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The Omega spectrum for mod 2 KO-theory

W. Stephen Wilson

The 8-periodic theory that comes from the KO-theory of the mod 2 Moore space
is the same as the real first Morava K-theory obtained from the homotopy fixed
points of the Z/(2) action on the first Morava K-theory. The first Morava K-
theory, K (1), is just mod 2 KU-theory. We compute the homology Hopf algebras
for the spaces in this Omega spectrum.

1. Introduction

We have stable maps 2 : S0
→ S0 and η : S1

→ S0 and we get a stable diagram

S1 2
//

η
��

S1

η
��

// 61 M
η
��

S0 2
//

��

S0 //

��

M

��

N 2
// N // NM

with M the mod 2 Moore space and N and NM the appropriate cofibers.
If we smash this diagram with connective K-theory, bo, and then only look at

the low dimensional spaces in the Omega spectrum where we get periodicity, we
get the diagram of fibrations

KOi+1

η
��

2
// KOi+1

η
��

ρ
// KR(1)i+1

η
��

δ
// KOi+2

η
��

KOi

ρ
��

2
// KOi

ρ
��

ρ
// KR(1)i

ρ
��

δ
// KOi+1

ρ
��

KUi

δ
��

2
// KUi

δ
��

ρ
// K (1)i

δ
��

δ
// KUi+1

δ
��

KOi+2
2
// KOi+2

ρ
// KR(1)i+2

δ
// KOi+3

(1.1)

Thanks to Nitu Kitchloo, Don Davis, Bill Singer, and the referee, for some help with this.
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The KUi are the usual 2-periodic spaces for complex K-theory and the KOi the
8-periodic spaces for real K-theory. The K (1)i are 2-periodic and they are just
the mod 2 KU-theory, or the first Morava K-theory. The spaces of interest are
the KR(1)i , which are simultaneously the real version of the first Morava K-theory
(see [Hu and Kriz 2001, Theorem 3.32]) and the mod 2 KO-theory.

Our interest is in computing the Hopf algebra H∗(KR(1)i ). We work with Z/(2)
coefficients in homology. Our notation is that P is a polynomial algebra, E is an
exterior algebra, TP4(x) is P(x)/(x4). The Frobenius F is just the map that takes x
to x2. The Verschiebung V is the dual of the Frobenius and gives us the coproduct
structure on our Hopf algebras. Our notation is such that the subscript of an element
denotes the degree it resides in. Keep in mind that the k used as a subscript for the
tensor product in the main theorem is not a field, but an index. This is always the
case throughout the paper when the tensor symbol has a subscript.

Our main theorem is easy to state.

Theorem 1.2. The homology of the connected component of KR(1)i is as follows.
If the Verschiebung isn’t described, it is zero. The index k runs over all k > 0.

i = 0 E(xk)⊗k P(y4k+2) V (x2k)= xk

i = 1 P(x2k+1)⊗k P(y4k+2) V (y4k+2)= x2k+1

i = 2 P(x8k+2)⊗k P(y4k+3)

i = 3 E(x8k+3)⊗k P(y8k+4)

i = 4 E(x4k)⊗k E(y8k+5) V (x8k)= x4k

i = 5 E(x4k+1)⊗k E(y2k) V (y4k)= y2k, V (y8k+2)= x4k+1

i = 6 ⊗kTP4(xk) V (x2k)= xk

i = 7 E(x2k)⊗k P(y2k+1) V (x4k)= x2k

Remark 1.3. We began this research trying to give meaningful names to all of
the algebra generators. Eventually, it became clear that it was easier to compute
just using the degrees of the generators. We do know good names for all of the
generators of H∗(KO∗), H∗(KU∗), and H∗(K (1)∗), and we are able to relate our
poorly named generators to generators we are more familiar with, thus solving the
naming problem after the fact. In order to be explicit about these results, we have
to write down the known homologies first. We put that off until the next section.
We can give the nonexplicit answer here.

Theorem 1.4. The maps of the connected components KOi
ρ
−→ KR(1)i

δ
−→ KOi+1

give rise to maps on homology

H∗(KOi )
ρ∗
−→ H∗(KR(1)i )

δ∗
−→ H∗(KOi+1)

that are exact in the category of Hopf algebras at the middle term. For i = 1, 2, 5
and 6, this is a short exact sequence of Hopf algebras. In the case i = 0 we have a
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long exact sequence

H∗(KO1)
η∗
−→ H∗(KO0)

2∗
−→ H∗(KO0)

ρ∗
−→ H∗(KR(1)0)

δ∗
−→ H∗(KO1)

ρ∗
−→ H∗(KU1).

In the above diagram there are 20 distinct spaces as i varies, KU and K (1)
are 2-periodic, and KO and KR(1) are 8-periodic. We know the homology of 12 of
them. It is the other 8 associated with KR(1) that we are interested in. Counting the
suspension maps, there are 98 maps to evaluate, 48 of them involving the KR(1)
spaces. For each map, there is a spectral sequence, and 56 of them involve the
KR(1) spaces. It is not necessary to know all of them to get our main results, but
it is often helpful. Because I want to have access to this information, it has been
written up as a supplement to this paper. Once you know the homology of all the
spaces and also know the maps, it is fairly easy to figure out how all the spectral
sequences behave. Also, for my personal benefit to have a reference, the long exact
sequences of homotopy groups have been put in the appendix as well. In this paper
we state, compute, and use, only what we need, but we assume results not involving
the KR(1)i .

The spaces KR(1)i have been around for a long time. When I tried to find a
reference for the homotopy groups, the experts informed me that they were known
in the 1960s to Mahowald and that there wasn’t a reference because everyone
already knew them. What might be new is that the KR(1)i are also the real first
Morava K (1)-theory. This comes from the work of Hu and Kriz [2001], where they
compute the homotopy of all of the real Morava K (n), KR(n). This project got
started because I thought KR(2) would be interesting but that I should quickly take
a look at KR(1) first. From the point of view of personal satisfaction, the homology,
H∗(KR(1)6), was both the most difficult to compute and the most interesting. In
the beginning, motivation was easy. I was hoping to find something interesting.
After the fact, it isn’t clear how to motivate. However, a quick look at the appendix
might make this paper look elegant.

In Section 2 we give the homology of the spaces that are known already as well
as state the details of Theorem 1.4. In Section 3 we state the spectral sequences
we use and discuss how Hopf algebras help us with our computations. After that,
each section is just the computation of some H∗(KR(1)i ). They are somewhat in
order except that to do H∗(KR(1)6), we need to have H∗(KR(1)7) first, which is
computed from H∗(KR(1)0).

2. Connecting to known results

Our preferred generators for H∗(KU∗) and H∗(KO∗) come from Hopf rings. They
are given elegant descriptions in [Cowen Morton and Strickland 2002]. In [Kitchloo
and Wilson 2007, Section 25], there is an alternative Hopf ring description for

http://msp.org/akt/2020/5-2/akt-v5-n2-x01-appendix.pdf
http://msp.org/akt/2020/5-2/akt-v5-n2-x01-appendix.pdf
http://msp.org/akt/2020/5-2/akt-v5-n2-x01-appendix.pdf
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H∗(KO∗) and one can read off that for H∗(KU∗) from [Ravenel and Wilson 1977].
We do not write down these descriptions in this paper. It is enough to know they
have nice Hopf ring names. In the case of H∗(KR(1)∗), we do not get Hopf ring
names because KR(1) is not a ring spectrum.

We give the descriptions of the homologies we need in this paper.

Theorem 2.1. The homology of the connected component of KUi is as follows. If
the Verschiebung isn’t described, it is zero. The index k runs over all k > 0.

i = 0
⊗

k P(x2k) V (x4k)= x2k

i = 1
⊗

k E(x2k+1)

Theorem 2.2. The homology of the connected component of KOi is as follows. If
the Verschiebung isn’t described, it is zero. The index k runs over all k > 0.

i = 0
⊗

k P(xk) V (x2k)= xk

i = 1
⊗

k P(x2k+1)

i = 2
⊗

k P(x4k+2)

i = 3
⊗

k E(x4k+3)

i = 4
⊗

k P(x4k) V (x8k)= x4k

i = 5
⊗

k E(x4k+1)

i = 6
⊗

k E(x2k) V (x4k)= x2k

i = 7
⊗

k E(xk) V (x2k)= xk

Theorem 2.3. The homology of the connected component of K (1)i is as follows.
If the Verschiebung isn’t described, it is zero. The index k runs over all k > 0.

i = 0 TP4(x4k+3)⊗k E(y4k)⊗k E(z8k+2)
V (y8k)= y4k, V (y16k+4)= z8k+2,

V (y16k+12)= (x4k+3)
2

i = 1 E(x4k+1)⊗k P(y4k+2) V (y8k+2)= x4k+1

In the paper this is from, [Wilson 1984], we computed H∗(K (n)∗) for all n and
all primes. Slight adjustments had to be made all along the way for p = 2, and it
seems that they weren’t all made.

In the paper, we write

H∗(K (1)0)' E(x4k+3)⊗k E(x2k),

but we missed the extension x2
4k+3= x8k+6. So, what is in the paper is an associated

graded version. When the spectral sequence there is used to compute H∗(K (1)1),
deep down in the gruesome depths of the paper there is a d1, so the resulting answer
is correct. Explicitly, what it shows in that paper is that we need (in the notation
of the paper) (e1a(0))2 = b(0)b(1). The rest follows from Hopf ring considerations
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as our generators there all have nice Hopf ring names. Something similar happens
for K (n) in that paper, but again, only for p = 2.

We can now use these results to connect to our new results.

Theorem 2.4. The exactness at the middle term of

H∗(KOi )→ H∗(KR(1)i )→ H∗(KOi+1)

of Theorem 1.4 is given explicitly as follows, where, if not described, the element
maps to zero. The index j runs over all j > 0.

i = 0

⊗
j P(y j )

y j 7→z j
−−−−→ E(z j )⊗ j P(zz4 j+2)

zz4 j+2 7→(w2 j+1)
2

−−−−−−−−−−→
⊗

j P(w2 j+1)

i = 1

⊗
j P(y2 j+1)

y2 j+1 7→z2 j+1
−−−−−−−→ P(z2 j+1)⊗ j P(zz4 j+2)

zz4 j+2 7→w4 j+2
−−−−−−−−→

⊗
j P(w4 j+2)

i = 2

⊗
j P(y4 j+2)

y8 j+2 7→z8 j+2
−−−−−−−−−→
y8 j+6 7→(zz4 j+3)

2
P(z8 j+2)⊗ j P(zz4 j+3)
zz4 j+3 7→w4 j+3
−−−−−−−−→

⊗
j E(w4 j+3)

i = 3

⊗
j E(y4 j+3)

y8 j+3 7→z8 j+3
−−−−−−−→ E(z8 j+3)⊗ j P(zz8 j+4)

zz8 j+4 7→w8 j+4
−−−−−−−−→

⊗
j P(w4 j )

i = 4

⊗
j P(y4 j )

y4 j 7→z4 j
−−−−−→ E(z4 j )⊗ j E(zz8 j+5)

zz8 j+5 7→w8 j+5
−−−−−−−−→

⊗
j E(w4 j+1)

i = 5

⊗
j E(y4 j+1)

y4 j+1 7→z4 j+1
−−−−−−−→ E(z4 j+1)⊗ j E(zz2 j )

zz2 j 7→w2 j
−−−−−−→

⊗
j E(w2 j )

i = 6
⊗

j E(y2 j )
y2 j 7→(z j )

2

−−−−−−→
⊗

j TP4(z j )
z j 7→w j
−−−−→

⊗
j E(w j )

i = 7

⊗
j E(y j )

y2 j 7→z2 j
−−−−−→ E(z2 j )⊗ j P(zz2 j+1)

zz2 j+1 7→w2 j+1
−−−−−−−−→

⊗
j P(w j )

Remark 2.5. The long exact sequence for i = 0 of Theorem 1.4 consists of the
above maps spliced together with well-understood maps that we will see throughout
the paper.

3. Hopf algebras, fibrations, and spectral sequences

We need two spectral sequences. The homology version we use computes the
homology of a base space from the homologies of the fiber and the total space. It
is in [Moore 1961, Theorems 2.2 and 3.1]. I think of it as the bar spectral sequence,
but it should perhaps be called the Moore spectral sequence. Unfortunately, Moore
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doesn’t indulge appropriately with Hopf algebras as he clearly could have. Rothen-
berg and Steenrod [1965] really bring in the Hopf algebras, but neglected to do the
more general case where the total space isn’t contractible. Everyone seems to think
they can do it by just slightly extending Rothenberg and Steenrod’s proof, except
those who think it is already in their paper. The cohomology version computes
the cohomology of the fiber from the cohomologies of the base space and the total
space. This seems to originate with Eilenberg and Moore [1966]. However, my
favorite reference here is [Smith 1970] because this is where I learned to compute
with Hopf algebras in these spectral sequences.

We state the two spectral sequences for the record and then discuss the use of
Hopf algebras in their computations.

Proposition 3.1. Let F→ E→ B be a fibration of infinite loop spaces and maps.

(1) There is a first quadrant homology spectral sequence of Hopf algebras

E2
∗,∗ = TorH∗(F)

∗,∗ (H∗(E),Z/(2))⇒ H∗(B)

with dr : Eu,v→ Eu−r,v+r−1.

(2) There is a second quadrant cohomology spectral sequence of Hopf algebras

E∗,∗2 = Tor∗,∗H∗(B)(H
∗(E),Z/(2))⇒ H∗(F)

with dr : Eu,v
→ Eu+r,v−r+1

Discussion of Hopf algebras, Tor, and differentials. Combining the above spec-
tral sequences with Hopf algebras makes for a powerful tool. We only discuss the
homology version but everything carries over to the cohomology version. The gen-
eral reference for Hopf algebras is [Milnor and Moore 1965], but my computational
reference is [Smith 1970].

We work with mod 2 homology throughout. The Borel structure theorem (see
[Milnor and Moore 1965]) for our graded Hopf algebras over Z/(2) is that they are
the tensor products of algebras of the form P(xi ) (polynomial), E(xi ) (exterior),
and TP2 j (xi )= P(xi )/(x2 j

i ) (truncated polynomial). (Recall our notation is that xi

is of degree i .) Sub-Hopf algebras of polynomial algebras must also be polynomial.
In our Hopf algebras, we have 2∗ = FV = VF, where F is the Frobenius (i.e.,
x 7→ x2) and V is the Verschiebung (i.e., the dual of the Frobenius on cohomology).
The Hopf algebra 0[xi ] is dual to P(yi ) with yi primitive. As such, it is Z/(2)-free
on elements γk(xi ) in degree ki . As an algebra, it is an exterior algebra on the
generators γ2 j (xi ) of degree 2 j i . We have V (γ2 j+1(xi ))= γ2 j (xi ).

There are a number of situations that arise frequently in our computations. For
example, we might find that we have an associated graded object that is

⊗
i E(xi ),

but we know that when the extensions are solved it must be polynomial. This
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becomes
⊗

i P(x2i+1) for degree reasons. Similarly
⊗

i E(x2i ) and
⊗

i E(x4i ), if
they are really polynomial algebras, become

⊗
i P(x4i+2) and

⊗
i P(x8i+4). If we

have
⊗

i 0[xi ] as an associated graded object for what we know is polynomial, we
get

⊗
i P(xi ).

On the other hand, if there are no extension problems, as algebras, we have that⊗
i 0[x2i+1] is just

⊗
i E(yi ), and

⊗
i 0[x4i+2] is just

⊗
i E(y2i ).

If we have the differential Hopf algebra E(xi )⊗ P(yi+1) with d1(xi )= yi+1, we
know that the homology in positive degrees is zero. We are often confronted with
the dual of this situation, where we have E(xi )⊗0[yi+1] with d1(yi+1)= xi . Again,
our homology here is zero in positive degrees. It is not always that simple though.
It often happens that we have E(x2i+1)⊗0[yi+1] and have d2(γ2(yi+1))= x2i+1.
This leaves E(yi+1) as its homology. When this happens, we abuse notation and
write

E(x2i+1)⊗0[yi+1] ' E(x2i+1)⊗ E(yi+1)⊗0[y2i+2]

so we can see the differential and results more clearly. This is just the associated
graded object we get from the short exact sequence of Hopf algebras

E(yi+1)→ 0[yi+1] → 0[y2i+2],

where we have written γ2(yi+1)= y2i+2. Similarly, worse happens and we need

E(x4i+3)⊗0[yi+1] ' E(x4i+3)⊗ E(yi+1)⊗ E(y2i+2)⊗0[y4i+4],

where we have a differential taking y4i+4 to x4i+3 leaving only E(yi+1)⊗ E(y2i+2)

but with V (y2i+2)= yi+1.
To deal with our spectral sequences, we must be able to evaluate Tor. The simple

case of Tor0,∗ is the Hopf algebra cokernel of the map H∗(F)→ H∗(E). There are
no differentials on this zero filtration and what remains after differentials hit it is
a sub-Hopf algebra of H∗(B), i.e., the image of H∗(E)→ H∗(B). In general, for
Tori, j , this is our i-th filtration and an element has total degree i + j .

We have a few facts to accumulate.

(1) If A is the Hopf algebra kernel of the map H∗(F)→ H∗(E), then the higher
filtrations are given by TorA(Z/(2),Z/(2)).

(2) Tor commutes with tensor products.

(3) TorE(xi )(Z/(2),Z/(2)) = 0[yi+1] with yi+1 in bidegree (1, i) and γ2 j (yi+1)

in bidegree 2 j times this.

(4) TorP(xi )(Z/(2),Z/(2))= E(yi+1) with yi+1 in bidegree (1, i).

(5) TorTP2k (xi )(Z/(2),Z/(2)) = E(yi+1)⊗0[z2k i+2] with yi+1 in bidegree (1, i)
and z2k i+2 in bidegree (2, 2ki).

(6) Elements in filtrations zero and one are permanent cycles.
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If the kernel A is trivial, the spectral sequence collapses and the cokernel is H∗(B),
giving us a short exact sequence H∗(F)→ H∗(E)→ H∗(B).

Since the kernel A is a Hopf algebra, Borel’s theorem applies and the above
allows us to compute Tor completely. Differentials must start on the second or
higher filtration and they must take generators to primitives. The primitives all live
in filtrations 0, 1, or 2 and the primitives in filtrations 1 and 2 are all generators.
All generators in filtrations 2 or higher are of even degree. Thus the targets of
differentials must be odd degree elements in filtrations 0 or 1. A fact that we often
use is that any even degree element in filtrations 0 or 1 must survive.

There is one more special case we need to discuss. If we have a short exact
sequence E(y2i )→ TP4(xi )→ E(xi ) that takes y2i to (xi )

2, we can compute Tor
of TP4(xi ) as above and get E(zi+1)⊗ 0[w4i+2]. If we didn’t know there was
the square x2

i = y2i in the middle term, but thought the middle term might be
E(y2i )⊗ E(xi ), then Tor would be 0[zi+1]⊗0[u2i+1]. If we had a reason to know
that this was not correct, then d1(γ2(zi+1))= u2i+1 would leave us with the correct
answer.

4. H∗(KR(1)0)

We begin with the spectral sequence for

KO0
2
−→ KO0→ KR(1)0.

Computing 2∗ is easy: we have

2∗(x2i )= FV(x2i )= F(xi )= (xi )
2 and 2∗(x2i+1)= 0.

We can read off the cokernel as
⊗

i E(xi ) and the kernel as
⊗

i P(x2i+1). Com-
puting Tor on the kernel, we get

⊗
j E(y2 j ). Since all of these generators are in

filtrations zero and one, the spectral sequence collapses. What we know at this
stage is that we have⊗

i E(xi )⊂ H∗(KR(1)0), V (x2i )= xi

with quotient having an associated graded object
⊗

j E(y2 j ).
We move now to a different spectral sequence, the one for

KO0→ KR(1)0→ KO1.

We have computed the image of H∗(KO0)→ H∗(KR(1)0). It is just
⊗

i E(xi ). The
cokernel is the object with associated graded object

⊗
i E(y2i ) above. That is our

zero filtration for this spectral sequence. The generators are all in even degrees
and so must survive. This is all of the zeroth filtration and the zero filtration must
be a sub-Hopf algebra of H∗(KO1) which is polynomial, so the cokernel must be
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polynomial, and for degree reasons, this must be
⊗

j P(y4 j+2). This splits as
algebras and coalgebras and so completes our computation.

5. H∗(KR(1)1)

We start with the spectral sequence for the fibration

KO1
2
−→ KO1→ KR(1)1.

The map 2∗ is zero because all of the generators x2i+1 for H∗(KO1) are primitive,
so V (x2i+1)= 0, giving 2∗(x2i+1)= FV(x2i+1)= 0. The cokernel is H∗(KO1)=⊗

i P(x2i+1) and so is the kernel. We now know the zeroth filtration and taking
Tor of the kernel, we get exterior generators y2i in filtration 1. The spectral se-
quence collapses because all the generators are in filtrations 0 and 1. We still have
extension problems though. Again, we move to the next spectral sequence for

KO1→ KR(1)1→ KO2.

We have computed the image of H∗(KO1)→ H∗(KR(1)1). It is just
⊗

i P(x2i+1).
There is no kernel, so the spectral sequence collapses and is just the cokernel in
the zeroth filtration. This becomes a short exact sequence of Hopf algebras

H∗(KO1)→ H∗(KR(1)1)→ H∗(KO2).

But this is just ⊗
i P(x2i+1)→ H∗(KR(1)1)→

⊗
i P(y4i+2)

and so splits as algebras, giving us most of our answer. There is an extension
problem to solve to get V (y4i+2)= x2i+1.

For that we use the spectral sequence for

KR(1)0→∗→ KR(1)1.

Computing Tor of H∗(KR(1)0) we get

0[wk]⊗k E(ww4k+3).

We should note that we have to use the Z/(2) in degree zero for H0(KR(1)0) to get
the w1 above.

This is way too big. Remember, we know the answer as algebras here. To
get this down to size, we must take the first possible differential, i.e., we must
have d3(γ4(wk)) 6= 0. This element is degree 4k (in the fourth filtration) so the
differential hits an element in the first filtration in degree 4k − 1. There are two
possibilities, but it must hit one of them, and we don’t need to know which just
yet. All that is left after these differentials is an exterior algebra

⊗
i E(zi ) with

generators in filtration 1 and an exterior algebra
⊗

i E(γ2(wi )) with generators in
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filtration 2. This is precisely the size of the known answer so these differentials
must indeed happen.

We know that the answer is polynomial, so the Frobenius must be injective.
The Frobenius cannot raise filtration so the injective Frobenius on the first filtration
gives us

⊗
i P(z2i+1), forcing (to get the correct answer) the Frobenius to inject on

the second filtration to get
⊗

i P(w4i+2). The only ambiguity in the first filtration
is about which elements in degrees 4i +3 have survived. We know that the element
in degree 2i + 1 in the first filtration must square to the element in degree 4i + 2,
and this is unambiguously x4i+2 = V (γ2(x4i+2)). But we know that we must have
γ2(x4i+2) = (γ2(x2i+1))

2 because of the injectivity of F . But now we have just
computed VF on γ2(x2i+1) and found it nonzero. Consequently, VF = FV must
also be nonzero so that V is nonzero. We get our result that V of every generator
of P(y4i+2) is a generator of P(x2i+1) as desired.

6. H∗(KR(1)2)

We start with the spectral sequence for

KO2
2
−→ KO2→ KR(1)2.

The map 2∗ is zero because all of the generators x4i+2 for H∗(KO2) are primitive,
so V (x4i+2)= 0, giving 2∗(x4i+2)= FV(x4i+2)= 0. The cokernel is H∗(KO2)=⊗

i P(x4i+2) and so is the kernel. We now know the zeroth filtration and taking
Tor of the kernel, we get

⊗
i E(y4i+3). The spectral sequence collapses because all

the generators are in filtrations 0 and 1. We still have extension problems though.
What we have from the spectral sequence is the short exact sequence⊗

i P(x4i+2)→ H∗(KR(1)2)→
⊗

i E(y4i+3).

There is an extension problem we need to solve, namely (y4i+3)
2 from filtration 1

is x8i+6 in filtration 0. Once this is done, we would have the algebra structure.
To solve this problem we look at the spectral sequence for

KR(1)2
η
−→ KR(1)1→ K (1)1.

We have maps

H∗(KR(1)2)→ P(z2i+1)⊗i P(zz4i+2)→ E(w4i+1)⊗i P(ww4i+2).

Our calculation so far shows that H∗(KR(1)2) is generated by primitives. We know
from our computation of H∗(KR(1)1) that V (zz4i+2)= z2i+1, so all the primitives
in H∗(KR(1)1) are in

⊗
i P(z2i+1). Since primitives map to primitives, we see

that
⊗

i P(zz4i+2) is in the cokernel. It is even degree and in filtration zero so is a
subalgebra of H∗(K (1)1), so it must be our

⊗
i P(ww4i+2) in our known answer.

This accounts for all of the even degree generators and squares in H∗(K (1)1).
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If the element y4i+3 from H∗(KR(1)2) is in the kernel, then Tor gives rise to an
element in filtration 1 of degree 4i +4. This element would have to survive, but we
have all of the even degree generators and squares we need, so y4i+3 maps to z4i+3

because it is the only primitive in that degree. However, z4i+3 is a polynomial
generator, so y4i+3 must also be a polynomial generator, solving our extension
problem.

We can go one step further. If x8i+2 doesn’t map to (z4i+1)
2, this last element

would be even degree in the cokernel where we don’t need any more even degree
elements, so it does map accordingly. We get a rare short exact sequence:

H∗(KR(1)2)→ H∗(KR(1)1)→ H∗(K (1)1).

7. H∗(KR(1)3)

We start with the spectral sequence for

KR(1)2→∗→ KR(1)3.

Since H∗(KR(1)2)' P(x8i+2)⊗i P(x4i+3), computing Tor is easy: it is just

E(x8i+3)⊗i E(x4i )

and since the generators are all in filtration 1, it collapses. All we have left are
extension problems.

Next we use the spectral sequence for

KO3
2
−→ KO3→ KR(1)3.

The homology H∗(KO3) is generated by primitives, so 2∗ is zero. We get that
the cokernel is

⊗
i E(x4i+3) and so is the kernel. The E2 term of the spectral

sequence is
E(x4i+3)⊗i 0[y4i ].

This is much too big compared with our first spectral sequence. The only way
to cut it down to the right size is with

d2(γ2(y4i ))= x8i−1.

This leaves E(x8i+3)⊗i E(y4i ) as with the first one, but now we know that the
E(x8i+3) is the image of H∗(KO3) in H∗(KR(1)3) and the cokernel has an associ-
ated graded object of

⊗
i E(y4i ).

We can move on to the spectral sequence for

KO3→ KR(1)3→ KO4.
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We just computed the cokernel. It is even degree in filtration zero and all of the
elements must survive. Since this cokernel is a subalgebra of the polynomial alge-
bra H∗(KO4), this solves all of our extension problems, giving (y4i )

2
= y8i . So we

have the expected polynomial algebra
⊗

i P(y8i+4), completing our computation.

8. H∗(KR(1)4)

We use the spectral sequence coming from

KO4
2
−→ KO4→ KR(1)4.

As in the KR(1)0 case, H∗(KO4) is bipolynomial. The cokernel of 2∗ is just⊗
i E(x4i ) and the kernel is P(x8i+4). We take Tor of this to get exterior generators

y8i+5 in filtration 1. Since all our generators are in filtrations zero and one, the
spectral sequence collapses. For purely degree reasons, there can be no extension
problems given that we know

⊗
i E(x4i ) is a subalgebra.

9. H∗(KR(1)5)

We use the spectral sequence for the fibration

KR(1)4→∗→ KR(1)5.

Since H∗(KR(1)4)' E(x4k)⊗k E(y8k+5), Tor is

0[z4k+1]⊗k 0[w8k+6].

The only possible sources for differentials are in (total) degrees divisible by 4, but
the only odd degree primitives are in bidegree (1, 4k), total degree 4k+ 1, so there
can be no differentials (lowering total degree by 1). Furthermore, there are no
algebra extension problems. In filtration one there are only elements z4k+1 and
w8k+6, so there is nothing for them to square to. In filtration two, the elements are
in degrees 8k+ 2 and 16k+ 12 and again there are no elements in filtrations one or
two to square to. Continue inductively on filtration. The degrees never work out to
have extensions. This spectral sequence gives a complete description of V as well.

10. H∗(KR(1)7)

Note that we have skipped H∗(KR(1)6). It is the hardest to compute and all
our previous techniques failed us. We need H∗(KR(1)7) to solve the problems
with H∗(KR(1)6).

We use the cohomology spectral sequence for the fibration

KR(1)7→ KO0
2
−→ KO0.
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The homology of KO0 is bipolynomial with H∗(KO0)'
⊗

i P(xi ) and V (x2i )= xi .
So we get that H∗(KO0) is the same. Evaluating 2∗ gives 2∗(x2i ) = FV(x2i ) =

F(xi ) = (xi )
2. The cokernel is

⊗
i E(xi ) with V as before. Since V (x2i+1) = 0,

the kernel is
⊗

i P(x2i+1). Tor of the kernel is
⊗

i E(w2i ) with generators in the
first filtration. Since all of the generators are in the first 2 filtrations, the spec-
tral sequence collapses. Since we know the V on filtration zero (

⊗
i E(xi )), we

can dualize and we get that the homology has
⊗

i P(y2i+1) in it. There is the⊗
i E(ww2i ) (dual to

⊗
i E(w2i )) as well, but it could have extension problems

we need to solve.
To show that the

⊗
i E(ww2i ) really is an exterior algebra, we take a quick look

at the homology spectral sequence for

KO7
2
−→ KO7→ KR(1)7.

The first map is zero because H∗(KO7)'
⊗

i E(zi ) and F is zero, so the cokernel
contains

⊗
i E(z2i ) in the zero filtration and this subalgebra must survive. We now

have the desired exterior subalgebra.

11. H∗(KR(1)6)

This is both the hardest to compute and the most interesting. We start with our
usual fibration

KO6
2
−→ KO6→ KR(1)6.

H∗(KO6) '
⊗

k E(x2k), so 2∗ = VF = 0 because F is zero. That means all of
H∗(KO6) is the cokernel and it all survives because it is even degree. Using our
second spectral sequence for

KO6→ KR(1)6→ KO7,

we know that the first map injects so there is no kernel. The spectral sequence col-
lapses with H∗(KO7), the cokernel of the map. This gives the short exact sequence⊗

i E(x2i )→ H∗(KR(1)6)→
⊗

i E(yi ).

The goal here is to solve the extension problem (yi )
2
= x2i . We do already know

that V (x4i )= x2i on the first part and V (y2i )= yi on the second part.
We use the spectral sequence

KR(1)6→∗→ KR(1)7

to prove our result. Observe that Tor of E(x2i )⊗i E(yi ) is

0[w2i+1]⊗i 0[wwi ] = E(w2i+1)⊗i 0[w4i+2]⊗i E(wwi )⊗i 0[ww2i ]
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and that Tor of
⊗

i TP4(yi ) is

0[w4i+2]⊗i E(wwi ).

If the extension exists, there is a d1(ww2i )=w2i−1. We don’t need d1 for our result
though. Note that no matter what the extension is, in Tor we have

0[w4i+2]⊗i E(wwi ).

We rewrite this just a bit as

0[w4i+2]⊗i E(ww2i )⊗i E(ww2i+1).

Note that this is precisely the correct size for our known result of H∗(KR(1)7). That
doesn’t prove our result yet though. We do know that any even degree element in
filtration 1 or 2 must survive, and so we know we have E(w4i+2)⊗i E(ww2i )

already no matter what extensions there are. One of w4i+2 or ww4i+2 must be
exterior and the other must square. The only thing to square to is ww8i+4. Because
we know the answer and all these elements must survive, this must be part of the
polynomial part of the answer, so we must have (ww4i )

2
= ww8i . It doesn’t really

matter which of the elements is exterior. What we know from this is that we have
all the elements we need in degrees 4i+2 that are generators, primitives, or squares.

If we had a case where (y2i )
2
= 0 in H∗(KR(1)6), then from the above discussion,

we would have Tor giving us a 0[z2i+1] = E(z2i+1)⊗0[z4i+2]. We would not have
the 0[z4i+2] unless this happens. The z4i+2 is in filtration 2 so must survive, but
we already have enough elements in this degree, so this cannot happen.

We now know that (y2i )
2
= x4i always. We have

x2i = V (x4i )= VF(y2i )= FV(y2i )= F(yi )= (yi )
2.

This solves the extension problem for all yi with i odd.
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