Qys,,,, are all distinct.

Proof. Recall from 1.18 that Q;x; = x?"". In the computation of

QuySns, = 00y - e (P X L gL L)
we have the terms

2:1+l 2u+1 2]| 2jq 2u+2 Z'k+2" 2j1 2jg
Z Qol(x} 20 Q- 1(X5 Xk+1 o Xp+q = Zx T Xk+1 - Xk+q
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because, if 2i,+2° = 2j, for some u and s, then by the definition of s,,, there are
an even number of j equal to j, and so this term is not zero. For example,
Qo) xiixs = Y X¥x3ds, but QoY x;x%2 = 0. This gives the smallest possible
lead term because 1; < ... < i, and |Qo < 1Q;] < ... < [Qk—4l- Part (b) follows from
the one to one correspondence produced soon between the set of Qk,s;,4, and the
symmetric functions. In that proof, our map takes Q;,s;,,, to the symmetric function
with the above lead term.
Assume a relation

DF= Z ak1,1,9QkS10, -

Find the smallest k with some a,;,,, # 0 € Z/2. Apply Qy, to the above relation. We
know that Q,,0x,5,,5, = Q) S1,s, has lead term as above. This term is a symmetric
function on even powers only. All such terms must cancel out. We study Q, Q. We
must have k < i by our assumption about k. Either Qx,Qx, is zero or it is Q.+ ki
which is the same form as K;. Either this is not (1); and we have odd powers in our
symmetric function and we can ignore this, or it is (1), and the lead term we get is
distinct from that for Q) s, above and they cannot cancel out. We have now shown
linear independence.

We must show that we get all of H*BO, this way. We simply give a one to one
correspondence between symmetric functions and elements Qg sy,s,» Si,s, € Gi- TO gO
from Qg,s;,,, to H*BO,, we choose the symmetric function on

2+ 1y yer( 2i2+1 k=1 (- 2ik+ 1) 1.2 2j
QR )QY(x3 ") s QRN e X

We need an inverse, that is, to go from a symmetric function to a Qs> 1,4, € G-

Assume inductively that we have defined iy, ..., iy, €05 o5 Eo—15 and j;, ..., j,- We want
to define either j, ., or i,,; and ¢,. Recall that we started with some

_ 1 t
Sp= X s

Inductively we have used up v+m of the t. Inductively we assume that all remaining
odd t are at least 2i,+ 1 and all the even ¢t must be greater than 2i,+2°".

Case (1). If the next lowest even power, t, is less than 2i,+2""1, we use it to
define j,, ;-

Case (2). If the next lowest even power, t, is equal to 2i,+2"""! and there are at
least two such ¢, we use two of them to define j,,.; and j, ;-

Case (3). If the next lowest even power, t, is equal to 2i,+2"*! and there is only
one such t left, we define i,,; =i, and ¢, = 1.

Case (4). If there are at least two t equal to the next lowest even t, we use them
to define j,,.; and j, 4.

Case (5). Let t' be the next lowest even power and let ¢ be the next lowest odd
power. Recall that ¢ > 2i,+2°"" and ¢ > 2i,+1. Compare t'—2**1+1and t”. Use
the smaller one for 2i,,, + 1, that is, to define i, ;. I ¢’ is used we set ¢, = 1, and if ¢”
is used we set &, = 0. If  —=2""1+1 = " we choose ' to define i, ;.
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We leave it to the reader to begin the above induction and to check that these
maps are inverses to each other. There is probably some filtration in which this is the
E module structure of the associated graded object, but we have not pursued this. As
previously discussed, this concludes the proof of part (b) of our lemma.

We have not yet proven that the G, are E module generators. This fact will come

out later during our computation of Ext.
If M is a graded module, we let M ~* be the module with negative grading and
M* be the dual module.

THEOREM 2.2. (i) The Adams spectral sequence

E, ~ Ext}*(H*BO,, Z/2) = BP,BO, ® Z,
collapses, has

n *
( D Gk) =~ Ext)(H*BO,, Z/2)
k=0

and there is a filtration on Ext such that the associated graded

BR i 7 vy, vis-3s e Bxtg(Z/2, Z/2)
module is

&P BP,/I, ® G} .
k=0

(i) The Adams spectral sequence

E, ~ Ext¥*(Z/2, H*BO,) = BP *BO, ® Z,
collapses, has

n %k
Ext} *(Z/2, H*BO,) ~ <@ Q(l)ka> ~ (H*BU,)™* = (H*BO,)™*,
k=0
and there is a filtration on Ext such that the associated graded BP', module is
@ BPL/L ®(Qu, G

Proof. We define an E-module filtration on H*BO, by F*H*BO,, a sub
E-module of H*BO, generated by all (G,), i > s—(2*"!—2—k). Note that the
degree of Q, is 2*! —2—k, so that

@D Qi (G)~*"' ™ = H'BU, = H'BO, .
k=

Also, the degree of Q, is 2**!1—1 > 2k*1_2_k We see that, as E-modules,
considering E, as a quotient module,

Fs/Fs+1 < @ Ek(Gk).\—IZ"*‘fZ—k).
k=0
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This does not depend on the G, being generators, a fact we have not yet proven. The
computation of both Ext groups for this associated graded module can now be
carried out using 1.11. We get the answers described in Theorem 2.2. We must show
that several spectral sequences collapse. For BP*BO,,, the spectral sequence for the
filtration 1.13, and the Adams spectral sequence are both in even degrees and
therefore collapse. We use Ravenel’s trick to deduce the collapse for the
corresponding spectral sequences for BP,BO,. If the spectral sequence of the
filtration and the Adams spectral sequence for BP,BO, both collapse, we can use the
filtration we obtain for BP,BO, to compute the Ext for the duality spectral sequence
1.14
Extgp (BP, BO,, BP*) = BP*BO, .

From 1.15, we see that the total degree

Extgp, <k<=_BO BP./I, ® Gf, BP*) ~ 1@) BP*/I, ® (Q,),Gy)

(where we have abused notation for k = 0). This is the desired result. The only way
we can obtain this is if both spectral sequences of filtration 1.12, the duality spectral
sequence, and the BP, BO, Adams spectral sequence all collapse. This concludes our
proof of Theorem 2.2, and it implies that the G, are E-module generators and
concludes the proof of Theorem 2.1.

3. Elegance dismantled

As we have seen from the Introduction and Section 2, the algebra

BP*[[C,, ..., C,])/(C, = CY, ..., C,— CF)

n

maps surjectively to BP*BO,. We shall dismantle this algebra and show that it must
inject. In Section 2 we showed that all symmetric functions of even powers could be
written as

2i1+2 2ix+2k _2j, 2i.
2% e X+t Xty kt+g=nm

with0 <i; <i, < ... <jand 0 <j, < ... < j,, where if the number of j equal to j,
is odd, then there is some s such that

2i+2° < 2j, < 2i+2°71,
In the filtration of Theorem 2.2(ii), this generator is associated with BP*/I,.

Viewed as a symmetric function in BP*BU, = BP* x"CP*, we replace x? with T,.
The proof of Theorem 1 will be concluded with the following.

THEOREM 3.1. Let p = 2. There is a BP* module filtration of the algebra

BP*[[C,,...,CII/(C,—C%,...,C,—C¥)
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such that the generators of the associated graded object are given by a basis for the
symmetric functions BP*BU, < BP* x"CP* and the ideal I, kills the generator

ZT“M:ZTTH.“T;}*Z“'T,{'H...T,{ﬂ,q, k+q<n

with 0 <i; <i,... <iyand 0 <j, < ... < j,, where if the number of j equal to j, is
odd, then there is some s such that

i +2570 <, <i+2°.

RemArRk. We regret that the notation I and I, is used with more than one
meaning. They should be clear from context.

Proof. We have an exact sequence
0 — (C,) — BP*[[C,, ..., C,JINC,— CF)
——BP[C, . G NG =) =1

By induction on n, we need only prove the result for k+¢ = n, which is (C,). Let TX
be the lead term of the (k+¢g = n)-symmetric function in 3.1. Let

L o (11 +1’ i2+15 98109 ik+1’j1’ "'5j2v’j2v+1_jl1’ ""j2v+q'_j;’) ’

where j,, ..., j,, are the even number of j less than or equal to i;+1. We have
0+q =q. i, +2°"' <j, <igp 425 letj, =j,—(,+1),s <k Ifj, =i +2*1,
then j, = j,—(iy+1). From 1.23 we see that

3.2 TR o 0 e By e By (R PR
plus symmetric functions with higher lead terms

where if there are an odd number of ;' equal to j,, then there is s < k such that
2271'—1 < ji, < 2°—1. Because j, >0 and j,—j, > 0, u > 2v, we have that C,
divides T* and thus s;. Observe also that n—(q'+k—1) is always odd; n = k+gq,
q=2v+q,and son—(q'+k—1) = 2v+1. Let

P=igthn 0)s- TS 0, pani

L= (i brposaif)
where we delete i, and
Ad=1(055:i50.20)5

with a figure one in the k-th coordinate. We have
8p=% T T

We compute, from 1.30 (with I = (2, v, ...)) the right-hand side of

r

0 =eos;+ Y e,5,m0d (12, (V415 Vps2s--2) -
k=1
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We write down more terms than are really there for simplification of notation, but
the computation works out the same. We have

nzi>0 k=1n>i=>0

33 02(1—(—1)”+ Z v,-sz,_l>s,+ Z Z U;S2i_ 140,51,

r+1 r r

= (1_(_1)")Sl+ Z Ui Z Sre@i-nat Z Ui Z Sh+Q2i-1+inA,
k=1

n=i>0 k=1n=2i=>0 q=1

=(1_(_1)")51+ Z Ui51+(2i—1m,+,+”o(r)51,

nzi>0

where the sum is over all i such that the number of i, equal to 2'—1 is even. Let
I=(1,3,..,2""*—1,j,...,j,) as above, where if j, = 2'—1,i < k, then there are
an even number of such j,. Because n—(q'+k—1) is always odd, this gives

3.4 2s; = Omod (I3, (vy, v,,...)) .
Leti < k and o~
L= (1,3, 21, 2% 1,7, )
we get
3.5 v;5; = 0mod (I, (V;4 1, Vi 25 --)) -

Multiply by s; from 3.2 to get, for i < k,

3.6 v, ), T™ie P4 (04 15014 55 o)

+v; symmetric functions with higher lead terms.

This is the formula we use to show 3.1. We just have to filter our algebra right. Let
G, be generated by the symmetric functions of 3.1 (with k+¢q = n). Then @ G,
k=0
generates all of (C,). There is nothing to prove for G,, so we can mod it out now.
Let F* be the BP* submodule of (C,)/BP*G, generated by
(Gy)s, t>s+22-1),i>0.

We want to show that
[,G*??-) = Omod F**!
1 1 .

This will complete our proof. Fix an arbitrary s'. It is enough to prove the formula in
(C,)/(BP*G,+F*) using downward induction on s. In here, of course, there is
nothing to prove for s > s'. For alls < s’, F**! o F*, and so the use of s’ becomes
irrelevant; it only allows us to begin our induction. What we prove is that

3.7 I(GD®G  ®... »G) "D =0mod F**1.
By downward induction on s, 3.7 gives us

L (G;®Giy; ®... ® G,V = 0mod F**1, -
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and so we want to show that
3.8 0; (G, D ... ® G)*-Y = Omod F**!.
From 3.6 we have, for i—1 < k, ) T"We G,,
3.9 ppy Yodlise [Pt (upopopan. )
+v;_, symmetric functions with higher lead terms.

The degree of 3.8 is s+2(2'—1)—2(2""'—1) = s+2', and we are only concerned
with G, @ ... ® G, in this degree because for k < i, s+2' > s+2(2¥—1). We take
care of the terms of 3.9. We can prove the result by downward induction on the lead
terms and so we can ignore the v;_; symmetric functions with higher lead terms.
Consideration of the (v;,v;,4,...)-terms shows that we may have a term in
(k=i>0):

(G, ® ... D Gn)5+2‘+2(2k_1).

But G{*2*2®-D < F**1 for i < j < k and v, G{*¥+2*-V = 0, j > k by downward
induction on s. Our final concern is with I2. By the preceding argument we can
reduce this to (I;)?>. We already have that I,_, gives zero by induction. So we must
have a v2_; term here. However, we have by induction in this degree that v, _, is zero.
The only possible problem is that this shows that

26, ® ... ® G,y+?

must be divisible by 4 € I*. This is a torsion group and so 2(G, @ ... ® G, )% = 0.
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