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1. Introduction

The p = 2 Johnson-Wilson theory, [4, Remark 5.13], E(n), has coefficients

E(n)∗ ∼= Z(2)[v1, v2, . . . , v
±1
n ]

with the degree of vk equal to −2(2k−1). There is a Z/(2) action on E(n) coming from complex conjugation. 
The real Johnson-Wilson theory, ER(n), is the homotopy fixed points of E(n). This was initially studied 
by Hu and Kriz in [2]. Since then the theories have been studied intensively and applied to the problem of 
non-immersions of real projective space ([1,5–14]).
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The first theory, ER(1), is just KO(2), and it was a decades long process of computing the details of 
the KO-(co)homology of CP∞, finally ending in [16]. The second theory, ER(2), is, by [3], closely related 
to TMF0(3) (the same after a suitable completion). The second author computed all ER(n)∗(CP∞) in 
complete detail, [14]. This is already much more than has been done with TMF0(3).

The fibre of the restriction, ER(n) −→ E(n) is Σ2(2n−1)2−1ER(n) from [8]. This gives a Bockstein 
spectral sequence from E(n)∗(X) to ER(n)∗(X). In this paper we are concerned with ER(2), so we have 
the map x : Σ17ER(2) → ER(2). This map has 2x = 0 = x7. The resulting Bockstein spectral sequence 
just measures xi-torsion. We use the untruncated version, see Remark 2.4. That just means that d1 detects 
all of the x1-torsion generators and E2 is what is left after you throw them all away. In our cases, we only 
have d1, d3, and d7, so E2 = E3. When we compute d3, it gives us all the x3-torsion, but then we throw it 
all away to get our E4 = E5 = E6 = E7. Our d7 gives the x7-torsion and leaves us with E8 = 0.

Our goal here is to give a computation of this Bockstein spectral sequence for X =
∏nCP∞ and BU(n), 

computing ER(2)∗(−) from E(2)∗(−). The computation is accomplished by going through an auxiliary 
spectral sequence to compute d1. Once that is done, d3 and d7 follow.

Our actual computations are carried out with ∧nCP∞ and MU(n) because the product and BU(n) can 
be recovered from the stable splittings, (e.g. BU(n) = MU(n) ∨BU(n − 1), [15]).

There is a special element, v̂2 ∈ ER(2)48 that maps to v−8
2 ∈ E(2)48. It is the periodicity element for 

ER(2) and it makes our bookkeeping easier if we do away with it once and for all now by setting v̂2 = 1, 
and, in E(2)∗, the corresponding v−8

2 = 1. This makes our theories graded over Z/(48).
There are also elements v̂1 ∈ ER(2)16 that maps to v1v

−3
2 ∈ E(2)16 and w ∈ ER(2)−8 mapping to 

v̂1v
4
2 = v1v2 ∈ E(2)−8.
The theory E(2)∗(−) is a complex orientable theory so E(2)∗(CP∞) = E(2)∗[[u]] where u is of degree 2. 

The only adjustment needed here is to define û = uv3
2 , of degree -16. We write E(2)∗(CP∞) = E(2)∗[[û]]. 

Since v2 is a unit, this is not a problem.
We also need the complex conjugate of û, c(û). There is a class, p̂ ∈ ER(2)−32(CP∞), that maps to 

û c(û) ∈ E(2)−32(CP∞), see [14]. This is a modified first Pontryagin class.
We can generalize this to BU(n). Because E(2) is a complex oriented theory, we have

E(2)∗(BU(n)) ∼= E(2)∗[[c1, . . . , cn]].

Again, we need to modify the generalized Conner-Floyd Chern classes to ĉk = v3k
2 ck, putting them in degree 

−16k.
We also have modified Pontryagin classes

P̂k ∈ ER(2)−32k(BU(n)) −→
∑

i+j=2k
0≤i,j≤n

ĉi c(ĉj) ∈ E(2)−32k(BU(n))

These elements are special to us because much of our answer is described in terms of them and they are 
familiar elements. In addition, they are necessary for us because their images are permanent cycles, making 
it possible to compute our d3 and d7 in our Bockstein spectral sequences. There are alternative elements 
that would work for our proofs just as well. There is a norm that creates an element that maps to ĉk c(ĉk)
in E(2)−32k(BU(n)), so this image element is also a permanent cycle that would allow us to finish our 
proofs for d3 and d7. Both of these elements work for our proofs because their representation in our spectral 
sequence is the same. We do like the more traditional nature of the Pontryagin classes though. See Section 11, 
Definition 11.1 for the details.

We have “hatted” various otherwise familiar elements. See Remark 2.2 for some historical background.
Although we compute all of ER(2)∗(−) for ∧nCP∞ and MU(n), the x1-torsion generators are quite 

messy and have been left out of the introduction.



N. Kitchloo et al. / Topology and its Applications 270 (2020) 106955 3
We let ûi be our û associated with the i-th term in the smash product of the CP∞. Similarly, with p̂i. 
The clean results we can state nicely are presented in the next theorems. Keep in mind that because we use 
an auxiliary spectral sequence to compute d1, our results are stated in terms of associated graded versions 
of Ei.

Theorem 1.1. The associated graded versions of Ei for the Bockstein spectral sequence going from 
E(2)∗(∧nCP∞) to ER(2)∗(∧nCP∞) are as follows: E1 =

E(2)∗(∧nCP∞) ∼= E(2)∗[[û1, û2, . . . , ûn]]{û1û2 · · · ûn}
= Z(2)[v̂1][[û1, û2, . . . , ûn]]{v0−7

2 û1û2 · · · ûn}

E2 = E3 =

Z/(2)[p̂n]{v0,2,4,6
2 p̂1p̂2 . . . p̂n}

The x3-torsion generators are represented by

Z/(2)[p̂n]{v0,4
2 p̂1p̂2 . . . p̂

2
n}

E4 = E5 = E6 = E7 =

Z/(2){v0,4
2 p̂1p̂2 . . . p̂n}

The x7-torsion generator is represented by

Z/(2){p̂1p̂2 . . . p̂n}

Theorem 1.2. The associated graded versions of Ei for the Bockstein spectral sequence going from 
E(2)∗(MU(2n)) to ER(2)∗(MU(2n)) are as follows: E1 =

E(2)∗(MU(2n)) ∼= E(2)∗[[ĉ1, ĉ2, . . . , ĉ2n]]{ĉ2n}
= Z(2)[v̂1][[ĉ1, ĉ2, . . . , ĉ2n]]{v0−7

2 ĉ2n}

E2 = E3 =

Z/(2)[v̂1][[P̂2, P̂4, . . . , P̂2n]]{v0,2,4,6
2 P̂2n}

The x3-torsion generators are represented by

Z/(2)[v̂1][[P̂2, P̂4, . . . , P̂2n]]{v̂1v
0,4
2 P̂2n} =

Z/(2)[v̂1][[P̂2, P̂4, . . . , P̂2n]]{v̂1P̂2n, wP̂2n}

E4 = E5 = E6 = E7 =

Z/(2)[P̂2, P̂4, . . . , P̂2n]{v0,4
2 P̂2n}

The x7-torsion generators are represented by

Z/(2)[P̂2, P̂4, . . . , P̂2n]{P̂2n}
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Theorem 1.3. The associated graded versions of Ei for the Bockstein spectral sequence going from 
E(2)∗(MU(2n + 1)) to ER(2)∗(MU(2n + 1)) are as follows: E1 =

E(2)∗(MU(2n + 1)) ∼= E(2)∗[[ĉ1, ĉ2, . . . , ĉ2n+1]]{ĉ2n+1}
= Z(2)[v̂1][[ĉ1, ĉ2, . . . , ĉ2n+1]]{v0−7

2 ĉ2n+1}

E2 = E3, for 0 ≤ b < n

Z/(2)[P̂2, P̂4, . . . , P̂2b, P̂2b+1, P̂2b+3, . . . , P̂2n+1]{v0,2,4,6
2 P̂2b+1P̂2n+1}

and

Z/(2)[P̂2, P̂4, . . . , P̂2n, P̂2n+1]{v0,2,4,6
2 P̂2n+1}

The x3-torsion generators are represented by

Z/(2)[P̂2, P̂4, . . . , P̂2b, P̂2b+1, P̂2b+3, . . . , P̂2n+1]{v0,4
2 P̂2b+1P̂2n+1} 0 ≤ b ≤ n

E4 = E5 = E6 = E7 =

Z/(2)[P̂2, P̂4, . . . , P̂2n]{v0,4
2 P̂2n+1}

The x7-torsion generators are represented by

Z/(2)[P̂2, P̂4, . . . , P̂2n]{P̂2n+1}

The elements v̂1, w, p̂i, and P̂i all exist in the appropriate ER(2)∗(X). It is worth noting that all of 
the x3-torsion generators are well-defined in ER(2)∗(MU(2n)) (likewise with the x7-torsion generators in 
all three cases). Consequently, new elements don’t have to be created and named. We often deal only with 
elements in degrees 16∗. To see these, just modify the statements in the theorems to eliminate the v2,4,6

2 . 
In fact, we can handle elements in degrees 8∗ quite easily. In the case of the above theorems, just keep the 
v0,4
2 and eliminate the v2,6

2 . By definition, the xi-torsion generators inject to E(2)∗(X).
The following is useful for computations and relations.

Theorem 1.4. For X = ∧nCP∞ and MU(n), ER(2)8∗(X) → E(2)8∗(X) injects.

Remark 1.5. In the kernel of ER(2)4∗(∧nCP∞) → E(2)4∗(∧nCP∞), there is only one element, namely, 
x4p̂1p̂2 . . . p̂n. Similarly, in degrees (8 ∗ −6) we have only x6p̂1p̂2 . . . p̂n.

We do our general preliminaries in Section 2. In Section 3 we sketch out our approach in both cases in 
rather general terms to give some idea of how we go about our computations. We define a crucial filtration 
in Section 4. Then we spend a few sections doing the computation for ∧nCP∞. When that is done, we begin 
preliminaries for BU(n) in Section 10. We do the main calculation for MU(n) starting in Section 14 going 
to the end of the paper.

2. Preliminaries

There are many ways to describe ER(2)∗, but we will stick mainly with the description given in [13, 
Remark 3.4].
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We have traditionally given the name α to the element v̂1, but this is gradually being phased out. We 
also have elements αi, 0 < i < 4, with degree −12i. We often extend this notation to α0 = 2. These elements 
map to 2v2i

2 ∈ E(2)∗. For the last non-torsion algebra generator, we have w of degree -8, which maps to 
v̂1v

4
2 = v1v2 ∈ E(2)∗.
Torsion is generated by the element x ∈ ER(2)−17. It has 2x = 0 and x7 = 0. Keep in mind that ER(2)∗

is 48 periodic. We use, for efficient notation, x3−6 = {x3, x4, x5, x6} and R{a, b} for the free R-module on 
a and b. Similarly, we use notation like v0,2,4,6

2 = {1, v2
2 , v

4
2 , v

6
2} and v2,4

2 = {v2
2 , v

4
2}.

Fact 2.1. [9, Proposition 2.1] ER(2)∗ is:

Z(2)[v̂1]{1, w, α1, α2, α3} with 2w = αα2 = v̂1α2

Z/(2)[v̂1]{x1−2, x1−2w} Z/(2){x3−6}.

Remark 2.2. So far we have defined several “hatted” elements just by multiplying the originals by a unit. If 
we look more generally and let v̂i = vkv

−(2n−1)(2k−1)
n , we still have

E(n)∗ = Z(2)[v̂1, v̂2, . . . , v̂n−1, v
±1
n ]

The v̂k all lift to ER(n)∗ as in [13, Theorem 3.1], but the original vk do not. This good fortune carries over 
to statements like

ER(n)∗(RP∞) 
 ER(n)∗[[û]]/([2](û))

of [10, Theorem 1.2] and of [13, Theorem 1.1] computing ER(n)∗(BO(q)) in terms of the ĉk. The first 
Pontryagin class, p̂ was studied in [14], and we need to add the general Pontryagin class, P̂i, to our collection 
of well-behaved elements with respect to the restriction ER(2) → E(2).

Before we do that, we should recall the mathematics behind our hatted elements. We need this in our 
construction of the P̂i in Section 11.

Let E(n) denote Real Johnson-Wilson, a Z/2-equivariant spectrum, and let ER(n) denote its fixed 
points. Recall that the RO(Z/2)-graded coefficients of E(n) contain a class y(n) ∈ πλ+αE(n) (from [8], with 
λ = 2(2n − 1)2 − 1) which is invertible. Its underlying nonequivariant class is v2n−1

n . For any Z/2-space X, 
we may shift any class in E(n)�(X) into integer degrees by multiplying by the appropriate power of y(n). 
When we do this to a class in degree a multiple of the regular representation z ∈ E(n)k(1+α)(X), we define 
ẑ := y(n)kz ∈ E(n)k(1−λ)(X). The image of ẑ in E(n)∗(X) is given by zvk(2n−1)

n and we abuse notation by 
denoting the image in E(n)∗(X) by the same name. The following diagram commutes:

E(n)∗(1+α)(Y ) ˆ

ρ

E(n)∗(1−λ)(Y )

ρ

if |z| = k(1 + α), z �→ ẑ := zy(n)k

E(n)2∗(Y ) ˆ
E(n)∗(1−λ)(Y ) if |z| = 2k, z �→ ẑ := zv

k(2n−1)
n

Remark 2.3. A major theme in this paper will be to look at elements in degrees 16∗ (and sometimes even 8∗). 
We have ER(2)16∗ = Z(2)[v̂1]. In addition, the x1-torsion generators in degree 16∗ are given by Z(2)[v̂1]{2}, 
the x3-torsion generators, Z/(2)[v̂1]{v̂1}, and the only x7-torsion generator is Z/(2).

The fibration Σ17ER(2) −→ ER(2) −→ E(2) gives rise to an exact couple and a convergent Bockstein 
Spectral Sequence that begins with E(2)∗(X) and where there can only be differentials d1 through d7.
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Remark 2.4. We have used two versions of this Bockstein spectral sequence in the past so we should explain 
the difference. We’ll do without indices to make the discussion clearer. The untruncated version allows the 
exact couple to go on forever to the left and right:

· · · A

ρ

x
A

ρ

x
A

ρ

· · ·

B B

δ

B

δ

B

δ

If A is all x-torsion (and in our case x7 kills everything), then this spectral sequence starts with B and 
converges to zero.

If we truncate this on the right as

· · · A

ρ

x
A

ρ

x
A

ρ

B B

δ

B

δ

the spectral sequence converges to A.
Where the computations can be done globally and give elegant results, the preference is to use the 

truncated version, such as we have done in [5] and [13]. On the other hand, when computations get grubby, 
using the untruncated version has the advantage that it gets smaller after each differential, making the 
bookkeeping much easier to manage. We have used the untruncated version in [10], [11], and [6].

Both spectral sequences contain the same information. We find it to our advantage to use the untruncated 
version that converges to zero in this paper.

We give a simplified summary of the untruncated Bockstein Spectral Sequence (BSS) we use for computing 
ER(2)∗(X) from E(2)∗(X).

Theorem 2.5 ([10][Theorem 4.2]).

(1) The exact couple gives a spectral sequence, Er, of ER(2)∗ modules, starting with

E1 
 E(2)∗(X) and ending with E8 = 0.

(2) d1(y) = v−3
2 (1 − c)(y) where c(vi) = −vi and c comes from complex conjugation.

(3) The degree of dr is 17r + 1.
(4) The targets of the dr represent the xr-torsion generators of ER(2)∗(X).

Definition 2.6. Let Ki be the kernel of xi on ER(2)∗(X) and let Mi be the image of Ki in ER(2)∗(X)/
(xER(2)∗(X)) ⊂ E(2)∗(X). We call Mr/Mr−1 
 image dr the xr-torsion generators. We are aware that 
these are not technically generators, just cosets, but this is what the spectral sequence computes when it is 
computing the xr-torsion, so the terminology from this definition simplifies our work. Of course any element 
not divisible by x can be thought of as an xi-torsion generator, and all such elements map non-trivially to 
E(2)∗(X).

Remark 2.7. All of our BSSs in this paper have only even degree elements, so we always have d2 = d4 =
d6 = 0. In fact, d5 never shows up here although we have seen it with other even degree spaces, for example, 
in [6] for CP 8i+1 and CP 8i+5.
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Remark 2.8 (The BSS on the coefficients.). For our purposes, it is important to know how this works for 
the cohomology of a point ([13, Theorem 3.1]). The differential d1 is on E(2)∗ = Z(2)[v̂1, v

±1
2 ], which can 

now be rewritten as Z(2)[v̂1]{v0−7
2 }. The differential, d1, commutes with v̂1 and v2

2 so all that matters here 
is d1(v2) = 2v−2

2 .
The E2 term becomes Z/(2)[v̂1]{v0,2,4,6

2 }. We have d3 commutes with v̂1 and v4
2 , and d3(v2

2) = v̂1v
−4
2 .

This leaves us with only Z/(2){v0,4
2 }. We have d7 commutes with v8

2 = v̂−1
2 = 1 and d7(v4

2) = v̂2v
−8
2 =

v̂2
2 = v−16

2 = 1, so E8 = 0.

Using this approach to ER(2)∗ we see that the x1-torsion is generated by Z(2)[v̂1]{2v0,2,4,6
2 }, the x3-torsion 

by Z/(2)[v̂1]{v̂1v
0,4
2 }, and the x7-torsion by Z/(2). The previous description of ER(2)∗ is easy to relate to 

this now. The x-torsion is given by Z(2)[v̂1] on the αi, 0 ≤ i < 4. The x3-torsion is generated over Z/(2)[v̂1]
on v̂1 = α and w. Finally, the x7-torsion is given by Z/(2).

The complex conjugate of the BSS comes from E(2), but Lorman shows in [14, Lemma 4.1] that the 
complex conjugate of û ∈ E(2)−16(CP∞), c(û), can be calculated using the formal group law for E(2) from 
F̂ (û, c(û)) = 0.

Remark 2.9. The standard formal group law for E(2) is F (x, y) with the degrees of x and y equal to two. 
The element F (x, y) also has degree two. Let x̂ = v3

2x and ŷ = v3
2y. Replace vi in F with v̂i. This gives us 

F̂ (x̂, ŷ) = v3
2F (x, y) of degree −16.

We need some basic easily computed formulas, which we just quote here. We use Araki’s generators. 
These are all modulo xiyj , i + j > 4 or û5.

F̂ (x̂, ŷ) = x̂ + ŷ + v̂1x̂ŷ + v̂2
1(x̂2ŷ + x̂ŷ2)

+ ( 6

7
v̂3
1 + 2

7
v̂2)(x̂3ŷ + x̂ŷ3) + ( 16

7
v̂3
1 + 3

7
v̂2)x̂2ŷ2

c(û) = −û + v̂1û
2 − v̂2

1û
3 + ( 10

7
v̂3
1 + 1

7
v̂2)û4

We collect the basics we need:

Lemma 2.10.

c(û) = −û + v̂1û
2 mod (û3)

c(û) = û + v̂1û
2 + v̂2

1û
3 + v̂2û

4 mod (2, û5)
p̂ = ûc(û) = −û2 mod (û3)

where p̂ ∈ ER(2)−32(CP∞) maps to p̂ = û c(û) ∈ E(2)−32(CP∞) and is a modified first Pontryagin class.

Proof. This all follows from the preceding formulas. �
Recall that

d1(y) = v−3
2 (1 − c)(y).

We rewrite some of our basic facts from Lemma 2.10 in our present terminology keeping in mind that in 
E(2)∗(−), v̂2 = 1 = v−8

2 and p̂ = û c(û).
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Lemma 2.11.

c(û) = −û− v̂1p̂ mod (p̂û)
c(v̂1) = v̂1
c(v2) = −v2
d1(û) = 2v−3

2 û mod (p̂)
d1(v2û) = 0 mod (p̂)
d1(û) = v−3

2 v̂1p̂ mod (2, p̂û)
d1(û) = v−3

2 (v̂1p̂ + v̂3
1 p̂

2 + p̂2) mod (2, p̂2û)
d1(v2) = 2v−2

2
d1(v2p̂) = 2v−2

2 p̂ mod (p̂û)

Proof. There is one minor new thing here, the formula for d1(û) mod (2, p̂2û). We do have d1(û) =
v−3
2 (v̂1û

2 + v̂2
1 û

3 + û4) and p̂ = û c(û) = û(û + v̂1û
2 + v̂2

1 û
3) = û2 + v̂1û

3 + v̂2
1 û

4. Replace the û2 with 
p̂+ v̂1û

3 + v̂2
1 û

4 to get d1(û) = v−3
2 (v̂1p̂+ v̂2

1 û
3 + v̂3

1 û
4 + v̂2

1 û
3 + û4). Two the terms cancel out and, modulo 

higher terms, û4 = p̂2. �
3. A sketch of the approach

The Bockstein spectral sequence for a general space X, E(2)∗(X) to ER(2)∗(X), concludes with E8 = 0. 
In the two cases of interest to us, namely, ∧nCP∞ and MU(n), the spectral sequence is even degree. In 
fact, the only differentials are d1, d3, and d7. The last two are quite easy to do once d1 has been computed. 
Although d1 is complicated, we have an explicit algebraic formula for it. We require a spectral sequence 
to compute d1 though. The spectral sequence we use for computing d1 is broken up into n + 1 parts. We 
evaluate d1 on various subsets and denote those maps by d1,0, d1,1, . . . , d1,n. After computing d1,j , we call 
the result E1,j+1. The E1,n+1 is an associated graded version for E2 of the Bockstein spectral sequence.

The sketch approach in this section works for both ∧nCP∞ and MU(n). We do this here without inserting 
the necessary technical details in hopes of clarifying our computations. When it comes time to actually do 
the computations, we can adjust what we present here to be rigorous, and, in the process, add the gruesome 
technical details.

Our general description begins with an E1 similar to the following:

R{v0−7
2 ûε} with ûε = ûε1

1 ûε2
2 . . . ûεn

n εk ≤ 1.

Our R has no torsion and d1 commutes with R and v2
2 .

Definition 3.1. Define Wj to be the set of ûε with εk = 0 for k < j and εj = 1. We also include Wn+1 with 
all εk = 0.

This breaks our problem up to the following form:

R{v0−7
2 W1, v

0−7
2 W2, . . . , v

0−7
2 Wn, v

0−7
2 Wn+1}

The filtration we use cannot be based on degree because we are Z/(48)-periodic. It is also not indexed 
over Z, an additional complication. The first step in defining our filtration looks a lot like using the standard 
cohomology degrees of the pre-hatted elements, which we call “length”, but this can wait.

Our plan is quite simple. First we have to compute d1,0, which we do below. This makes everything mod 
2. Next we inductively (on j) compute our d1 in the spectral sequence on R{v0−7

2 Wj} (really a quotient 
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of this). We call the restriction of d1 to this our d1,j and the resulting quotient, E1,j+1. We say quotient 
instead of subquotient because we find that d1,j is injective.

Since εj = 1 in Wj , we find that, due to the filtration, all we need to compute d1,j on is ûj . This will get 
rid of ûj so the target will always end up in R{v0−7

2 Wk} for k > j. As mentioned already, we find that d1,j
computed like this is injective, thus eliminating Wj completely. When all is said and done, the final answer 
after computing d1,n must be a quotient of R{v0−7

2 Wn+1} and is just our associated graded object for E2
of the Bockstein spectral sequence.

Remember, each map, d1,j computes some x1-torsion elements and then throws them away so they don’t 
clutter things up. Of course, we have to keep track of them, but the elements remaining in this quotient of 
R{v0−7

2 Wn+1} are just the elements left over that can be x3 and x7-torsion elements.
That is our brief summary of how d1,j , j > 0, behaves. Before we can do those computations though, we 

need to compute d1,0. We can do that here in a general way that actually gives the result for our two cases.
We start with our

R{v0−7
2 ûε} with ûε = ûε1

1 ûε2
2 . . . ûεn

n εk ≤ 1.

We need a new definition:

s(ε) =
∑

εk.

Our d1,0 kills off lots of elements and 2. (Mod higher filtrations.) Recall that c(û) = −û modulo pretty 
much anything. We compute d1,0 using the formula for d1:

d1,0(ûε) = v−3
2 (ûε − c(ûε))

= v−3
2 (ûε −

∏

εk=1
c(ûk)) = v−3

2 (ûε − (−1)s(ε)ûε)

So,

d1,0(ûε) = 2v−3
2 ûε s(ε) odd

d1,0(ûε) = 0 s(ε) even

With the v2 in front, knowing c(v2) = −v2, we get

d1,0(v2û
ε) = 2v−2

2 ûε s(ε) even
d1,0(v2û

ε) = 0 s(ε) odd

The end result of the computation is

E1,1 = R/(2){v2v
0,2,4,6
2 ûε s(ε) odd} ⊕R/(2){v0,2,4,6

2 ûε s(ε) even}

We can make a dramatic simplification with better notation.

v
o/e
2 = v2 s(ε) odd
v
o/e
2 = 1 s(ε) even

Note that the vo/e2 is a function of ûε. Using this notation, the result cleans up as:

E1,1 = R/(2){vo/e2 v0,2,4,6
2 }
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Remark 3.2. It is important to note that after our d1,0, which is just the first step in our spectral sequence 
for computing d1, we are working mod (2) in a very strong sense. Normally, in a spectral sequence, after 
our computation of d1,0, this would mean that 2 times an element in the associated graded object is really 
just an element represented by some higher filtration term. However, because 2x = 0, we do not have such 
extension problems. Two times any element is definitely killed by x and so is actually zero in the spectral 
sequence. For reference, we state this as a lemma.

Lemma 3.3 (Two is zero). Two times an element in E1,1 for ∧nCP∞ and MU(n) is zero. It is not represented 
in the associated graded object by a non-zero element in a higher filtration.

4. The filtration

By complex orientability, we have

E(2)∗(∧nCP∞) ∼= E(2)∗[[û1, û2, . . . , ûn]]{û1û2 · · · ûn}

The class û c(û) coming from p̂ is a permanent cycle. Let p̂i be the class associated with the i-th copy of 
CP∞ in our smash product.

Because p̂ = −û2 mod higher powers, we can replace our description of E(2)∗(∧nCP∞). We need some 
notation first.

I = (i1, i2, . . . , in) s(I) =
∑

ik ik ≥ 0
ε = (ε1, ε2, . . . , εn) s(ε) =

∑
εk εk = 0 or 1

Define

p̂I ûε = p̂i11 ûε1
1 p̂i22 ûε2

2 · · · p̂inn ûεn
n

and define the length of (I, ε), �(I, ε) to be 2s(I) + s(ε).
Note that this length is just degree of the corresponding (unhatted) elements in mod 2 cohomology.
We want to rewrite E(2)∗(∧nCP∞) in terms of our Pontryagin classes, but the smash product requires 

some awkward notation. We require ik + εk = 1 to get

E(2)∗(∧nCP∞) ∼= E(2)∗[[p̂1, p̂2, . . . , p̂n]]{p̂I ûε} ∼= Z(2)[v̂1][[p̂1, p̂2, . . . , p̂n]]{v0−7
2 p̂I ûε}

Once we have our filtration and look at the associated graded object, it will become, now with ik + εk > 0 :

E(2)∗{p̂I ûε} ∼= Z(2)[v̂1]{v0−7
2 p̂I ûε}

We now need to put our filtration on this.

Definition 4.1. We put an order on the pairs (I, ε) as follows. If �(I ′, ε′) > �(I, ε), then (I ′, ε′) > (I, ε). If 
�(I ′, ε′) = �(I, ε) and 2i′j + ε′j = 2ij + εj for k < j ≤ n, and 2i′k + ε′k < 2ik + εk then (I ′, ε′) > (I, ε).

The (I, ε) now form an ordered set and we can use them to give a filtration on E(2)∗(∧nCP∞) as follows:

F (I, ε) = Z(2)[v̂1]{v0−7
2 p̂I

′
ûε′} (I ′, ε′) > (I, ε)

The associated graded object still looks the same:

E1,0(I, ε) = E(2)∗(∧nCP∞) ∼= Z(2)[v̂1]{v0−7
2 p̂I ûε} ik + εk > 0
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Note that in degrees 16∗, this is just Z(2)[v̂1]{p̂I ûε}, ik + εk > 0.
In general, we will suppress the (I, ε) notation associated with this filtration. We will use it, but the 

associated graded object will be implicit, not explicit. A certain amount of clutter is avoided without loss, 
we hope, of clarity.

5. Computing d1,0 for ∧nCP∞

The setup of our computation in Section 3 now applies. The zeroth differential is computed there giving 
us:

Proposition 5.1. After computing d1,0 for ∧nCP∞, we get

E1,1 ∼= Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 p̂I ûε}

with ik + εk > 0. The x1-torsion generators detected by d1,0 are represented by:

Z(2)[v̂1]{2vo/e2 v0,2,4,6
2 p̂I ûε} = Z(2)[v̂1]{vo/e2 αip̂

I ûε}

6. Computing d1,1 for ∧nCP∞

After d1,0, we are working mod (2). Following Section 3, we start our computation of d1 on elements with 
ε1 = 1. The main formula we need now is: c(û) = û + v̂1p̂ modulo (2, p̂û), where we are now invoking the 
filtration and looking only at the representative in the associated graded object. We call the map restricted 
to the ûε with ε1 = 1, d1,1.

Our d1, and so our d1,1, commutes with v2
2 , p̂i and vo/e2 .

d1,1(vo/e2 ûε) = v−3
2 v

o/e
2 (ûε + c(ûε))

= v−3
2 v

o/e
2 (ûε +

∏

εk=1
(ûk + v̂1p̂k)ûε−Δk)

The ûε cancels out. If we keep 2 or more of the p̂k, the length is greater than if we just keep one. Modulo 
those terms of higher length, i.e. retaining only those with one p̂k, we have:

d1,1(vo/e2 ûε) = v−3
2 v

o/e
2 (

∑

εk=1
v̂1p̂kû

ε−Δk)

These terms all have the same length, but when k = 1, we have v̂1p̂1 when d1 acts on û1 and the others 
have û1. Our filtration gives us the v−3

2 v
o/e
2 (v̂1p̂1û

ε−Δ1) is the term with lowest filtration. We have just 
computed:

Proposition 6.1. After computing d1,1 for ∧nCP∞, we get

E1,2 ∼= Z/(2){vo/e2 v0,2,4,6
2 p̂I ûε} ε1 = 0

with ik + εk > 0. The x1-torsion generators detected by d1,1 are represented by:

Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 v̂1p̂

I ûε} ε1 = 0
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Note that because we are in the smash product, ε1 = 0 implies that i1 > 0.
As mentioned in Section 3, d1,1 is injective on terms with ε1 = 1, so all remaining terms have ε1 = 0.
It might be premature to discuss such things, but the above is consistent with the results for 

ER(2)∗(CP∞) from [6, Theorems 3.1 and 4.1], i.e. the n = 1 case, even if, at first glance, they don’t 
look the same.

7. Computing d1,j for ∧nCP∞

By induction, when we start our work with d1,j , we find that all we have left are ûε with i1 = i2 = · · · =
ij−1 = 0.

From Lemma 2.11, we have d1(û) = v−3
2 (v̂1p̂+v̂3

1 p̂
2+p̂2) mod (2, p̂2û). When we computed d1,1, we were 

working in E1,1, and this was already strongly mod 2. All we needed of this formula was the lower length term 
v̂1p̂, which made this term zero in E1,2. However, unlike with 2, where there were no extension problems, 
v̂1 times p̂ is not zero, but can be represented by terms of higher filtration, namely v̂1p̂ + v̂3

1 p̂
2 + p̂2 = 0. If 

we apply this formula to the middle term, we get even higher filtrations, so it goes away, and, because we 
are working mod 2, we get the main new formula used in this section, previously used as Equation (4.2) 
from [6]:

0 = v̂1û
2 + v̂2û

4 = v̂1p̂ + p̂2 mod (p̂2û) or v̂1p̂ = p̂2 (7.1)

Proposition 7.2. After computing d1,j for ∧nCP∞, we get

E1,j+1 ∼= Z/(2){vo/e2 v0,2,4,6
2 p̂I ûε}

for 1 < j ≤ n. We have ik + εk > 0.

εk = 0 for k ≤ j, ik = 1 for k < j

The x1-torsion generators detected by d1,j are represented by:

Z/(2){vo/e2 v0,2,4,6
2 p̂I ûε} εk = 0 for k ≤ j

ik = 1 for k < j − 1, ij−1 > 1

We have E1,n+1 = E1,∞, which is our associated graded object for the BSS E2 for computing ER(2)∗(∧nCP∞)
from E(2)∗(∧nCP∞), is

Z/(2){v0,2,4,6
2 p̂I} ik = 1 for k < n

or

Z/(2){v0,2,4,6
2 p̂1p̂2 . . . p̂n−1p̂

in
n }.

Note that if all εk = 0, s(ε) is even.

Proof. We have already computed E1,2, so our induction is started. Assume we have computed E1,j′+1 and 
d1,j′ for j′ < j. We need to compute d1,j on E1,j to get E1,j+1. We compute d1,j only on those ûε with 
ij = 1, i.e. on the Wj of Section 3.

We use our filtration to get d1(û) = v−3
2 v̂1p̂ from Lemma 2.11. As in the case of j = 1, when εj = 1, d1

applied to a ûk, with k > j, increases the filtration more than d1 applied to ûj does. This gives:
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)

d1,j(vo/e2 v0,2,4,6
2 p̂I ûε) = v−3

2 v̂1v
o/e
2 v0,2,4,6

2 p̂I+Δj ûε−Δj

Unfortunately, v̂1 doesn’t show up in the associated graded object for E1,j so we need to find an equivalent 
element that represents this. Note that ik = 1 for k < j − 1, and ij−1 > 0. We use formula (7.1), v̂1p̂ = p̂2. 
The lowest i with p̂2

i �= 0 in E1,j is i = j − 1, so, this term is, mod higher filtrations, represented by:

v−3
2 v

o/e
2 v0,2,4,6

2 p̂I+Δj+Δj−1 ûε−Δj .

The result follows. �
Remark 7.3. At this stage, we are done with d1 for degree reasons, but also we see that all the remaining 
terms have d1 = 0 on them as they are all cycles. We have computed E2 for Theorem 1.1.

8. Summary of the x1-torsion generators for ER(2)∗(∧nCP∞)

We just collect from the previous sections:

Theorem 8.1. Representatives for the x1-torsion generators in our associated graded object for ER(2)∗(∧nCP∞

are given by:

Z(2)[v̂1]{vo/e2 αip̂
I ûε} 0 ≤ i < 4

Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 v̂1p̂

I ûε} ε1 = 0

For 1 < j ≤ n,

Z/(2){vo/e2 v0,2,4,6
2 p̂I ûε} εk = 0 for k ≤ j

ik = 1 for k < j − 1, ij−1 > 1

9. Computing d3 and d7 for ∧nCP∞

We have finished our computation of d1 and we get E2 = E3.

Proposition 9.1. Our associated graded version of the BSS E4 for computing ER(2)∗(∧nCP∞) from 
E(2)∗(∧nCP∞) is

E4 = E5 = E6 = E7 = Z/(2){v0,4
2 p̂I} ik = 1

The x3-torsion generators are represented by

Z/(2){v0,4
2 p̂I} ik = 1 for k < n in > 1

Remark 9.2. By definition, all xi-torsion generators inject into E(2)∗(−). In particular, the x1-torsion gen-
erators (all are of even degree) inject. The x3-torsion generators are all in degrees 8∗. The degree of x is 
-1 mod (8) so for x3-torsion, we only have x and x2 times elements in degree 8∗. Consequently, all of the 
elements in degrees 4∗ that we have studied so far inject. Lots of elements have x2 times them non-zero, so 
there are many elements in degrees −2 mod (8) that don’t inject.
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Proof. All of the p̂k are permanent cycles ([14, Proposition 5.1]) and d3 commutes with v4
2 , so the compu-

tation of d3 is based on:

d3(v2
2) = v̂1v

−4
2

from the action on the coefficients. We have the relation:

v̂1p̂n = p̂2
n

Because ik = 1 for k < n, we have

d3(v2
2 p̂

I) = v−4
2 v̂1p̂

I = v−4
2 p̂I+Δn

From this we get our E4 = E5 = E6 = E7 (for degree reasons). �
Starting with our E7 and recalling from the coefficients that

d7(v4
2) = 1,

we get:

Proposition 9.3. For the BSS for computing ER(2)∗(∧nCP∞) from E(2)∗(∧nCP∞), we have E8 = 0. The 
x7-torsion generator is

Z/(2){p̂1p̂2 . . . p̂n}

This generator is in a degree that is a multiple of 16. More precisely, it is in degree −32n = 16n.

Remark 9.4. The only element divisible by x in degree 4 mod (8) is x4p̂1p̂2 . . . p̂n (to be more precise, this is 
in degree 16(n −1) −4 mod (48). Consequently, it is the only element in the kernel of the map in degrees 4∗. 
Similarly, x6p̂1p̂2 . . . p̂n in degree 16n − 6 is the only element in degree 8 ∗−6 divisible by x. This concludes 
the proof of Theorem 1.1 and part of Theorem 1.4, and the remark that follows. If you want particularly 
clean statements, stick with elements in degree 16∗. In all our statements, just require s(ε) to be even and 
ignore the v2,4,6

2 . Historically, those are the only elements that have mattered to us, but it takes so little 
effort to get the injection for 8∗, it seems obligatory. Here we still require s(ε) to be even, but we only ignore 
v2,6
2 , leaving v0,4

2 .

10. Preliminaries for BU(n)

Because of the stable splitting, BU(n) = MU(n) ∨ BU(n − 1), [15], we can compute ER(2)∗(MU(n))
instead of ER(2)∗(BU(n)).

So, rather than study the map

∏n
CP∞ −→ BU(n)

we will mainly look at:

∧nCP∞ −→ MU(n)
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Because E(2) is a complex orientable theory, we have the usual

E(2)∗(BU(n)) ∼= E(2)∗[[c1, c2, . . . , cn]]

where the ck are the generalized Conner-Floyd Chern classes. To see E(2)∗(MU(n)), we just look at the 
ideal generated by cn. So, we have:

E(2)∗(MU(n)) ∼= E(2)∗[[c1, c2, . . . , cn]]{cn}

We need to ‘hat’ these Chern classes just as we did with û for CP∞. Define (keeping in mind that v2 is a 
unit):

ĉk = v3k
2 ck.

This puts ĉk in degree 2k − 18k = −16k and we have

E(2)∗(MU(n)) ∼= E(2)∗[[ĉ1, ĉ2, . . . , ĉn]]{ĉn}

We need to use the well-known fact that for complex oriented theories, G∗(BU(n)) injects into 
G∗(

∏nCP∞). Each ck, or, respectively, ĉk, goes to the k-th symmetric function on the ui, respectively, 
ûi. Similarly for the map of the smash product to MU(n). Here, we have ĉn goes to û1û2 · · · ûn.

For J = (j1, j2, . . . , jn), let

ĉJ = ĉ j1
1 ĉ j2

2 · · · ĉ jn
n .

After we go to our associated graded object, we can write E(2)∗(MU(n)) as

E(2)∗{ĉJ} jn > 0.

We can view

E(2)∗(MU(n)) ⊂ E(2)∗(∧nCP∞)

and we know how to write elements of E(2)∗(∧nCP∞) in terms of

p̂I ûε = p̂i11 ûε1
1 p̂i22 ûε2

2 · · · p̂inn ûεn
n

Every element z ∈ E(2)∗(∧nCP∞) can be written as a sum of such elements (with coefficients). These 
elements are ordered using the order on (I, ε) from 4.1.

Definition 10.1. The leading term of z ∈ E(2)∗(∧nCP∞) is the term of lowest order.

The leading term of any symmetric function must be of the form p̂I ûε with

2i1 + ε1 ≥ · · · ≥ 2ik + εk ≥ 2ik+1 + εk+1 ≥ . . . ≥ 2in + εn > 0

Definition 10.2. We call this property A and use it constantly from here on, but without having to repeat 
the above often.
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Although many symmetric functions could have the same leading term, given a p̂Iûε with property A, we 
can construct a unique symmetric function, wI,ε, with this as its leading term. Our wI,ε is just the sum of all 
distinct permutations of our p̂I ûε, keeping in mind that the p̂i and the ûi move together. These symmetric 
functions wI,ε generate E(2)∗(MU(n)) ⊂ E(2)∗(∧nCP∞). Our computations will take place entirely in this 
image.

We can consider E(2)∗(MU(n)) in E(2)∗(∧nCP∞) and write the associated graded object as Z(2)[v̂1]×
{v0−7

2 wI,ε}. For our filtration, we just use the order, 4.1, on the (I, ε), which all have property A. This is 
the same as using it on the leading term.

Recall that d1 commutes with p̂i, and v2
2 .

Similar to the computation in Section 5, we can compute d1,0 (modulo higher filtration) on every term 
of wI,ε to get

d1,0(wI,ε) = 2v−3
2 wI,ε s(ε) odd

d1,0(v2wI,ε) = 2v−2
2 wI,ε s(ε) even

Proposition 10.3. With property A, after computing d1,0 for MU(n), we have:

E1,1 ∼= Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 wI,ε}

The x1-torsion generators detected by d1,0 are represented by:

Z(2)[v̂1]{2vo/e2 v0,2,4,6
2 wI,ε} = Z(2)[v̂1]{vo/e2 αiwI,ε}

11. Different descriptions of E(2)∗(MU(n))

We find it easiest to make our computations with the wI,ε ∈ E(2)∗(∧nCP∞), but it would be more 
traditional to think in terms of Chern classes in E(2)∗(MU(n)). So, we now show how to relate the ĉJ to 
the wI,ε.

In the product, the image of ĉk is the k-th symmetric function on the ûi. The leading term in the sum 
that makes up the symmetric function is:

û(k) = û1û2 · · · ûk.

Modulo higher terms in the filtration, we have û2 = −û (−û) = −û c(û) = −p̂, so, in the smash product, 
the leading term of the image of ĉkĉn is (modulo higher terms):

û(k)û(n) = û2
1û

2
2 · · · û2

kûk+1 · · · ûn = (−1)kp̂1p̂2 · · · p̂kûk+1ûk+2 · · · ûn

We have the leading term of the image of cJ

û(1)j1 û(2)j2 · · · û(n)jn −→ û
∑n

i=1 ji
1 û

∑n
i=2 ji

2 · · · û
∑n

i=k ji
k · · · ûjn

n

We prefer to replace all the ĉ2k with the Pontryagin classes P̂k, but to do that, we need to take a break 
to define them.

Pontryagin classes
We will use BU(k) to denote the space BU(k) with Z/2 acting by complex conjugation and BU(k)

to denote the space with trivial Z/2-action. By an equivariant analog of the Atiyah-Hirzebruch spectral 
sequence, we have
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E(n)�(BU(k)) = E(n)�[[c1, . . . , ck]], |ck| = k(1 + α)

Consider the (equivariant) map f : BU(k) → BSO(2k) → BU(2k) classifying the complexification of the 
underlying real bundle of the tautological complex k-plane bundle.

Definition 11.1. For 1 ≤ m ≤ k, define the mth hatted Pontryagin class P̂m ∈ ER(n)∗(BU(k)) to be

P̂m := ̂f∗(c2m) ∈ E(n)2m(1−λ)(BU(k)) = ER(n)2m(1−λ)(BU(k))

Lemma 11.2.

P̂m ∈ ER(n)m2n+3(1−2n−1)(BU(k)) maps to
∑

i+j=2m,
0≤i,j≤k

ĉi c(ĉj) ∈ E(n)m2n+3(1−2n−1)(BU(k))

Note that in our n = 2 case, P̂m is in degree −32m and the image is a permanent cycle in our Bockstein 
spectral sequence.

Proof. The fact that for a complex vector bundle V , the complexification of its underlying real bundle splits 
as a direct sum of V and its complex conjugate, (VR) ⊗ C = V ⊕ V , means that the following diagram 
commutes up to homotopy:

BU(k) Δ
BU(k) ×BU(k)

1×c
BU(k) ×BU(k)

BSO(2k) BU(2k)

where the right vertical map classifies the direct sum. Applying E(n)-cohomology to this diagram, we see 
that the image of the total hatted Chern class (

∑
ĉi) in E(n)∗(BU(2k)) is given by the total hatted Chern 

class in E(n)∗BU(k) times its conjugate, (
∑

ĉi)(
∑

c(ĉj)). It follows that the image of c2m under f∗ is as 
claimed. �
Remark 11.3. Working mod 2 in our associated graded object, we have c(ĉi) is represented by the same 
term as ĉi. The terms ĉi c(ĉj) and ĉj c(ĉi) cancel out and we are left with ĉm c(ĉm) = ĉ2m represents P̂m.

We will not use it in this paper, we could in fact produce a class in ER(n)∗(BU(k)) whose image in 
E(n)∗(BU(k)) is given by ĉm c(ĉm) on the nose as follows. Let MU(n) denote the 2-local Real bordism spec-
trum with vn inverted–it is a commutative Z/2-ring spectrum (see e.g. [7, Lemma 4.2]). Applying the norm 
N

Z/2
{e} to cm ∈ MU(n)2m(BU(k)) yields a class in MU(n)2m(1+α)(BU(k)) whose underlying nonequivariant 

class is cm c(cm) by the double coset formula. Mapping from MU(n)-cohomology to E(n)-cohomology and 
applying the hat construction gives ĉm c(ĉm) as desired.

Either this element or the Pontryagin class could be used later to show that our d3 and d7 only operate 
on the coefficient ring. We have chosen the more traditional Pontryagin classes. Neither one is necessary to 
compute d1 because ĉm c(ĉm) has d1 equal to zero on it. It is only for the higher differentials that we need 
the permanent cycles that the Pontryagin classes give us.

Recall that we can compute c on any element of E(2)∗(BU(n)) by naturality because it injects into 
E(2)∗(∧nCP∞) and we know c on E(2)∗(CP∞).

The leading term of the image of P̂k is (−1)kû(k)2 = p̂1p̂2 . . . p̂k.
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To avoid the power series, we rewrite the associated graded object for E(2)∗(MU(n)) as

E(2)∗{P̂ k1
1 ĉ r1

1 P̂ k2
2 ĉ r2

2 . . . P̂ kn
n ĉ rn

n } 0 < kn + rn rk ≤ 1

or, simply as:

E(2)∗{P̂K ĉ r} 0 < kn + rn

Define si, ei, gi and εi as follows:

si = ki + ki+1 + · · · + kn and ei = ri + ri+1 + · · · + rn = 2gi + εi εi ≤ 1.

Let ij = sj + gj , then, using our injection, we have, modulo higher filtration:

P̂K ĉ r maps to ± wI,ε

where wI,ε is the symmetric function, with leading term

p̂s1+g1
1 ûε1

1 p̂s2+g2
2 ûε2

2 · · · p̂sn+gn
n ûεn

n = p̂I ûε.

Note that, by construction, this satisfies property A.
Reversing the process to go from wI,ε to P̂K ĉ r is unpleasant. It is trivial to go back to p̂I ûε, but that 

is still inside E(2)∗(∧nCP∞). It is best to see wI,ε in terms of Chern classes. Modulo higher filtration, we 
have,

wI,ε = ĉ2i1+ε1−2i2−ε2
1 ĉ2i2+ε2−2i3−ε3

2 · · · ĉ2in+εn
n . (11.4)

Note that when ε1 = ε2 = 0, we get ĉ2(i1−i2)
1 = ±P̂

(i1−i2)
1 mod higher filtration. This comes in handy later.

Although we don’t need to be able to completely reverse the process to go from wI,ε to P̂K ĉ r, we do 
need to keep track of the parity of s(ε).

Lemma 11.5. If wI,ε is the image of ĉJ = ĉj11 ĉj22 . . . ĉjnn , then the parity of s(ε) is the same as the parity of 
j1 + j3 + j5 + · · · , or, equivalently, r1 + r3 + r5 + · · · from above.

Proof. The proof is easy. From Equation (11.4), we have j1+j3+j5+· · · is, mod (2), just ε1−ε2+ε3−ε4+· · ·
and this has the same parity as s(ε). Using the r, we have, mod 2, s(ε) = r1 +2r2 +3r3 + · · ·+nrn. Deleting 
all the even terms gives the same result. �
12. Lemmas for our MU(n) d1 computations

We are going to compute d1 in the Bockstein spectral sequence using a spectral sequence. Our computa-
tions will be done on the image of E(2)∗(MU(n)) in E(2)∗(∧nCP∞). This is generated by the symmetric 
functions wI,ε where the leading term is p̂I ûε with property A. The spectral sequence we use to compute d1
is based on the filtration we have given using the ordering on the (I, ε). Since d1(wI,ε) is also a symmetric 
function, to compute the spectral sequence we need to know its leading term in the associated graded object, 
i.e. the lowest filtration term of d1(wI,ε). In principle, to do this, we have to compute d1 on every one of 
the distinct permutations that make up wI,ε.

We reduce that onerous task significantly in this section by a series of simplifications. First, we recall that 
we are working mod (2) in a very strong sense now that we have computed d1,0. In our actual computations, 
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it turns out that we never need to consider raising our filtration so much that the length of (I, ε), �(I, ε), 
is raised by more than 3. We don’t prove that here, that just comes out of the computations. What we do 
here is show how to compute when you keep the increase in length to less than or equal to 3.

Our differentials only act on the û part of wI,ε. We show that if d1 acts on more than one û at a time, it 
increases the length by more than 3. The consequence of this is that we only have to take d1 of one ûk at a 
time in each term of wI,ε. That’s still a lot to do, but is already a significant simplification.

A leading term of d1(wI,ε) must come from d1 acting on some distinct permutation, p̂J ûr, of the leading 
term p̂I ûε, and we need only consider d1 on one of the û in ûr at a time. To be a distinct permutation other 
than the leading term, it cannot have property A. For d1 of it to be a leading term, d1 of it must have 
a term with property A. If it doesn’t have such a term with property A, then we don’t have to concern 
ourselves with it as it cannot be the leading term of d1(wI,ε).

There are many possible distinct permutations. Taking d1 of all of them, even using only one û at a time, 
results in a large number of terms. Using the considerations just discussed, we will be able to eliminate 
from consideration almost all of them. We reduce the relevant permutations and computations to a very 
few special cases.

That is the goal of this section.
We recall from Lemma 2.11 (our long version of d1):

d1(û) = v−3
2 (v̂1p̂ + v̂3

1 p̂
2 + p̂2) mod (2, p̂2û)

This is our main source of information for computing d1 because these are all the terms of d1 we need.

Remark 12.1 (Powers of v2). We have already introduced the notation vo/e2 . If we apply our above d1 to a 
ûk, we decrease the number of û in ûε by one, thus changing the parity of s(ε). On the other hand, the v−3

2
changes the parity for vo/e2 , so the parity of vo/e2 wI,ε stays aligned as we do differentials. In fact, we can 
generally ignore the powers of v2 when working with d1 because they take care of themselves.

Conventions 12.2. Now that we have established that the vo/e2 that depends on s(ε) takes care of itself, 
for the part of this section before our important lemmas, we will ignore the powers of v2. They will be 
re-introduced when we get to our lemmas.

Definition 12.3 (Short version of d1). Following Convention 12.2, the short version of d1 is:

d1(û) = v̂1p̂ mod (2, p̂û)

This is much of what we need, but it does run into problems that require the long version of the formula. 
When we apply this to just one ûk and one term of the symmetric function, we get

d1(p̂J ûr) = v̂1p̂
J+Δk ûr−Δk

If this element exists and is of lowest filtration for our choice of k, we usually don’t have to go further. If 
there is no v̂1 on such an element, it doesn’t mean it is zero as is the case with 2. Instead, it means that 
the element can be represented in a higher filtration. Since all of our elements start off with a v̂1, if it isn’t 
there, it means that the short version of d1 has already come along to hit it. That doesn’t make it zero, but 
since the image of d1 is zero, it means we have:

v̂1p̂ = v̂3
1 p̂

2 + p̂2 mod (2, p̂2û)

Always in such cases, the v̂3
1 p̂

2 isn’t there as well and so belongs in a higher filtration giving us the relation.
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Relation 12.4.

v̂1p̂ = p̂2 mod (2, p̂2û)

This is Equation (7.1), and it was proven there.

This increase in filtration is significant as it involves an increase in the length of (I, ε), �(I, ε). Note that 
the short version of d1 increases length by one and the relation above by another 2. We are fortunate that 
we never have to go beyond an increase of length 3. Note that in the long version of d1 above, we only raise 
length by 3 if we need to use the p̂2 term as well. When this happens, it is always because the terms with 
v̂1 have proven useless. In these cases we can move on to:

Definition 12.5 (Long version of d1). Following Convention 12.2 when the v̂1 term proves useless, the long 
version of d1 is:

d1(û) = p̂2 mod (2, p̂2û)

Our d1 acts only on the ûk because d1 commutes with the p̂i and v2
2 , but we show now that if we act on 

more than one ûk at a time, the result is in a high enough length we don’t need to worry about it.
If we apply d1 to two of our û at the same time, we get

d1(p̂J ûr) = v̂2
1 p̂

J+Δi+Δj ûr−Δi−Δj

This raises length by 2. In our situations, if v̂1 is around, it would be unnecessary to use 2 different û. We 
could just use one of ûi or ûj , choosing the lower of i and j to get the lowest filtration element.

We need to consider the case where there is no v̂1 in the associated graded object on

p̂J+Δi+Δj ûr−Δi−Δj .

To get rid of a v̂1 using the formula 12.4, we have to add two more to the length, and, again, we are out of 
bounds for our work, having increased the length by 4.

Remark 12.6 (Only one ûk at a time). We will never need to apply d1 to more than one ûk at a time in 
each of the distinct permutations. This simplifies things dramatically.

We need to identify the leading term of d1(wI,ε) in our spectral sequence for d1. We will do this inductively 
by computing the map d1,j , which is just our d1 in our spectral sequence, restricted to wI,ε with ε1 = ε2 =
. . . = εj−1 = 0 and εj = 1, that is, our Wj of Section 3.

Since d1(wI,ε) is a symmetric function, the leading term must be a term of d1(p̂J ûr), where p̂J ûr is a 
distinct permutation of the leading term for wI,ε, i.e. p̂I ûε. If p̂J ûr is anything other than the leading term, 
it cannot have property A in order to be a distinct permutation. However, if it is going to create a leading 
term for d1(wI,ε), a term of d1(p̂J ûr) must have property A.

There can be many distinct permutations on our leading term to make up a wI,ε. The two properties 
listed above restrict the permutations we need to be concerned with.

Only a few things can happen with our d1. The first thing that always happens is to take a p̂ikk ûk to 
v̂1p̂

ik+1
k . Sometimes this is enough because our associated graded object is free over Z/(2)[v̂1] and our choice 

of k gives the lowest filtration. Often it is not enough because the term with v̂1 is not there in the associated 
graded object and we need to apply the relation v̂1p̂

ih
h = p̂ih+1

h for some h and get

p̂J+Δh+Δk ûr−Δk (12.7)
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In special cases we have to go straight to the long form of d1 and take p̂ikk ûk directly to p̂ik+2
k .

Unfortunately, we cannot write down a general formula that works in all of our cases. Our computations 
depend too much on the state of the associated graded object at the time of the computation. There are, 
however, some recurring standard computations that we can discuss. Before we look at these general cases, 
it is illuminating to look at some small special cases.

We begin with w(1,0),(0,1) = p̂1û2 + û1p̂2, which has leading term p̂(1,0)û(0,1) = p̂1û2. If we take d1 of this 
using the short version of d1, we get

d1(p̂1û2 + û1p̂2) = v̂1(p̂1p̂2 + p̂1p̂2) = 2v̂1p̂1p̂2 = 0.

In cases (and there are many) like this, we call on the long form of d1 where we have established that we 
can ignore the v̂1’s. Now we get

d1(p̂1û2 + û1p̂2) = p̂1p̂
2
2 + p̂2

1p̂2 = w(2,1),(0,0).

Our leading term for this is p̂2
1p̂2, and this is a case where the leading term of d1(wI,ε) does not come from 

d1 on the leading term of wI,ε, something that would make our lives much easier.
Stepping up to the similar situation for n = 3, consider

w(1,1,0),(0,0,1) = p̂1p̂2û3 + p̂1û2p̂3 + û1p̂2p̂3

This time, applying the short version of d1 gives us

v̂1p̂1p̂2p̂3 + v̂1p̂1p̂2p̂3 + v̂1p̂1p̂2p̂3 = 3v̂1p̂1p̂2p̂3

We have two possibilities at this point. If the associated graded object is free over Z/(2)[v̂1], we are done. 
If v̂1 is zero on the associated graded object, we could, in principle, get wI,ε with leading term p̂2

1p̂2p̂3. In 
fact, in the n = 3 case this doesn’t happen (as we shall see) but it still illustrates a point because related 
things like this do happen when n > 3. The same is true about the next example as well.

Consider

w(2,2,0),(0,0,1) = p̂2
1p̂

2
2û3 + p̂2

1û2p̂
2
3 + û1p̂

2
2p̂

2
3

Start by using the short version of d1 to get

v̂1p̂
2
1p̂

2
2p̂3 + v̂1p̂

2
1p̂2p̂

2
3 + v̂1p̂1p̂

2
2p̂

2
3 = v̂1w(2,2,1),(0,0,0)

If this is an element, we are done. If v̂1 = 0 here, we have to apply Relation 12.4. The obvious choice gives 
us w(3,2,1),(0,0,0), but if this is not an element in our associated graded object, we would have to apply 
Relation 12.4 to the i3 = 1 term giving us 3w(2,2,2),(0,0,0).

It is worth keeping these simple examples in mind as we try to look at some general cases.
We are now going to prove some highly technical lemmas that will help us get through our rough 

computations later. Each of our E1,j comes in two parts, a Z/(2)[v̂1] free part and a part where v̂1 is zero 
on the associated graded object. Dealing with the Z/(2)[v̂1] free part is fairly easy, so we start with it. We 
don’t have to know much right now about E1,j, except that the elements wI,ε all have εk = 0 for k < j and 
we are only interested in computing d1,j on the elements with εj = 1.

As we will use the following lemmas in our main computation, we abandon the use of the Convention 12.2.
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Lemma 12.8 (The v̂1 free part). Given wI,ε ∈ E1,j with εj = 1 in the Z/(2)[v̂1] free part of E1,j for MU(n)
such that either

ij−s = ij−s+1 = · · · = ij−2 = ij−1 = ij + 1

with s maximal and even or ij−1 > ij + 1 (the equivalent of s = 0). Then

d1,j(vo/e2 wI,ε) = v−3
2 v

o/e
2 v̂1wI+Δj ,ε−Δj

Proof. First note that (I + Δj , ε −Δj) has property A because all we changed was ij and it was raised by 
1 to be less than or equal to ij−1.

Second, we want to show how to get such a term, and then we will show that no other term with property 
A has a lower filtration.

We start with the ij−1 = ij + 1 option. We can consider all of the permutations where all we have done 
is moved p̂ijj ûj to the left in the place of p̂ij−k

j−k for k from 1 to s (there is no ûj−k by property A and the 
description of E1,j). When we apply our short d1 to each of these terms, with our ûj in the j − k place, we 
have (s + 1) terms all the same as our desired result. Since s is even, we have our required term.

If ij−1 > ij + 1, we can just apply the short d1 to ûj to get the required term. Note here that if we try 
to shift the ûj term to the left, we get a term without property A, such that when we apply the short d1
to it, it still does not have property A. This is really just the s = 0 version of the lemma.

Now we have to show that we cannot achieve a lower filtration element using any other ûk and/or 
permutation.

We pick a p̂jkk ûk in some permutation, p̂J ûr of p̂I ûε to apply our short d1 to. If we remove p̂jkk ûk from 
p̂J ûr, we must have property A. If not, we cannot get property A when we apply d1 to ûk. And so, what 
remains, must be a subsequence of p̂I ûε with just one term missing, p̂ihh ûh. The permutation is to just move 
p̂ihh ûh to p̂jkk ûk leaving all other terms fixed. By this we mean that ih = jk. If h < k, we have moved p̂ihh ûh

to the right. For this to be a distinct permutation, we must have 2ih + 1 > 2ik + εk. It is because of this 
term that this distinct permutation has a higher filtration than the leading term. Since we are going to 
then replace ûk with v̂1p̂k, we are going to increase the filtration even further. Since this situation can only 
happen when j ≤ h < k, (εh = 0, h < j), this is of a higher filtration than the element we have already 
discussed.

We have shown that, in this case, the only relevant permutation consist of sliding some p̂jkk ûk to the left, 
because we have shown that going to the right results in higher filtration elements.

Our first computation involves ûj and permutations that involve sliding it to the left, so all we have 
to do now is eliminate sliding ûk to the left when j < k. To get a distinct permutation, we must have 
2ik−1 + εk−1 > 2ik + 1(= εk). We must slide the term in the k-th place passed the one in the (k − 1)-st 
place and then apply the d1 to the moved ûk. That gives us the same length, but the increase in the k-th 
place by this permutation gives it a higher filtration than the term we have already obtained. �
Remark 12.9 (Limits on permutations). The above lemma took care of all of the Z/(2)[v̂1] issues we will 
come up against. The differential d1,j on the part of E1,j with εj = 1 and v̂1 equal to zero on it always 
raises the length of (I, ε) by 3 either because we use the long version of d1 or the short version followed by 
the Relation 12.4. To compare filtrations, we have to use the criteria for the order on the (I, ε) other than 
the length.

We want to limit the types of permutations we need to consider. We only look at the two step process 
where we use the short d1 and then the relation. The proof of the case using the long d1 is similar to the 
previous lemma.

The first assumption we make is that we can find a non-zero wI+Δh+Δj ,ε−Δj
term in d1(wI,ε) with h < j

with property A. We will have to do this with computations in our lemmas, but we just assume it here.
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Now we want to eliminate all but a few permutations from our consideration.
Consider some permutation, p̂J ûr, of our leading term, p̂I ûε. We plan on applying the short d1 to some 

ûk and then using Relation 12.4 on some p̂jhh . If we remove these two terms from p̂J ûr, what remains must 
have property A, and so is a subsequence of p̂I ûε. Consequently, we can describe our permutation of p̂I ûε

to p̂J ûr as just moving two terms around, namely some p̂ik′
k′ ûk′ moving to p̂jkk ûk with ik′ = jk and some 

p̂
ih′
h′ û

εh′
h′ moving to p̂jhh ûrh

h with ih′ = jh and εh′ = rh. All our permutation does is slide these two terms 
around, either to the left or right in p̂I ûε.

Because we have assumed the existence of a certain type of element in d1(wI,ε), we can see immediately 
that any change to the right of the ûj place, either due to d1 or the permutation, will result in a higher 
filtration term, much as in the previous lemma.

Since we can’t mess with things to the right of ûj , we must have k′ = j. The only permutation that p̂ijj ûj

can be involved with is a shift to the left. Likewise, the p̂ih′
h′ û

εh′
h′ term above cannot be to the right of the 

ûj term, but must be to the left. That means that εh′ = rh = 0. If we try to shift our p̂ih′
h′ to the right, we 

automatically end up with something of higher filtration again, so this term too must shift only to the left 
it at all.

There are limitations when shifting to the left as well. If we try to shift p̂ijj ûj to the left, we can only go 

passed terms with ik = ij + 1. Otherwise, when we change p̂ijj ûj to p̂ij+1
j we would not have property A. 

Similarly, if we try to shift p̂ihh to the left, it can only go passed terms with ih′ = ih + 1 or we will not have
property A when we apply Relation 12.4.

Lemma 12.10. Given wI,ε ∈ E1,j with εj = 1 in the part of E1,j of MU(n) that has v̂1 = 0 on it such that

ij−s = ij−s+1 = · · · = ij−2 = ij−1 = ij + 1

with s maximal and odd and

ij−s−t = ij−s−t+1 = · · · = ij−s−2 = ij−s−1 = ij−s + 1

with t maximal and even. Then

d1,j(vo/e2 wI,ε) = v−3
2 v

o/e
2 wI+Δj−s+Δj ,ε−Δj

Proof. First note that (I +Δj−s +Δj , ε −Δj) has property A. The Δj part is for the same reason as in the 
previous lemma. We also know that ij−s−1 > ij−s by definition, so adding the Δj−s preserves property A.

Second, we want to show how to get such a term, and then we will show that no other term of d1,j(wI,ε)
with property A has a lower filtration.

We can consider all of the permutations where all we have done is moved p̂ijj ûj to the left in the place 

of p̂ij−k

j−k for k from 1 to s (there is no ûj−k). When we apply our short d1 to each of these terms, with our 
ûj in the j − k place, we have (s + 1) terms all the same, but this time, we have an even number of them 
and so this is zero. So, the v̂1 part of d1 has proven useless on these terms. Moving on to the long form of 
d1, we replace the ûj with p̂j−k in each (j − k) place of the various permutations. These terms are all now 
in different filtrations. The lowest filtration version gives the answer we are looking for.

The above covers the t = 0 case, i.e. where ij−s−1 > ij−s + 1 and deals with the first few possible 
permutations of the t > 0 case, i.e. where ij−s−1 = ij−s + 1. In this case though, there are other possible 
permutations. We cannot do anything with ib where b < j − s − t because we have already used the long 
d1 and there is nothing else to do. However, we can shift ij−s to the left from 1 to t times. Then our 
permutation on the (I, ε) of p̂I ûε looks like

(I − Δj−s−c + Δj−s, ε)
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for each c from 1 to t. For each such c, we can consider the permutations that just slides p̂ijj ûj to the left, 
but we can now only do this (s − 1) times, giving us a total of s equal terms. Since s is odd, this gives us

v−3
2 v

o/e
2 v̂1p̂

I−Δj−s−c+Δj−s+Δj ûε−Δj

To make this has property A, we have to apply Relation 12.4 to v̂1p̂j−s−c. Together with the first case that 
left p̂ij−s

j−s where it was, we have (t + 1) of these, but since t is even, our final result is the desired

v−3
2 v

o/e
2 p̂I+Δj−s+Δj ûε−Δj .

Now we have to show that we cannot achieve a lower filtration element in this situation using any other 
ûk and/or permutation.

Remark 12.9 restricted the permutations we needed to deal with. It forced us to start with ûj for d1 and 
then deal with p̂h with h < j with the Relation 12.4 if need be. This is indeed, exactly what we did, so we 
see that this is the only possibility. �
Lemma 12.11. We start with wI,ε ∈ E1,j with εj = 1 in the part of E1,j for MU(n) that has v̂1 = 0 on it. 
We assume that

ij−s = ij−s+1 = · · · = ij−2 = ij−1 = ij + 1

with s maximal and even. We also assume that, for some k < j − s, we have

ik−t = ik−t+1 = · · · = ik−2 = ik−1 = ik + 1

with t maximal and even. We further assume that k is the smallest number such that wI+Δk+Δj ,ε−Δj
is in 

E1,j. Then

d1,j(vo/e2 wI,ε) = v−3
2 v

o/e
2 wI+Δk+Δj ,ε−Δj

Remark 12.12. This seems highly technical, but it covers a lot of territory for us. It even covers more than 
is obvious. If s = 0, that is the same a ij−1 > ij + 1 and if t = 0, that is the same as ik−1 > ik + 1.

Proof. It is easy to see that our term has property A. We just need to see that we can obtain it, but by 
now, that is straightforward. With s even, we know the permutations from Lemma 12.8 that give us the 
short d1 on our leading term along with these permutations. Note that as in Remark 12.12, this is even 
easier if s = 0 as there are no relevant permutations. We get

v−3
2 v

o/e
2 v̂1wI+Δj ,ε−Δj

Now, using similar permutations and t even, we can apply Relation 12.4 to the (t + 1) permutations to get 
the same term, namely the desired

v−3
2 v

o/e
2 wI+Δk+Δj ,ε−Δj

.

We have to rule out one possible glitch. If ij−s + 1 = ij−s−1, we could try to shift the term in the (j− s)
place to the (j− s − 1) place or lower, we could have something like what happened in the previous lemma, 
but we don’t. If we do this, the possible shifts on the term in the j-th coordinate are to move it to the 
left from 1 to (s − 1) times. This would give s identical terms when we applied the short d1, but s is even, 



N. Kitchloo et al. / Topology and its Applications 270 (2020) 106955 25
so we would have to go to the long d1. Using the same argument as the previous lemma, that would raise 
ij−s+1 by one, and this would make it automatically have a higher filtration than the term we have already 
found. �
13. Computing d1,j , low j, for MU(n)

We recall the definition of property A.

2i1 + ε1 ≥ · · · ≥ 2ik + εk ≥ 2ik+1 + εk+1 ≥ . . . ≥ 2in + εn > 0

We start the computation of d1 on E1,1 only using the wI,ε with ε1 = 1. We call this map d1,1 and the 
result of this computation, E1,2. This is all very similar to the work in Section 6 but we have to contend 
with the symmetric function now in our computation.

Proposition 13.1. With ε1 = 0 and property A, E1,2 for MU(n) is:

Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 wI,ε} i1 = i2

and

Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 > i2

The x1-torsion generators detected by d1,1 are represented by:

Z(2)[v̂1]{v̂1v
o/e
2 v0,2,4,6

2 wI,ε} i1 > i2

Proof. Recall that we are now working mod (2) and that d1 commutes with p̂i and v2
2 , so we can concentrate 

on vo/e2 wI,ε from E1,1 with ε1 = 1.
All we have to do is apply Lemma 12.8 with s = 0, giving us:

d1,1(vo/e2 wI,ε) = v−3
2 v

o/e
2 v̂1wI+Δ1,ε−Δ1 .

Note that the first part of E1,2 is there because i1 = i2 with ε1 = 0 (and therefore ε2 = 0), cannot be the 
target of our differential. The result follows. �
Remark 13.2. If n = 1, the above is consistent with the results for ER(2)∗(CP∞) from [6, Theorems 3.1 
and 4.1], i.e. the n = 1 case, even if, at first glance, they don’t look the same. Here, the only wI,ε we have 
left for E2 are the p̂i1, which is the same as P̂ i

1.

Our proofs can generously be called tedious. More detail would not make them more user friendly. The 
die-hard reader who really cares about the details will have to put in serious effort. To begin the induction, 
it isn’t necessary to compute all of the E1,3−5, but, speaking from experience, they are invaluable guides to 
the general inductive case and so we have left them in.

Proposition 13.3. With ε1 = ε2 = 0 and property A, E1,3 for MU(n) is:

Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 wI,ε} i1 = i2

and
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Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 > i2 = i3

The x1-torsion generators detected by d1,2 are represented by:

Z(2){vo/e2 v0,2,4,6
2 wI,ε} i1 > i2 > i3.

Proof. Because ε2 = 0 already on the first part of E1,2, we have no d1,2 on this part.
For the second part, with i1 > i2, our proof comes in two stages. First we assume that i1 > i2 + 1. In 

this case we just apply Lemma 12.11 with s = t = 0 and k = 1 to get

v−3
2 v

o/e
2 wI+Δ1+Δ2,ε−Δ2 .

If i1 = i2 + 1, we use Lemma 12.10 with s = 1 to get the same result. This eliminates the i1 > i2 terms 
with ε2 = 1 as sources and the i1 > i2 terms with ε2 = 0 as targets, missing only the i2 = i3 terms. This 
concludes the proof. �
Remark 13.4. If n = 2, we would be done computing an associated graded version of E2 for the Bockstein 
spectral sequence. There appear to be two parts to the answer, but there are no wI,ε with i2 = i3 because 
there is no i3. Consequently, the answer is entirely in the first part, namely

Z/(2)[v̂1]{v0,2,4,6
2 wI,ε} i1 = i2 ε1 = ε2 = 0.

These wI,ε are no more than just p̂i1p̂i2 ∈ E(2)∗(∧2CP∞), which is the image of P̂ i
2 ∈ E(2)∗(MU(2)).

Proposition 13.5. With ε1 = ε2 = ε3 = 0 and property A, E1,4 for MU(n) is:

Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 wI,ε} i1 = i2 i3 = i4

and

Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 > i2 = i3

Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 = i2 i3 > i4

The x1-torsion generators detected by d1,3 are represented by:

Z(2)[v̂1]{v̂1v
o/e
2 v0,2,4,6

2 wI,ε} i1 = i2 i3 > i4

Proof. This one is fairly easy. For the second part of E1,3 we have i2 = i3, but we also have ε2 = 0, so we 
must also have ε3 = 0. Therefore there is no d1,3 on this second part.

As for the first part, because we want to consider ε3 = 1 with ε1 = ε2 = 0, we must have 2i2 ≥ 2i3+1(= ε3), 
so i2 > i3. Applying d1,3 using Lemma 12.8, we get

v−3
2 v

o/e
2 v̂1wI+Δ3,ε−Δ3

This leaves our conditions i1 = i2 and i3 = i4 on the first part (because they are missed), and the quotient 
of d1,3 on the first part gives us the i1 = i2, i3 > i4 of the second part. �
Remark 13.6. If n = 3, we are done. Because in the first part, i3 = i4 and there is no i4, there is no 
contribution to the answer from this first part.
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For the second part, we can always write our answer in terms of:

ĉ
2(i1−i2)
1 ĉ

2(i2−i3)
2 ĉ2i33 i3 > 0.

We have conditions on ij . In the first case with i1 > i2 = i3, we get

P̂ i
1P̂

j
3 i, j > 0

In the second case we have i1 = i2 ≥ i3. This gives us

P̂ i
2P̂

j
3 i ≥ 0 j > 0

This last example can be used to ground our induction.

Proposition 13.7. With ε1 = ε2 = ε3 = ε4 = 0 and property A, E1,5 for MU(n) is:

Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 wI,ε} i1 = i2 i3 = i4

and

Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 > i2 = i3 i4 = i5

Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 = i2 i3 > i4 = i5

The x1-torsion generators detected by d1,4 are represented by:

Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 > i2 = i3 i4 > i5

Z/(2){vo/e2 v0,2,4,6
2 wI,ε} i1 = i2 i3 > i4 > i5

Proof. The easy part is the first part, we must have ε4 = 0, so there is no differential. On the rest, there are 
many cases to consider. Note that after we apply d1 to û4, we can never hit i4 = i5 (because of property 
A), so we will have that condition in the end.

We first look at the i1 > i2 = i3 part of E1,4. By property A, we also have i3 > i4. If i4 + 1 = i3 we use 
Lemma 12.11 with s = 2, t = 0, and k = 1, to get

v−3
2 v

o/e
2 wI+Δ1+Δ4,ε−Δ4 .

If i4 + 1 < i3, we use Lemma 12.11 with s = t = 0 and k = 1 to get the same result. It wasn’t really 
necessary to break this into two pieces since Lemma 12.11 handled both.

This gives us everything in the first part of our non-v̂1 part of E1,5 except when i1 = i2 + 1. We already 
had i1 > i2 and we added 1 to i1. We can fix this by looking at the second part when we have i1 = i2 = i3. 
We know i4 < i3. If i4+1 = i3, we use Lemma 12.10 with s = 3 and t = 0. If i4+1 < i3, we use Lemma 12.11
with s = t = 0 and k = 1. This now gives us our i1 = i2 + 1 case.

It is time to take stock of where we are. We have acquired all of the first part of our answer and used up 
the i1 = i2 = i3 > i4 part of the second part of E1,4 as sources.

We still need to hit, as targets, all of the wI,ε with i1 = i2 ≥ i3 > i4 > i5 when ε4 = 0. The i4 > i5
always takes care of itself.

For sources, we need to use the i1 = i2 > i3 > i4 with ε4 = 1. It will complete the proof if we can show 
that for these source (I, ε), we have:
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d1,4(vo/e2 wI,ε) = v−3
2 v

o/e
2 wI+Δ3+Δ4,ε−Δ4 .

We cannot replace the Δ3 with Δ1 because our element would not be in E1,4. If we try to replace it with 
Δ2, the term does not have property A. If i3 > i4 + 1, we just apply Lemma 12.11 with k = 3, s = 0 and 
t = 0 unless i2 = i3 + 1, in which case we use t = 2. If i3 = i4 + 1, we use Lemma 12.10 with s = 1 and 
t = 0 unless i2 = i3 + 1, in which case we use t = 2. �
Remark 13.8. If n = 4, we are done. Because in the second part, i4 = i5 and there is no i5, there is no 
contribution to the answer from this second part.

For the first part, our leading term for wI,ε is just p̂i1p̂i2p̂
j
3p̂

j
4 with i ≥ j > 0. This is the image of P̂ (i−j)

2 P̂ j
4 .

14. Computing E1,j+1 for MU(n)

We recall the definition of property A.

2i1 + ε1 ≥ · · · ≥ 2ik + εk ≥ 2ik+1 + εk+1 ≥ . . . ≥ 2in + εn > 0

We are using an auxiliary spectral sequence that comes from the filtration defined by the ordering on 
the (I, ε) to compute the d1 for the Bockstein spectral sequence. Following our description of the process in 
Section 3, we compute our spectral sequence for d1 by induction on j using the wI,ε with εk = 0 for k < j

and εj = 1, i.e., the Wj of Section 3. We call this map d1,j and it is defined on E1,j and the result gives 
us E1,j+1. As in Section 3, the map d1,j is injective on Wj so we are left with εj = 0 in E1,j+1. When we 
have done d1,n and computed E1,n+1 (as a quotient of Wn+1), we will be done, giving an associated graded 
version of the E2 of the Bockstein spectral sequence. Since at this stage all εk = 0, s(ε) = 0 and is even, 
making vo/e2 = 1.

Theorem 14.1. For the spectral sequence for the calculation of E2 for the Bockstein spectral sequence from 
E(2)∗(MU(n)) to ER(2)∗(MU(n)), we always have property A. For E1,j+1, 1 ≤ j ≤ n, we have ε1 = ε2 =
· · · = εj = 0. There are two parts to E1,j+1. First:

Z/(2)[v̂1]{vo/e2 v0,2,4,6
2 wI,ε} with i2b−1 = i2b 0 < 2b ≤ j + 1

Second, for b with 0 < 2b + 2 ≤ j + 1, let :

i2c−1 = i2c 0 < 2c ≤ 2b, i2b+1 > i2b+2, i2a = i2a+1 2b < 2a < j + 1

Then we have:

Z/(2){vo/e2 v0,2,4,6
2 wI,ε}

When j = 2q + 1, the x1-torsion detected by d1,j is represented by:

Z/(2)[v̂1]{v̂1v
o/e
2 v0,2,4,6

2 wI,ε} i2b−1 = i2b 0 < b ≤ q ij > ij+1

When j = 2q, the x1-torsion detected by d1,j is the same as the second part of E1,j+1 but with ij > ij+1.

Remark 14.2. It is easy enough to read off the terms in the theorem that are in degrees 8∗. It requires s(ε)
to be even, forcing vo/e2 = 1. Then just eliminate the v2,6

2 as well. To get just terms in degrees 16∗, also 
eliminate v4

2 . All xi-torsion generators inject to E(2)∗(−), so we see that the x1-torsion generators of degree 
8∗ inject, giving part of Theorem 1.4.
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Remark 14.3. When j = n = 2q + 1, the condition on the Z/(2)[v̂1] free part has in = in+1, but since there 
is no in+1, this condition is never met and there is no Z/(2)[v̂1] free part. When j = n = 2q, the condition 
on the part with v̂1 = 0 has in = in+1, but since there is no in+1, this condition is never met and there is 
no part with v̂1 = 0.

Proof. Our proof is by induction. We assume we have computed d1,j′ for j′ < j. We need to compute d1,j
on E1,j and show our result gives E1,j+1. We have computed E1,2 through E1,5 to begin our induction. In 
fact, we need the d1,4 to ground our induction.

There are some, but not enough, easy parts to this. First, if j = 2q, d1,j = 0 on the first part because we 
have ij−1 = ij and so εj = 0. Likewise, if j = 2q + 1, d1,j = 0 on the second part because we have ij−1 = ij
and so εj = 0.

When j = 2q + 1, computing d1,j on the first part is just Lemma 12.8. This misses the usual ij = ij+1, 
but, because the v̂1 is there, this creates the b = q part of E1,j+1 in the second part, the only piece of 
the second part that wasn’t there already in E1,j. The rest of E1,j remains unchanged and carries over to 
E1,j+1.

What remains now is to deal with j = 2q. The Z/(2)[v̂1] free part of E1,j is uninvolved and carries over 
to be exactly the same for the first part of E1,j+1.

In the second part of E1,j, the range of b does not change between E1,j and E1,j+1. However, the change 
does allow for a to be q, giving ij = ij+1. We expect this and can now forget about it. To compute d1 on 
ûj , we can never end up with ij = ij+1, which explains how this condition comes about. Otherwise, the 
descriptions of E1,j and E1,j+1 are the same except, of course, we end up with εj = 0.

Let’s take a look at what we have to accomplish yet. We have to compute d1,j in such a way that all the 
ûj go away. Our map d1,j has to take the second part of E1,j with εj = 1 and i2q ≥ i2q+1 (sources) and put 
it in 1-1 correspondence with the second part of E1,j , with i2q > i2q+1 (targets) and εj = 0. Recall that our 
2q = j.

First let us work with the b = 0 case. We want all b = 0 terms with εj = 0 and ij > ij+1 to be hit 
as targets. We need to find the sources to do this with. Our sources must have εj = ε2q = 1, so we have 
i2q−1 > i2q by property A and the fact that ε2q−1 = 0. We first restrict our attention to source terms with 
b = 0.

We use Lemma 12.11 to get

d1,j(wI,ε) = wI+Δ1+Δj ,ε−Δj
.

In this application, the t of Lemma 12.11 is zero and k = 1, but the s could range from 0 to j−2 = 2q−2 (by 
twos) depending on I. This hits all elements in E1,j we need to have as targets with b = 0 and i1 > i2 + 1.

As targets, we have not yet hit the b = 0 terms with i1 = i2 + 1, i.e. (I, ε) with εj = 0, ij > ij+1 and 
i1 = i2 + 1. The source that works here is (J, r) = (I − Δ1 − Δj , ε + Δj). To see this, recall that for b = 0, 
we have i2a = i2a+1 for 0 < 2a < 2q. Find the q > b′ > 0 such that

i1 − 1 = i2 = · · · = i2b′+1 > i2b′+2

In almost all cases, we can apply Lemma 12.11 to (J, r) to get the desired result using k = 1, t = 0, and s
can go from 0 to 2q − 2b′ − 2 by twos, depending on I.

There is one place where Lemma 12.11 does not apply and we must use Lemma 12.10. That is when 
b′ = q − 1 and i2q−1 = i2q + 1. Here s = 2q − 1 and t = 0.

Note that this turns a term associated with b′ > 0 into one with b = 0.
For targets, we have hit all of our b = 0, εj = 0, ij > ij+1. For sources, we have used all of b with 

i1 = · · · = i2b+1 > i2b+2 and εj = 1, ij ≥ ij+1 for b = 0 to q − 1. Note that this includes all of the b = 0, 
εj = 1, ij ≥ ij+1 terms.
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Summary 14.4. The unused terms we need as sources are all of the q > b ≥ 1, εj = 1, with ij ≥ ij+1, 
excluding terms with

i1 = i2 = · · · = i2b = i2b+1 > i2b+2

The unused terms we need as targets are b ≥ 1, εj = 0, with ij > ij+1.

We must now do b > 0.
Moving on, we want to find all of the b = 1 terms as targets. We do much that is similar to the b = 0

case. We begin with source terms that also have b = 1. When b = 1, we have i3 > i4, and since we have 
excluded i1 = i2 = i3 > i4, we always have i1 = i2 > i3 > i4. Clarity is often thwarted by the necessity to 
handle special cases. We want to apply our lemmas to get

d1,j(wI,ε) = wI+Δ3+Δj ,ε−Δj
.

We see that this has property A because i2 > i3 and ij−1 > ij . We cannot replace Δ3 with Δ1 because that 
term does not exist in E1,j . We cannot replace it with Δ2 because that term does not have property A.

Generally, we can do this using Lemma 12.11 when we are not dealing with the special cases. In our use 
we have t = 0 or t = 2 (if i2 = i3 + 1), k = 3, and s can be anywhere from 0 to 2q − 4 (by twos).

In the special case of source with j = 4 and i1 = i2 > i3 = i4 +1 and ε4 = 1, we have to use Lemma 12.10
with s = 1, k = 3, and t = 0 unless i2 = i3 + 1, in which case t = 2.

We had i3 > i4 and we added Δ3 so we missed the cases where i3 = i4 + 1. We are left with the need to 
hit these cases. Again, this is just like the b = 0 case. As targets, we have not yet hit the b = 1 terms (I, ε)
with εj = 0, ij > ij+1 and i3 = i4 + 1. The source that works here is (J, r) = (I − Δ3 −Δj , ε + Δj). To see 
this, recall that for b = 1, we have i2a = i2a+1 for 2 < 2a < 2q. Find the q > b′ > 0 such that

i3 − 1 = i4 = · · · = i2b′+1 > i2b′+2

In almost all cases, we can apply Lemma 12.11 to get the desired result. using k = 3, t = 0 or t = 2 (if 
i2 = i3 + 1), and s can go from 0 to 2q − 2b′ − 2 by twos, depending on I.

Of course, if 2b′ + 1 = 2q − 1 AND i2q−1 = i2q + 1, then we have to use Lemma 12.10. Here we have 
s = 2q − 3, t = 0 or t = 2 (if i2 = i3 + 1).

We need to identify all of the targets hit so far and all of the sources used so far.
We have hit all elements as targets with b = 0 or b = 1, εj = 0 and ij > ij+1.
We have used all terms as sources with b = 0 and b = 1 with εj = 1 and ij ≥ ij+1. In addition, we have 

used all terms with i1 = · · · = i2b′+1 > i2b′+2 for b′ > 0 and all terms with i1 = i2 > i3 = · · · = i2b′+1 > i2b′+2
for b′ > 1. Combined, that is i1 = i2 ≥ i3 = · · · = i2b′+1 > i2b′+1.

Summary 14.5. The unused terms we need as sources are all of the q > b ≥ 2, εj = 1, ij ≥ ij+1, excluding 
terms with

i1 = i2 ≥ i3 = i4 = · · · = i2b = i2b+1 > i2b+2

The unused terms we need as targets are b ≥ 2, εj = 0, with ij > ij+1.

We are getting close to our induction statement where we will set things up to do d1,j for b ≥ 2 using 
the induction.

Our d1,j on what is left cannot involve i1 or i2 because (I + Δ1 + Δj , ε − Δj) does not give a term in 
E1,j and (I + Δ2 + Δj , ε − Δj) does not have property A.
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Thus, we can ignore i1 and i2. What is left of (I, ε) if we remove them is an I ′ of length n − 2. More 
importantly, ij = i2q moves down to the new i′2q−2 and the b ≥ 2 condition moves to a b′ ≥ 1 condition.

This translates our b ≥ 2, n, j = 2q problem, Summary 14.5, to our b′ ≥ 1, n −2, j−2 = 2q−2 problem, 
Summary 14.4. They are identical, so, by induction, having already solved the later problem, we solve the 
present problem.

Because of the idiosyncrasies of the b = 0 case, we couldn’t just go from b ≥ 1 to b′ ≥ 0, but had to do 
the induction from b ≥ 2 to b′ ≥ 1.

Because we must use b = 2 and we have 2b +2 ≤ j +1 and we must have j = 2q, our lowest computation 
here is for E1,7, so, to use induction, we needed to have computed our E1,5, which we did in the previous 
section. �
Remark 14.6. Rather than the downward induction we have done, we could equally well have done an 
induction on b. All that would be necessary would be to replace the 2 in 14.5 with a k and do the induction 
on k. The statement of the excluded terms would be a bit more complicated and showing that the lower it
aren’t involved would also be a bit more complicated. But, on the whole, the argument would be roughly 
equivalent.

15. All the MU(n) theorems

Proofs of Theorems 1.2 and 1.3. We begin with n = 2q. In Theorem 14.1, for the part with v̂1 = 0, we have 
in = in+1, but since there is no in+1, this cannot happen and there is no contribution to the answer from 
this second part. We apply Equation (11.4) to the Z/(2)[v̂1] free part of Theorem 14.1. Since s(ε) = 0, we 
have vo/e2 = 1. We get, modulo higher filtrations,

wI,ε = ĉ2i1−2i2
1 ĉ2i2−2i3

2 · · · ĉ2inn = P̂ i1−i2
1 P̂ i2−i3

2 · · · P̂ in
n

We have i2b−1 = i2b for all 0 < b ≤ q, so we end up with

P̂ i2
2 P̂ i4

4 · · · P̂ i2q
2q .

Of course, property A requires that i2q > 0. This gives us the E2 of Theorem 1.2.
Moving on to d3, because there is no ûε anymore and all the P̂k are permanent cycles, all of our wI,ε for 

E2 are permanent cycles. Our entire d3 is given by what happens on the coefficient ring. Using Remark 2.8, 
d3(v2

2) = v̂1v
−4
2 , we get the E4 term and the x3-torsion generators. The differential d7 is again all on the 

coefficients so we have d7(v4
2) = v̂2v

−8
2 = 1, and we our x7-torsion generators.

The proof for the n = 2q + 1 case is a bit different. We can eliminate the Z/(2)[v̂1] free part from 
consideration because it requires in = in+1 and there is no in+1. We also have vo/e2 = 1. The reduction to 
Pontryagin classes is the same idea, but our differential on the coefficients d3(v2

2) = v̂1v
−4
2 gives us a v̂1 that 

we don’t have. In our wI,ε we want to apply our usual Relation 12.4, but if we do that, we must be sure 
that the resulting wI+Δk,0 exists. If i2b > i2b+1 we can just use v̂1p̂

i2b+1
2b+1 = p̂

i2b+1+1
2b+1 . Anything lower than 

that does not exist. If, however, i2b = i2b+1, we cannot do that but we can use v̂1p̂
i2b′+1
2b′+1 = p̂

i2b′+1+1
2b′+1 where 

we have b′ is the smallest number with i2b′+1 = · · · = i2b+1. This has property A and takes an element of 
type b to one of type b′. This allows us to hit all elements except when b = q and i2q+1 = 1. This gives 
us both our x3-torsion description and our E4 term of Theorem 1.3. There is no mystery now to d7 or the 
x7-torsion. This is just computed on the coefficients as with n = 2q. �
Remark 15.1. All the terms in the theorems that are in degrees 8∗ can be found just by eliminating the 
v2,6
2 . To see degrees 16∗, eliminate the v4

2 as well. All x3-torsion generators are in degrees 8∗ and the 
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))
x7-torsion generators are in degrees 16∗. Since xi-generators inject to E(2)∗(−), this concludes the proof of 
Theorem 1.4.

All that remains is to give a more MU(n) associated description of the x1-torsion generators. They are 
all recoverable from Theorem 14.1 where they are written in terms of symmetric functions. Here, we rewrite 
this in terms of Pontryagin and Chern classes to give it more the look of MU(n). Again, we rely on Equation 
(11.4). We can just read this off from 14.1.

Recall from Lemma 11.5 that when we write our elements in terms of Chern classes, our vo/e2 is determined 
by the parity of j1 + j3 + j5 + · · · , for ĉJ .

Theorem 15.2. Representatives for the x1-torsion generators in the associated graded object for ER(2)∗(MU(n
start with:

Z(2)[v̂1][[ĉ1, ĉ2, . . . , ĉn]]{2vo/e2 v0,2,4,6
2 ĉn} ∼= Z(2)[v̂1][[ĉ1, ĉ2, . . . , ĉn]]{vo/e2 αiĉn} 0 ≤ i < 4

For 1 ≤ j = 2b + 1 ≤ n, we have

Z/(2)[v̂1][[P̂ i2
2 , P̂ i4

4 , · · · , P̂ i2b
2b , P̂

ij
j , ĉ

ij+1
j+1 , ĉ

ij+2
j+2 , · · · , ĉinn ]]{vo/e2 v0,2,4,6

2 v̂1P̂j ĉn}

except when j = n, then we do not need the ĉn at the end. The parity that determines vo/e2 is the parity of 
j2b+3 + j2b+5 + j2b+7 + · · · .

For 0 ≤ 2b < j = 2q ≤ n we get

Z/(2)[P̂ i2
2 , P̂ i4

4 , · · · , P̂ i2b
2b , P̂

i2b+1
2b+1 , P̂

i2b+3
2b+3 , · · · , P̂

ij−1
j−1 , P̂

ij
j , ĉ

ij+1
j+1 , ĉ

ij+2
j+2 , · · · , ĉinn ]{vo/e2 v0,2,4,6

2 P̂2b+1P̂j ĉn}

except when j = n, then we do not need the ĉn at the end. The parity that determines vo/e2 is the parity of 
j2q+3 + j2q+3 + j2q+5 + · · · .

Remark 15.3. To get the x1-torsion generators in degrees 8∗, we have to have vo/e2 = 1 and we only use v0,4
2 . 

For degrees 16∗, we must have vo/e2 = 1 and no powers of v2.
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