
THE OMEGA SPECTRUM FOR MOD 2 KO-THEORY: APPENDIX

W. STEPHEN WILSON

ABSTRACT. In the main paper we compute the homology Hopf algebras for the 8 spaces
in the Omega spectrum for mod 2 KO-theory, which is the same as the first real Morava
K-theory. There are a lot of maps into and out of these spaces and the spaces for KO-
theory, KU-theory and the first Morava K-theory. For every one of these 98 maps (counting
suspensions) there is a spectral sequence. It wasn’t necessary to know all of these maps
and spectral sequences for the main paper, but it often helped. So, for my own purposes,
this appendix describes all 98 maps and spectral sequences. 48 of these maps involve our
new spaces and 56 of the spectral sequences do. In addition, the maps on homotopy are all
written down, again, just so I have them somewhere.

1. HOMOLOGIES

To make this appendix somewhat more self contained, we write down all of the homolo-
gies we need. In the main paper we write ⊗iP (xi) to be clear that we are taking the poly-
nomial algebra on generators xi for all i. The tensor products clutter up the notation. That
kind of precision isn’t necessary in this appendix, so here, when we write P (xi), we mean
⊗iP (xi). The tensor product is understood. This simplifies the notation significantly.

Theorem 1.1. The homology of the connected component of KR(1)
i

is as follows. If the Ver-
shiebung isn’t described, it is zero.

i = 0 E(xk)⊗ P (y4k+2) V (x2k) = xk

i = 1 P (x2k+1)⊗ P (y4k+2) V (y4k+2) = x2k+1

i = 2 P (x8k+2)⊗ P (y4k+3)

i = 3 E(x8k+3)⊗ P (y8k+4)

i = 4 E(x4k)⊗ E(y8k+5) V (x8k) = x4k

i = 5 E(x4k+1)⊗ E(y2k) V (y4k) = y2k V (y8k+2)= x4k+1

i = 6 TP4(xk) V (x2k) = xk

i = 7 E(x2k)⊗ P (y2k+1) V (x4k) = x2k

Theorem 1.2. The homology of the connected component of KU i is as follows.

i = 0 P (x2i) V (x4i) = x2i
i = 1 E(x2i+1)
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Theorem 1.3. The homology of the connected component of KO i is as follows.

i = 0 P (xi) V (x2i) = xi
i = 1 P (x2i+1)
i = 2 P (x4i+2)
i = 3 E(x4i+3)
i = 4 P (x4i) V (x8i) = x4i
i = 5 E(x4i+1)
i = 6 E(x2i) V (x4i) = x2i
i = 7 E(xi) V (x2i) = xi

Theorem 1.4. The homology of the connected component of K(1)
i

is as follows.

i = 0 TP4(x4k+3)⊗ E(y4k)⊗ E(z8k+2)

V (y8k) = y4k V (y16k+4) = z8k+2 V (y16k+12) = (x4k+3)
2

i = 1 E(x4k+1)⊗ P (y4k+2) V (y8k+2) = x4k+1

2. INTRODUCTION AND GROUND RULES

We will not reproduce computations done in the main paper, [Wil19], hereafter referred
to as the ”main paper.” Previous to the main paper, the maps, homologies, and spectral
sequences of the spaces KU i, KO i, and K(1)

i
were all known. We will not recompute

these but only describe them. Many of the maps and spectral sequences associated with
KR(1)

i
are not computed in the main paper. However, relying on the main paper, we do

knowH∗(KR(1)
i
) as well as the homologies for all of the previously known spaces. Some

of the maps and spectral sequences have already been computed in the main paper, but
not, by any means, all. When we have a new map or spectral sequence we will do more
than just describe it, but we will give details of the proof of what is new. For every spectral
sequence we study here, we know the answer, which is often quite helpful. In fact, often
the argument for a differential or the solution to an extension problem is ”because we
know the answer.” Rather than keep repeating this phrase, we will just assert differentials
and extension problem solutions if they must come about ”because we know the answer.”

Because there are 98 spectral sequences, we developed self-explanatory notation for them
so we can refer to them if necessary. The general form is a sequence of fibrations

X i −→ Y i −→ Z i −→ X i+1 −→ Y i+1 −→ Z i+1 −→ X i+2 −→ · · ·
First we compute the map H∗(X i) −→ H∗(Y i) and from that we compute the spectral
sequence for H∗(Z i). With the exception of one spectral sequence out of 98, this gives the
map H∗(Y i) −→ H∗(Z i). When we move to the next spectral sequence, i.e. for Y i −→
Z i −→ X i+1, we already know the first map and we can repeat the story and move on to
the next. Knowing the first map of each spectral sequence and the answer makes most of
them quite easy to deal with.

Of the 4 such sequences we describe, only one requires some work to start with the first
map, namely H∗(KR(1)

1
)

η−→ H∗(KR(1)
0
). The only second map that doesn’t come
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out of the spectral sequence is the map for H∗(K(1)
5
) → H∗(KR(1)

7
) from the spectral

sequence RKR557. The problem is solved in the very next spectral sequence, KRR576.

We have also labeled the infrequent short exact sequences so the curious can find them
easily.

3. H∗(KO i) => H∗(KO i+1) OOi(i+1)

We use the bar spectral sequence for

KO i −→ ∗ −→ KO i+1

i=0, OO01
H∗(KO 0) = P (xi) => H∗(KO 1) = P (y2i+1)

Tor of P (xi) is E(yi) with yi in filtration 1. Solving all extension problems, (yi)
2 = y2i,

gives P (y2i+1).

i=1, OO12
H∗(KO 1) = P (x2i+1) => H∗(KO 2) = P (y4i+2)

Tor of P (x2i+1) is E(y2i) with y2i in filtration 1. Solving all extension problems, (y2i)
2 = y4i,

gives P (y4i+2).

i=2, OO23
H∗(KO 2) = P (x4i+2) => H∗(KO 3) = E(y4i+3)

Tor of P (x4i+2) is E(y4i+3) with y4i+3 in filtration 1. This gives E(y4i+3).

i=3, OO34
H∗(KO 3) = E(x4i+3) => H∗(KO 4) = P (y4i)

Tor of E(x4i+3) is Γ[y4i] with y4i in filtration 1. We have (y4i)
2 = y8i and corresponding

formulas on the γs. This gives P (y4i).

i=4, OO45
H∗(KO 4) = P (x4i) => H∗(KO 5) = E(y4i+1)

Tor of P (x4i) is E(y4i+1) with y4i+1 in filtration 1. This gives E(y4i+1).

i=5, OO56
H∗(KO 5) = E(x4i+1) => H∗(KO 6) = E(y2i)

Tor of E(x4i+1) is Γ[y4i+2] = E(y2i).

i=6, OO67
H∗(KO 6) = E(x2i) => H∗(KO 7) = E(yi)

Tor of E(x2i) is Γ[y2i+1] = E(yi).

i=7, OO70
H∗(KO 7) = E(xi) => H∗(KO 0) = P (yi)

Tor of E(xi) is Γ[yi] with yi in filtration 1. We have (yi)
2 = y2i and corresponding formulas

on the γ generators. This gives P (yi).
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4. H∗(KU i) => H∗(KU i+1) UUi(i+1)

We use the bar spectral sequence for

KU i −→ ∗ −→ KU i+1

i=0, UU01
H∗(KU 0) = P (x2i) => H∗(KU 1) = E(y2i+1)

Tor of P (x2i) is E(y2i+1) with y2i+1 in filtration 1. This gives E(y2i+1).

i=1, UU10
H∗(KU 1) = E(x2i+1) => H∗(KU 0) = P (y2i)

Tor of E(x2i+1) is Γ[y2i] with y2i in filtration 1. Solving all extension problems, (y2i)
2 = y4i

and similar formulas on the γ generators, gives P (y2i).

5. H∗(K(1)
i
) => H∗(K(1)

i+1
) KKi(i+1)

We use the bar spectral sequence for

K(1)
i
−→ ∗ −→ K(1)

i+1

i=0, KK01

H∗(K(1)
0
) = TP4(x4i+3)⊗ E(y4i)⊗ E(z8i+2) => H∗(K(1)

1
) = E(x4i+1)⊗ P (y4i+2)

Tor of
TP4(x4i+3)⊗ E(y4i)⊗ E(z8i+2)

is
E(x4i)⊗ Γ[x16i+14]⊗ Γ[y4i+1]⊗ Γ[z8i+3]

with x4i, y4i+1, and z8i+3 in filtration 1 and x16i+14 in filtration 2. We rewrite Γ[y4i+1] as
E(y4i+1) ⊗ Γ[y8i+2] with the y8i+2 in filtration 2. We rewrite Γ[z8i+3] as E(z8i+3) ⊗ Γ[z16i+6]
with the y16i+6 in filtration 2. Our Tor is now

E(x4i)⊗ E(x4i+1)⊗ E(x8i+3)⊗ Γ[z4i+2]

where the exterior generators are in filtration 1 and the Γ generator is in filtration 2. Now
we rewrite Γ[z4i+2] as E(z4i+2)⊗ Γ[z8i+4] with the Γ generator in filtration 4. We now have
a d3,

d3(z8i+4) = x8i+3.

We are left with
E(x4i)⊗ E(x4i+1)⊗ E(z4i+2)

Solve the extension problems to get the known result H∗(K(1)
1
) = E(x4i+1) ⊗ P (y4i+2).

Those solutions are (x4i)
2 = x8i and (z4i+2)

2 = x8i+4.

i=1, KK10

H∗(K(1)
1
) = E(x4i+1)⊗ P (y4i+2) => H∗(K(1)

0
) = TP4(x4i+3)⊗ E(y4i)⊗ E(z8i+2)
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Tor is
Γ[x4i+2]⊗ E(y4i+3)

Rewrite Γ[x4i+2] as
Γ[x8i+2]⊗ E(x8i+6)⊗ Γ[x16i+12]

There is one extension problem, (y4i+3)
2 = x8i+6. After this we have

TP4(y4i+3)⊗ Γ[x8i+2]⊗ Γ[x16i+12]

Continuing to rewrite, this is

TP4(y4i+3)⊗ E(x8i+2)⊗ Γ[x8i+4]

and the Γ[x8i+4] is E(x4i).

6. THE SEQUENCE KO 1

η−→ KO 0 → KU 0 → KO 2

η−→ KO 1 → · · ·

• KO 1

η−→ KO 0 → KU 0 OOU100

P (x2i+1)
x2i+1→y2i+1−−−−−−−→ P (yi)

y2i→z2i−−−−−→
y2i+1→0

P (z2i)

The spectral sequence is just a short exact sequence

S.E.S. H∗(KO 1)
η∗−→ H∗(KO 0) −→ H∗(KU 0).

• KO 0 → KU 0 → KO 2 OUO002

P (xi)
x2i→y2i−−−−−→
x2i+1→0

P (y2i)
zero−−→ P (z4i+2)

There is nothing in the cokernel. The kernel is P (x2i+1) so Tor is E(w2i). Solving
the extension problems, (w2i)

2 = w4i, gives P (z4i+2).

• KU 0 → KO 2

η−→ KO 1 UOO021

P (x2i)
zero−−→ P (y4i+2)

y4i+2→(z2i+1)
2

−−−−−−−−−→ P (z2i+1)

The cokernel is P (y4i+2) in filtration 0 and the kernel is P (x2i). Tor on this is
E(w2i+1) with generators in filtration 1. We get (w2i+1)

2 = y4i+2.

• KO 2

η−→ KO 1 → KU 1 OOU211

P (x4i+2)
x4i+2→(y2i+1)

2

−−−−−−−−−→ P (y2i+1)
y2i+1→z2i+1−−−−−−−→
(y2i+1)2→0

E(z2i+1)

We get a short exact sequence

S.E.S. H∗(KO 2) −→ H∗(KO 1) −→ H∗(KU 1).

• KO 1 → KU 1 → KO 3 OUO113

P (x2i+1)
x2i+1→y2i+1−−−−−−−→
(x2i+1)2→0

E(y2i+1)
zero−−→ E(z4i+3)

The cokernel is zero and the kernel is P ((x2i+1)
2). Tor of this is E(w4i+3), our an-

swer.
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• KU 1 → KO 3

η−→ KO 2 UOO132

E(x2i+1)
zero−−→ E(y4i+3)

zero−−→ P (z4i+2)

The cokernel in filtration zero is E(y4i+3) and the kernel is E(x2i+1). Tor of this is
Γ[w2i]. There is a differential

d2(γ(w2i)) = y4i−1

leaving only E(w2i). Solving the extension problems, (w2i)
2 = w4i, gives P (z4i+2).

• KO 3

η−→ KO 2 → KU 2 OOU322

E(x4i+3)
zero−−→ P (y4i+2)

y4i+2→z4i+2−−−−−−−→ P (z2i)

The cokernel in filtration zero is P (z4i+2). The kernel isE(x4i+3). Tor of this is Γ[w4i]
starting in filtration 1. There are no differentials and everything in Γ[w4i] squares
non-trivially to something in the same filtration, i.e. (w4i)

2 = w8i and all of the
corresponding γ’s do the same, giving P (z4i).

• KO 2 → KU 2 → KO 4 OUO224

P (x4i+2)
x4i+2→y4i+2−−−−−−−→ P (y2i)

y4i→z4i−−−−−→
y4i+2→0

P (z4i)

We get a short exact sequence

S.E.S. H∗(KO 2) −→ H∗(KU 2) −→ H∗(KO 4).

• KU 2 → KO 4

η−→ KO 3 UOO243

P (x2i)
x4i→y4i−−−−−→
x4i+2→0

P (y4i)
zero−−→ E(z4i+3)

There is no cokernel. The kernel is P (x4i+2). Tor on this is E(w4i+3) and we are
done.

• KO 4

η−→ KO 3 → KU 3 OOU433

P (x4i)
zero−−→ E(y4i+3)

y4i+3→z4i+3−−−−−−−→ E(z2i+1)

The cokernel is E(y4i+3) and the kernel is P (x4i). Tor on this is E(y4i+1) and we
have our answer.

• KO 3 → KU 3 → KO 5 OUO335

E(x4i+3)
x4i+3→y4i+3−−−−−−−→ E(y2i+1)

y4i+1→z4i+1−−−−−−−→
y4i+3→0

E(z4i+1)

This gives a short exact sequence

S.E.S. H∗(KO 3) −→ H∗(KU 3) −→ H∗(KO 5).

• KU 3 → KO 5

η−→ KO 4 UOO354

E(x2i+1)
x4i+1→y4i+1−−−−−−−→
x4i+3→0

E(y4i+1)
zero−−→ P (z4i)
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There is no cokernel and the kernel is E(x4i+3). Tor of this is Γ[w4i]. Solving exten-
sions, (w4i)

2 = w8i and corresponding formulas on the γ generators, gives P (z4i).

• KO 5

η−→ KO 4 → KU 4 OOU544

E(x4i+1)
zero−−→ P (y4i)

y4i→(z2i)
2

−−−−−−→ P (z2i)

The cokernel is P (y4i) and the kernel E(x4i+1). Tor of this is Γ[w4i+2] = E(w2i). We
have (w2i)

2 = y4i.

• KO 4 → KU 4 → KO 6 OUO446

P (x4i)
x4i→(y2i)

2

−−−−−−→ P (y2i)
y2i→z2i−−−−−→
(y2i)2→0

E(z2i)

We get a short exact sequence

S.E.S. H∗(KO 4) −→ H∗(KU 4) −→ H∗(KO 6).

• KU 4 → KO 6

η−→ KO 5 UOO465

P (x2i)
x2i→y2i−−−−−→
(x2i)2→0

E(y2i)
zero−−→ E(z4i+1)

There is no cokernel. The kernel is P ((x2i)
2). The Tor of this is E(w4i+1), our an-

swer.

• KO 6

η−→ KO 5 → KU 5 OOU655

E(x2i)
zero−−→ E(y4i+1)

zero−−→ E(z2i+1)

The cokernel is E(y4i+1) and the kernel is E(x2i). Tor of this is Γ[w2i+1]. We must
have a differential

d2(γ2(w2i+1)) = y4i+1

All that is left is the E(w2i+1), our answer.

• KO 5 → KU 5 → KO 7 OUO557

E(x4i+1)
zero−−→ E(y2i+1)

y2i+1→z2i+1−−−−−−−→ E(zi)

The cokernel is E(y2i+1) and the kernel is E(x4i+1). Tor of this is Γ[w4i+2] = E(w2i).

• KU 5 → KO 7

η−→ KO 6 UOU576

E(x2i+1)
x2i+1→y2i+1−−−−−−−→ E(yi)

y2i→z2i−−−−−→
y2i+1→0

E(z2i)

We get a short exact sequence

S.E.S. H∗(KU 5) −→ H∗(KO 7) −→ H∗(KO 6).

• KO 7

η−→ KO 6 → KU 6 OOU766

E(xi)
x2i→y2i−−−−−→
x2i+1→0

E(y2i)
zero−−→ P (z2i)
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There is no cokernel. The kernel is E(x2i+1). Tor of this is Γ[w2i]. Solving the
extension problems we get our answer, P (z2i).

• KO 6 → KU 6 → KO 0 OUO660

E(x2i)
zero−−→ P (y2i)

y2i→(zi)
2

−−−−−→ P (zi)

The cokernel is P (y2i) and the kernel is E(x2i). Tor of this is Γ[w2i+1] = E(wi). The
extension problem is solved by (wi)

2 = y2i.

• KU 6 → KO 0

η−→ KO 7 UOO607

P (x2i)
x2i→(yi)

2

−−−−−→ P (yi)
yi→zi−−−−→
(yi)2→0

E(zi)

We get a short exact sequence

S.E.S. H∗(KU 6) −→ H∗(KO 0)→ H∗(KO 7).

• KO 0

η−→ KO 7 → KU 7 OOU077

P (xi)
xi→yi−−−−→
(xi)2→0

E(yi)
zero−−→ E(z2i+1)

The cokernel is zero and the kernel is P ((xi)
2). Tor of this is E(w2i+1).

• KO 7 → KU 7 → KO 1 OUO771

E(xi)
zero−−→ E(y2i+1)

zero−−→ P (z2i+1)

The cokernel is E(y2i+1) and the kernel is E(xi). Tor of this is Γ[wi]. There is a
differential, d2(γ2(wi)) = y2i−1 leaving E(wi). Solving extensions, (wi)

2 = w2i, we
get our P (w2i+1).

• KU 7 → KO 1

η−→ KO 0 UOO710

E(x2i+1)
zero−−→ P (y2i+1)

y2i+1→z2i+1−−−−−−−→ P (zi)

The cokernel is P (z2i+1) and the kernel is E(x2i+1). Tor of this is Γ[w2i]. To get our
answer we must have (w2i)

2 = w4i in filtration 1 and FV = V F will give us the
squares in all the higher filtrations ending with P (z2i).

7. THE SEQUENCE KU 0
2−→ KU 0 → K(1)

0
→ KU 1

2−→ KU 1 → · · ·

• KU 0
2−→ KU 0 → K(1)

0
UUK000

P (x2i)
x4i→(y2i)

2

−−−−−−→
x4i+2→0

P (y2i)
y4i→z4i, y8i+2→z8i+2−−−−−−−−−−−−−−→

y8i+6→(zz4i+3)2
TP4(zz4i+3)⊗ E(z4i)⊗ E(z8i+2)

The cokernel is E(y2i) and the kernel is P (x4i+2). Tor of this is E(w4i+3). We have
only the one extension problem, (w4i+3)

2 = x8i+6.
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• KU 0 → K(1)
0
→ KU 1 UKU001

P (x2i)
x4i→y4i, x8i+2→y8i+2−−−−−−−−−−−−−−→

x8i+6→(yy4i+3)2

TP4(yy4i+3)⊗ E(y4i)⊗ E(y8i+2)
y4i→0, yy4i+3→z4i+3−−−−−−−−−−−−−−→
y8i+2→0, (yy4i+3)2→0

E(z2i+1)

The cokernel is E(yy4i+3) and the kernel is P ((x2i)
2). Tor of this is E(w4i+1).

• K(1)
0
→ KU 1

2−→ KU 1 KUU011

TP4(xx4i+3)⊗ E(x4i)⊗ E(x8i+2)

x4i→0, xx4i+3→y4i+3−−−−−−−−−−−−−−→
x8i+2→0, (xx4i+3)2→0

E(y2i+1)
zero−−→ E(z2i+1)

The cokernel is E(y4i+1) and the kernel E(x2i). Tor of the kernel is Γ[w2i+1] '
E(w2i+1)⊗ Γ[w4i+2]. We get a differential

d2(ww4i+2) = y4i+1

All that is left is E(w2i+1).

• KU 1
2−→ KU 1 → K(1)

1
UUK111

E(x2i+1)
zero−−→ E(y2i+1)

y4i+1→z4i+1−−−−−−−→
y4i+3→0

E(z4i+1)⊗ P (zz4i+2).

The cokernel is E(y2i+1) and the kernel is E(x2i+1). Tor of this is Γ[w2i]. We have a
differential

d2(γ2(w2i)) = y4i−1

We are left with E(y4i+1) in filtration zero, and E(w2i) with generators in filtration
1. This last all have squares, (w2i)

2 = w4i, giving P (w4i+2).

• KU 1 → K(1)
1
→ KU 0 UKU110

E(x2i+1)
x4i+1→y4i+1−−−−−−−→
x4i+3→0

E(y4i+1)⊗ P (yy4i+2)
yy4i+2→z4i+2−−−−−−−−→
y4i+1→0

P (z2i)

The cokernel is P (yy4i+2) and the kernel is E(x4i+3). Tor of this is Γ[w4i]. Squaring
everything in Γ gives P (w4i).

• K(1)
1
→ KU 0

2−→ KU 0 KUU100

E(x4i+1)⊗ P (xx4i+2)
xx4i+2→y4i+2−−−−−−−−→
x4i+1→0

P (y2i)
y4i→(z2i)

2

−−−−−−→
y4i+2→0

P (z2i)

The cokernel is P (y4i) and the kernel is E(x4i+1). Tor of this is Γ[w4i+2] = E(w2i).
We have (w2i)

2 = y4i giving our answer.
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8. THE SEQUENCE KO 0
2−→ KO 0 → KR(1)

0
→ KO 1

2−→ KO 1 → · · ·

• KO 0
2−→ KO 0 → KR(1)

0
OOR000

P (xi)
x2i→(yi)

2

−−−−−→
x2i+1→0

P (yi)
yi→zi−−−−→
(yi)2→0

E(zi)⊗ P (zz4i+2)

The cokernel is E(yi) and the kernel is P (x2i+1). Tor of this is E(w2i). We have
(w2i)

2 = w4i giving P (w4i+2).

• KO 0 → KR(1)
0
→ KO 1 ORO001

P (xi)
xi→yi−−−−→
(xi)2→0

E(yi)⊗ P (yy4i+2)
yy4i+2→(z2i+1)

2

−−−−−−−−−→
yi→0

P (z2i+1)

The cokernel is P (yy4i+2) The kernel is P ((xi)
2). Tor of this is E(w2i+1). We have

(w2i+1)
2 = yy4i+2.

• KR(1)
0
→ KO 1

2−→ KO 1 ROO011

E(xi)⊗ P (xx4i+2)
xx4i+2→(y2i+1)

2

−−−−−−−−−→
xi→0

P (y2i+1)
zero−−→ P (z2i+1)

The cokernel is E(y2i+1) and the kernel is E(xi). Tor of this is Γ[wi]. We have
differentials

d2(γ2(wi)) = y2i−1.

We are left with E(wi). We have (wi)
2 = w2i so we get P (w2i+1).

• KO 1
2−→ KO 1 → KR(1)

1
OOR111

P (x2i+1)
zero−−→ P (y2i+1)

y2i+1→z2i+1−−−−−−−→ P (z2i+1)⊗ P (zz4i+2)

The cokernel is P (y2i+1) and the kernel is P (x2i+1). Tor of this is E(w2i) and We
have (w2i)

2 = w4i so we get P (w4i+2).

• KO 1 → KR(1)
1
→ KO 2 ORO112

P (x2i+1)
x2i+1→y2i+1−−−−−−−→ P (y2i+1)⊗ P (yy4i+2)

yy4i+2→z4i+2−−−−−−−−→
y2i+1→0

P (z4i+2)

There is no kernel so this is a short exact sequence

S.E.S. H∗(KO 1) −→ H∗(KR(1)
1
) −→ H∗(KO 2).

• KR(1)
1
→ KO 2

2−→ KO 2 ROO122

P (x2i+1)⊗ P (xx4i+2)
xx4i+2→y4i+2−−−−−−−−→
x2i+1→0

P (y4i+2)
zero−−→ P (z4i+2)

The cokernel is zero and the kernel is P (x2i+1). Tor of this is E(w2i). We have
(w2i)

2 = w4i so we get P (w4i+2).
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• KO 2
2−→ KO 2 → KR(1)

2
OOR222

P (x4i+2)
zero−−→ P (y4i+2)

y8i+2→z8i+2−−−−−−−−−→
y8i+6→(zz4i+3)2

P (z8k+2)⊗ P (zz4i+3)

The cokernel is P (y4i+2) and the kernel is P (x4i+2). Tor of the kernel is E(w4i+3)
and we have (w4i+3)

2 = x8i+6.

• KO 2 → KR(1)
2
→ KO 3 ORO223

P (x4i+2)
x8i+2→y8i+2−−−−−−−−−→

x8i+6→(yy4i+3)2
P (y8k+2)⊗ P (yy4i+3)

yy4i+3→z4i+3−−−−−−−−−−−−−−→
y8i+2→0, (yy4i+3)2→0

E(z4i+3)

The cokernel is E(yy4i+3) and there is no kernel. We get a short exact sequence.

S.E.S. H∗(KO 2) −→ H∗(KR(1)
2
) −→ H∗(KO 3).

• KR(1)
2
→ KO 3

2−→ KO 3 ROO233

P (x8k+2)⊗ P (xx4i+3)
xx4i+3→y4i+3−−−−−−−−−−−−−−→

x8i+2→0, (xx4i+3)2→0
E(y4i+3)

zero−−→ E(z4i+3)

There is no cokernel. The kernel is P (x8i+2)⊗P ((xx4i+3)
2). Tor of this is E(w8i+3)⊗

E(ww8i+7).

• KO 3
2−→ KO 3 → KR(1)

3
OOR333

E(x4i+3)
zero−−→ E(y4i+3)

y8i+3→z8i+3−−−−−−−→
y8i+7→0

E(z8i+3)⊗ P (zz8i+4)

The cokernel is E(y4i+3) and the kernel is E(x4i+3). Tor of this is Γ[w4i]. We must
have a differential

d2(γ2(w4i)) = y8i−1

This leaves E(y8i+3)⊗ E(w4i). We have (w4i)
2 = w8i giving P (zz8i+4).

• KO 3 → KR(1)
3
→ KO 4 ORO334

E(x4i+3)
x8i+3→y8i+3−−−−−−−→
x8i+7→0

E(y8i+3)⊗ P (yy8i+4)
yy8i+4→z8i+4−−−−−−−−→
y8i+3→0

P (z4i)

The cokernel is P (yy8i+4) and the kernel is E(x8i+7). Tor of this is Γ[w8i]. We have
(w8i)

2 = w16i and with FV = V F , this Γ becomes P (z8i).

• KR(1)
3
→ KO 4

2−→ KO 4 ROO344

E(x8i+3)⊗ P (xx8i+4)
xx8i+4→y8i+4−−−−−−−−→
x8i+3→0

P (y4i)
y8i→(z4i)

2

−−−−−−→
y8i+4→0

P (z4i)

The cokernel is P (y8i) and the kernel is E(x8i+3). Tor of this is Γ[w8i+4] = E(w4i).
We have (w4i)

2 = y8i to get P (z4i).

• KO 4
2−→ KO 4 → KR(1)

4
OOR444

P (x4i)
x8i→(y4i)

2

−−−−−−→
x8i+4→0

P (y4i)
y4i→z4i−−−−−→
(y4i)2→0

E(z4i)⊗ E(zz8i+5)
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The cokernel is E(y4i). The kernel is P (x8i+4). Tor of this is E(w8i+5).

• KO 4 → KR(1)
4
→ KO 5 ORO445

P (x4i)
x4i→y4i−−−−−→
(x4i)2→0

E(y4i)⊗ E(yy8i+5)
yy8i+5→z8i+5−−−−−−−−→

y4i→0
E(z4i+1)

The cokernel is E(yy8i+5). The kernel is P ((x4i)
2). Tor of this is E(w8i+1).

• KR(1)
4
→ KO 5

2−→ KO 5 ROO455

E(x4i)⊗ E(xx8i+5)
xx8i+5→y8i+5−−−−−−−−→

x4i→0
E(y4i+1)

zero−−→ E(z4i+1)

The cokernel is E(y8i+1) and the kernel is E(x4i). Tor of this is Γ[w4i+1] with

d2(γ2(w4i+1)) = y8i+1

What is left is E(w4i+1).

• KO 5
2−→ KO 5 → KR(1)

5
OOR555

E(x4i+1)
zero−−→ E(y4i+1)

y4i+1→z4i+1−−−−−−−→ E(z4i+1)⊗ E(zz2i)

The cokernel is E(y4i+1) and the kernel is E(x4i+1). Tor of this is Γ[w4i+2] = E(w2i).

• KO 5 → KR(1)
5
→ KO 6 ORO556

E(x4i+1)
x4i+1→y4i+1−−−−−−−→ E(y4i+1)⊗ E(yy2i)

yy2i→z2i−−−−−→
y4i+1→0

E(z2i)

The cokernel is E(yy2i) and there is no kernel. We get a short exact sequence

S.E.S. H∗(KO 5) −→ H∗(KR(1)
5
) −→ H∗(KO 6).

• KR(1)
5
→ KO 6

2−→ KO 6 ROO566

E(x4i+1)⊗ E(xx2i)
xx2i→y2i−−−−−→
x4i+1→0

E(y2i)
zero−−→ E(z2i)

There is no cokernel. The kernel is E(x4i+1). Tor of this is Γ[w4i+2] = E(w2i).

• KO 6
2−→ KO 6 → KR(1)

6
OOR666

E(x2i)
zero−−→ E(y2i)

y2i→(zi)
2

−−−−−→ TP4(zi)

The cokernel is E(y2i) and the kernel is E(x2i). Tor of this is Γ[w2i+1] = E(wi). We
have (wi)

2 = y2i.

• KO 6 → KR(1)
6
→ KO 7 ORO667

E(x2i)
x2i→(yi)

2

−−−−−→ TP4(yi)
yi→zi−−−→ E(zi)

The cokernel is E(yi) and there is no kernel. We get a short exact sequence

S.E.S. H∗(KO 6) −→ H∗(KR(1)
6
) −→ H∗(KO 7).
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• KR(1)
6
→ KO 7

2−→ KO 7 ROO677

TP4(xi)
xi→yi−−−→ E(yi)

zero−−→ E(zi)

The cokernel is zero and the kernel is E((xi)
2). Tor of this is Γ[w2i+1] = E(wi).

• KO 7
2−→ KO 7 → KR(1)

7
OOR777

E(xi)
zero−−→ E(yi)

y2i→z2i−−−−−→
y2i+1→0

E(z2i)⊗ P (zz2i+1)

The cokernel is E(yi) and the kernel is E(xi). Tor is Γ[wi]. We need

d2(γ2(wi)) = y2i−1.

We are left with E(y2i)⊗ E(wi). We must have (wi)
2 = w2i to get our P (zz2i+1).

• KO 7 → KR(1)
7
→ KO 0 ORO770

E(xi)
x2i→y2i−−−−−→
x2i+1→0

E(y2i)⊗ P (yy2i+1)
yy2i+1→z2i+1−−−−−−−−→

y2i→0
P (zi)

The cokernel is P (yy2i+1) and the kernel is E(x2i+1). Tor of this is Γ[w2i]. We have
(w2i)

2 = w4i, which, along with FV = V F gives P (z2i).

• KR(1)
7
→ KO 0

2−→ KO 0 ROO700

E(x2i)⊗ P (xx2i+1)
xx2i+1→y2i+1−−−−−−−−→

x2i→0
P (yi)

y2i→(zi)
2

−−−−−→
y2i+1→0

P (zi)

The cokernel is P (y2i) and the kernel is E(x2i). Tor of this is Γ[w2i+1] = E(wi). We
have (wi)

2 = y2i to get P (wi).

9. H∗(KR(1)
i
) => H∗(KR(1)

i+1
) RRi(i+1)

We use the bar spectral sequence for

KR(1)
i
−→ ∗ −→ KR(1)

i+1

i=0, RR01

H∗(KR(1)
0
) = E(xi)⊗ P (xx4i+2) −→ ∗ −→ H∗(KR(1)

1
) = P (y2i+1)⊗ P (yy4i+2)

Tor is Γ[wi]⊗ E(ww4i+3). We have a differential

d3(γ4(wi)) = ww4i−1

This leavesE(wi) with generators in filtration 1 andE(γ2(wi)) with generators in filtration
2. We have (wi)

2 = w2i giving P (y2i+1) and (γ2(wi))
2 = γ2(w2i) giving P (yy4i+2).

i=1, RR12

H∗(KR(1)
1
) = P (x2i+1)⊗ P (xx4i+2) −→ ∗ −→ H∗(KR(1)

2
) = P (y8i+2)⊗ P (yy4i+3)

Tor is E(w2i)⊗ E(ww4i+3). We have (w2i)
2 = w4i and (ww4i+3)

2 = w8i+6.
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i=2, RR23

H∗(KR(1)
2
) = P (x8i+2)⊗ P (xx4i+3) −→ ∗ −→ H∗(KR(1)

3
) = E(y8i+3)⊗ P (yy8i+4)

Tor is E(w8i+3)⊗ E(ww4i). We have (ww4i)
2 = ww8i giving P (yy8i+4).

i=3, RR34

H∗(KR(1)
3
) = E(x8i+3)⊗ P (xx8i+4) −→ ∗ −→ H∗(KR(1)

4
) = E(y4i)⊗ E(yy8i+5)

Tor is Γ[w8i+4]⊗ E(ww8i+5) with Γ[w8i+4] = E(w4i).

i=4, RR45

H∗(KR(1)
4
) = E(x4i)⊗ E(xx8i+5) −→ ∗ −→ H∗(KR(1)

5
) = E(y4i+1)⊗ E(yy2i)

Tor is Γ[w4i+1] ⊗ Γ[ww8i+6]. Rewrite this as E(w4i+1) ⊗ Γ[ww4i+2] and then again as our
answer.

i=5, RR56

H∗(KR(1)
5
) = E(x4i+1)⊗ E(yy2i) −→ ∗ −→ H∗(KR(1)

6
) = TP4(yi)

Tor is Γ[w4i+2]⊗ Γ[ww2i+1]. Rewritten, this is E(w2i) and E(wwi). We have (wwi)
2 = w2i.

i=6, RR67

H∗(KR(1)
6
) = TP4(xi) −→ ∗ −→ H∗(KR(1)

7
) = E(y2i)⊗ P (yy2i+1)

Tor is E(wi)⊗Γ[ww4i+2]. We have (wi)
2 = w2i giving P (yy2i+1) and Γ[ww4i+2] is just E(y2i).

i=7, RR70

H∗(KR(1)
7
) = E(x2i)⊗ P (xx2i+1) −→ ∗ −→ H∗(KR(1)

0
) = E(yi)⊗ P (yy4i+2)

Tor is Γ[w2i+1] ⊗ E(ww2i). We have Γ[w2i+1] is E(yi) and after (ww2i)
2 = w4i, we get

P (yy4i+2).

10. THE SEQUENCE KR(1)
1

η−→ KR(1)
0
→ K(1)

0
→ KR(1)

2

η−→ KR(1)
1
→ · · ·

• KR(1)
1

η−→ KR(1)
0
→ K(1)

0
RRK100

P (x2i+1)⊗ P (xx4i+2)
xx4i+2→y4i+2+yy4i+2−−−−−−−−−−−−−−−−→

x2i+1→y2i+1, (x2i+1)2→0
E(yi)⊗ P (yy4i+2)

y8i+6→(z4i+3)
2, y8i+2→zzz8i+2, y4i→zz4i−−−−−−−−−−−−−−−−−−−−−−−−−−−→

y2i+1→0, y4i+2+yy4i+2→0
TP4(z4i+3)⊗ E(zz4i)⊗ E(zzz8i+2)
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We are in new territory now because we don’t know the first map. To compute it,
we use

KO 1
//

��

KO 0

��
KR(1)

1
//

��

KR(1)
0

��
KO 2

// KO 1

We know all of the maps in homology except the horizontal one in the middle. We
know the top horizontal map from OOU100 and the bottom horizontal map from
OOU211 . The left vertical maps are from ORO112 and the right from ORO001.
Algebraically, we have

P (x2i+1)

x2i+1→x2i+1

��

x2i+1→y2i+1 // P (yi)

yi→yi
��

P (x2i+1)⊗ P (xx4i+2) //

xx4i+2→yy4i+2

��

E(yi)⊗ P (yy4i+2)

yy4i+2→(yy2i+1)
2

��
P (yy4i+2)

yy4i+2→(yy2i+1)
2

// P (yy2i+1)

A diagram chase gives the first map as listed above including the unusual xx4i+2 →
y4i+2 + yy4i+2. The extra term, y4i+2, comes about because V (xx4i+2) = x2i+1, so
the image of xx4i+2 must have V of it be the image of x2i+1 and we know how V
behaves on H∗(KR(1)

0
). This odd map is, in some sense, dual to the problem we

have in KRR576.
The cokernel is E(y2i) and the kernel is P ((x2i+1)

2). Tor of this is E(ww4i+3). We
have (ww4i+3)

2 = y8i+6.

• KR(1)
0
→ K(1)

0
→ KR(1)

2
RKR002

E(xi)⊗ P (xx4i+2)
x8i+6→(y4i+3)

2, x8i+2→yyy8i+2, x4i→yy4i−−−−−−−−−−−−−−−−−−−−−−−−−−−→
x2i+1→0, x4i+2+xx4i+2→0

TP4(y4i+3)⊗ E(yy4i)⊗ E(yyy8i+2)
zero−−→ P (z8i+2)⊗ P (zz4i+3)

The cokernel is E(y4i+3) and the kernel is E(x2i+1) ⊗ P (x4i+2 + xx4i+2). Tor of this
is Γ[w2i]⊗ E(ww4i+3). We need

d2(γ2(w2i)) = y4i−1

This leaves us withE(w2i)⊗E(ww4i+3). We have (w2i)
2 = w4i and (ww4i+3)

2 = w8i+6

to get our answer.

• K(1)
0
→ KR(1)

2

η−→ KR(1)
1

KRR021

TP4(x4i+3)⊗ E(xx4i)⊗ E(xxx8i+2)
zero−−→

P (y8i+2)⊗ P (yy4i+3)
yy4i+3→z4i+3−−−−−−−−−→
y8i+2→(z4i+1)2

P (z2i+1)⊗ P (zz4i+2)
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The cokernel is P (y8i+2) ⊗ P (yy4i+3) and we know the kernel. Tor of the kernel,
when you combine all 3 of the terms, is Γ[wwww4i+2] starting in filtration 2, with
exterior generators in filtration 1 given byw4i,ww4i+1, andwww8i+3. We know from
the main paper that the yy4i+3 inject to H∗(KR(1)

1
) so can’t be hit by a differential.

So, we have
d3(γ2(wwww4i+2)) = www8i+3

This leaves us with an exterior algebra with generators in filtration 1, E(w4i) ⊗
E(ww4i+1) and an exterior algebra with generators in filtration 2, E(wwww4i+2).
We have (w4i)

2 = w8i, (wwww4i+2)
2 = w8i+4, and (ww4i+1)

2 = y8i+2.

• KR(1)
2

η−→ KR(1)
1
→ K(1)

1
RRK211

P (x8i+2)⊗ P (xx4i+3)
xx4i+3→y4i+3−−−−−−−−−→
x8i+2→(y4i+1)2

P (y2i+1)⊗ P (yy4i+2)

yy4i+2→zz4i+2, y4i+1→z4i+1−−−−−−−−−−−−−−−−−−→
y4i+3→0, (y4i+1)2→0

E(z4i+1)⊗ P (zz4i+2)

The cokernel is E(y4i+1) ⊗ P (yy4i+2) and there is no kernel. We get a rare short
exact sequence.

S.E.S. H∗(KR(1)
2
) −→ H∗(KR(1)

1
) −→ H∗(K(1)

1
).

• KR(1)
1
→ K(1)

1
→ KR(1)

3
RKR113

P (x2i+1)⊗ P (xx4i+2)
xx4i+2→yy4i+2, x4i+1→y4i+1−−−−−−−−−−−−−−−−−−→

x4i+3→0, (x4i+1)2→0

E(y4i+1)⊗ P (yy4i+2)
zero−−→ E(z8i+3)⊗ P (zz8i+4)

There is no cokernel and the kernel is P (x4i+3) ⊗ P ((x4i+1)
2). Tor is E(w4i) ⊗

E(ww8i+3). We have (w4i)
2 = w8i giving the P (zz8i+4).

• K(1)
1
→ KR(1)

3

η−→ KR(1)
2

KRR132

E(x4i+1)⊗ P (xx4i+2)
zero−−→ E(y8i+3)⊗ P (yy8i+4)

yy16i+4→(z8i+2)
2, yy16i+12→(zz4i+3)

4

−−−−−−−−−−−−−−−−−−−−−−−→
y8i+3→0

P (z8i+2)⊗ P (zz4i+3)

The cokernel is E(y8i+3) ⊗ P (yy8i+4) and the kernel E(x4i+1) ⊗ P (xx4i+2). Tor is
Γ[w4i+2]⊗ E(ww4i+3). We have

d2(γ2(w4i+2)) = y8i+3,

(w4i+2)
2 = yy8i+4, and (ww4i+3)

2 = w8i+6.

• KR(1)
3

η−→ KR(1)
2
→ K(1)

2
RRK322

E(x8i+3)⊗ P (xx8i+4)
xx16i+4→(y8i+2)

2, xx16i+12→(yy4i+3)
4

−−−−−−−−−−−−−−−−−−−−−−−−→
x8i+3→0

P (y8i+2)⊗ P (yy4i+3)

y8i+2→zzz8i+2, yy4i+3→z4i+3−−−−−−−−−−−−−−−−−−→
(yy4i+3)4→0, (y8i+2)2→0

TP4(z4i+3)⊗ E(zz4i)⊗ E(zzz8i+2)

The cokernel is E(y8i+2) ⊗ TP4(yy4i+3) and the kernel is E(x8i+3). Tor of this is
Γ[w8i+4] = E(w4i).
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• KR(1)
2
→ K(1)

2
→ KR(1)

4
RKR224

P (x8i+2)⊗ P (xx4i+3)
x8i+2→yyy8i+2, xx4i+3→y4i+3−−−−−−−−−−−−−−−−−−−→

(xx4i+3)4→0, (x8i+2)2→0

TP4(y4i+3)⊗ E(yy4i)⊗ E(yyy8i+2)
yy4i→z4i−−−−−−−−−−−−−→

y4i+3→0, yyy8i+2→0
E(z4i)⊗ E(zz8i+5)

The cokernel is E(yy4i) and the kernel is P ((x8i+2)
2) ⊗ P ((xx4i+3)

4). Tor of this is
E(w16i+5)⊗ E(ww16i+13).

• K(1)
2
→ KR(1)

4

η−→ KR(1)
3

KRR243

TP4(x4i+3)⊗ E(xx4i)⊗ E(xxx8i+2)
xx4i→y4i−−−−−−−−−−−−−→

x4i+3→0, xxx8i+2→0

E(y4i)⊗ E(yy8i+5)
zero−−→ E(z8i+3)⊗ P (zz8i+4)

The cokernel is E(yy8i+5) and the kernel is TP4(x4i+3)⊗ E(xxx8i+2). Tor is

E(w4i)⊗ Γ[ww16i+14]⊗ Γ[www8i+3]

There is no E(yy8i+5) so it must be hit by a differential. Rewrite Tor as

E(w4i)⊗ Γ[ww8i+6]⊗ E(www8i+3)

where the ww8i+6 is in filtration 2. The differential is now obvious

d2(ww8i+6) = yy8i+5

This leaves
E(w4i)⊗ E(www8i+3)

We must have (w4i)
2 = w8i giving us our P (w8i+4).

• KR(1)
4

η−→ KR(1)
3
→ K(1)

3
RRK433

E(x4i)⊗ E(xx8i+5)
zero−−→ E(y8i+3)⊗ P (yy8i+4)

yy8i+4→(zz4i+2)
2

−−−−−−−−−−→
y8i+3→0

E(z4i+1)⊗ P (zz4i+2)

The cokernel is E(y8i+3) ⊗ P (yy8i+4) and the kernel is E(x4i) ⊗ E(xx8i+5). Tor is
Γ[w4i+1]⊗ Γ[ww8i+6]. Rewriting the spectral sequence we have

E(y8i+3)⊗ P (yy8i+4)⊗ E(w4i+1)⊗ E(w8i+2)⊗

Γ[w16i+4]⊗ E(ww8i+6)⊗ Γ[ww16i+12)

where the generating terms are in filtrations 0, 0, 1, 2, 4, 1, 2, respectively. To kill
y8i+3 we need two differentials

d2(ww16i+12) = y16i+11 and d4(ww16i+4) = y16i+3

After this, what is left is

P (yy8i+4)⊗ E(w4i+1)⊗ E(w8i+2)⊗ E(ww8i+6)

Combining the last two terms we get E(zz4i+2) with extension (zz4i+2)
2 = yy8i+4 to

get our answer.
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• KR(1)
3
→ K(1)

3
→ KR(1)

5
RKR335

E(x8i+3)⊗ P (xx8i+4)
xx8i+4→(yy4i+2)

2

−−−−−−−−−−→
x8i+3→0

E(y4i+1)⊗ P (yy4i+2)

y4i+1→z4i+1, yy4i+2→zz4i+2−−−−−−−−−−−−−−−−−−→
(yy4i+2)2→0

E(z4i+1)⊗ E(zz2i)

The cokernel is E(y4i+1) ⊗ E(yy4i+2) and the kernel is E(x8i+3). Tor is Γ[w8i+4] =
E(w4i).

• K(1)
3
→ KR(1)

5

η−→ KR(1)
4

KRR354

E(x4i+1)⊗ P (xx4i+2)
x4i+1→y4i+1, xx4i+2→yy4i+2−−−−−−−−−−−−−−−−−−→

(xx4i+2)2→0

E(y4i+1)⊗ E(yy2i)
yy4i→z4i−−−−−−−−−−−−→

y4i+1→0, yy4i+2→0
E(z4i)⊗ E(zz8i+5)

The cokernel is E(yy4i) and the kernel is P ((xx4i+2)
2). Tor is E(w8i+5).

• KR(1)
5

η−→ KR(1)
4
→ K(1)

4
RRK544

E(x4i+1)⊗ E(xx2i)
xx4i→y4i−−−−−−−−−−−−−→

x4i+1→0, xx4i+2→0

E(y4i)⊗ E(yy8i+5)
zero−−→ TP4(z4i+3)⊗ E(zz4i)⊗ E(zzz8i+2)

The cokernel is E(yy8i+5) and the kernel is E(x4i+1) ⊗ E(xx4i+2). Tor is Γ[w4i+2] ⊗
Γ[ww4i+3]. There is no yy8i+5 in our answer and the only differential that could hit
it is

d2(γ2(ww4i+3)) = yy8i+5

This leaves us with Γ[w4i+2]⊗E(ww4i+3) = E(w2i)⊗E(ww4i+3). We need (ww4i+3)
2 =

w8i+6.

• KR(1)
4
→ K(1)

4
→ KR(1)

6
RKR446

E(x4i)⊗ E(xx8i+5)
zero−−→ TP4(y4i+3)⊗ E(yy4i)⊗ E(yyy8i+2)
y4i+3→z4i+3−−−−−−−−−−−−−−−−−−→

yy4i→(z22i), yyy8i+2→(z4i+1)2
TP4(zi)

The cokernel is TP4(y4i+3)⊗E(yy4i)⊗E(yyy8i+2) and the kernel isE(x4i)⊗E(xx8i+5).
Tor is Γ[w4i+1]⊗Γ[ww8i+6]. We have (w4i+1)

2 = yyy8i+2 leaving, in Tor, Γ[www4i+2] =
E(www2i). We have (www2i)

2 = yy4i.

• K(1)
4
→ KR(1)

6

η−→ KR(1)
5

KRR465

TP4(x4i+3)⊗ E(xx4i)⊗ E(xxx8i+2)
x4i+3→y4i+3−−−−−−−−−−−−−−−−−−−→

xx4i→(y2i)2, xxx8i+2→(y4i+1)2

TP4(yi)
y2i→zz2i, y4i+1→z4i+1−−−−−−−−−−−−−−→
y4i+3→0, (yi)2→0

E(z4i+1)⊗ E(zz2i)

The cokernel isE(y2i)⊗E(y4i+1) and there is no kernel, giving us another rare short
exact sequence

S.E.S. H∗(K(1)
4
) −→ H∗(KR(1)

6
) −→ H∗(KR(1)

5
).
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• KR(1)
6

η−→ KR(1)
5
→ K(1)

5
RRK655

TP4(xi)
x2i→yy2i, x4i+1→y4i+1−−−−−−−−−−−−−→
x4i+3→0, (xi)2→0

E(y4i+1)⊗ E(yy2i)
zero−−→ E(z4i+1)⊗ P (zz4i+2)

There is no cokernel. The kernel is

TP4(x4i+3)⊗ E((x2i)
2)⊗ E((x4i+1)

2)

Tor, in filtration 1, is

E(w4i)⊗ E(ww4i+1)⊗ E(www8i+3)

and in filtration 2, combining all of the Γ, we get Γ[wwww4i+2]. (This takes some
manipulation.) The E(ww4i+1) must stay and the E(www8i+3) must go. To make it
go, we have a

d3(γ2(wwww4i+2)) = www8i+3

All we have left now is

E(w4i)⊗ E(ww4i+1)⊗ E(wwww4i+2)

We have (w4i)
2 = w8i and (wwww4i+2)

2 = w8i+4.

• KR(1)
5
→ K(1)

5
→ KR(1)

7
RKR557

E(x4i+1)⊗ E(xx2i)
zero−−→ E(y4i+1)⊗ P (yy4i+2)

yy4i+2→z4i+2+(zz2i+1)
2

−−−−−−−−−−−−−−→
y4i+1→0

E(z2i)⊗ P (zz2i+1)

We have cokernelE(y4i+1)⊗P (yy4i+2) and kernelE(x4i+1)⊗E(xx2i). Tor is Γ[w4i+2]⊗
Γ[ww2i+1]. We have

d2(γ2(ww2i+1)) = y4i+1

and (ww2i+1)
2 = yy4i+2. The second map is unusual and doesn’t come from this.

We’ll pick it up in the next spectral sequence, KRR576.
Remark. So little interesting happens that I should point out when something

does. The last spectral sequence did not completely describe the second map. The
differential is correct, and we get the correct answer from the stated extension.
However, what really happens is and (ww2i+1)

2 = yy4i+2 + w4i+2. This doesn’t
change our answer, but if you look at the cokernel of the second map, we get a
TP4(ww2i+1) this way. We can’t see that in the last spectral sequence, but we’ll see
it in the next.

• K(1)
5
→ KR(1)

7

η−→ KR(1)
6

KRR576

E(x4i+1)⊗ P (xx4i+2)
xx4i+2→y4i+2+(yy2i+1)

2

−−−−−−−−−−−−−−→
x4i+1→0

E(y2i)⊗ P (yy2i+1)

y2i→(zi)
2, yy2i+1→z2i+1−−−−−−−−−−−−−−−→

y4i+2+(yy2i+1)2→0
TP4(zi)

We have a new problem here, and that is that the previous spectral sequence,
RKR557, didn’t pick up the details of the second map there, i.e. the first map
of this spectral sequence. We didn’t need it there, but do here. All we really know
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from the previous spectral sequence is that the P (xx4i+2) injects, but there are two
ways to do that. (1) xx4i+2 → (yy2i+1)

2 or (2) xx4i+2 → y4i+2 + (yy2i+1)
2.

If we try the first, our cokernel is E(y2i) ⊗ E(yy2i+1) and the kernel is E(x4i+1).
Taking Tor of this gives Γ[w4i+2]. There can be no E(yy2i+1) as a subalgebra of
H∗(KR(1)

6
). The only possibilities for differentials are on γ2j(w4i+2) (with j > 0).

These elements are all in degrees divisible by 4 so can never hit a yy4i+1. Version
(1) cannot be correct, so try (2). The cokernel now is TP4(yy2i+1) ⊗ E(y4i) and the
kernel is still E(x4i+1) giving Tor as Γ[w4i+2] = w2i. We have (w2i)

2 = y4i.
This computes the first map here and the second map in the previous spectral

sequence, RKR557.

• KR(1)
7

η−→ KR(1)
6
→ K(1)

6
RRK766

E(x2i)⊗ P (xx2i+1)
x2i→(yi)

2, xx2i+1→y2i+1−−−−−−−−−−−−−−−−→
x4i+2+(xx2i+1)2→0

TP4(yi)

y8i+2→zzz8i+2, y8i+6→(x4i+3)
2

−−−−−−−−−−−−−−−−−−−−→
y2i+1→0, (yi)2→0, y4i→zz4i

TP4(z4i+3)⊗ E(zz4i)⊗ E(zzz8i+2)

The cokernel is E(y2i) and the kernel is P (x4i+2 + (xx2i+1)
2). Tor of this is E(w4i+3).

We have (w4i+3)
2 = y8i+6.

• KR(1)
6
→ K(1)

6
→ KR(1)

0
RKR660

TP4(xi)
x8i+2→yyy8i+2, x8i+6→(x4i+3)

2

−−−−−−−−−−−−−−−−−−−−→
x2i+1→0, (x2i)2→0, x4i→yy4i

TP4(y4i+3)⊗ E(yy4i)⊗ E(yyy8i+2)

y4i+3→z4i+3, yy4i→0−−−−−−−−−−−−−−−→
(y4i+3)2→0, yyy8i+2→0

E(zi)⊗ P (zz4i+2)

The cokernel is E(y4i+3) and the kernel is TP4(x2i+1) ⊗ E((x2i)
2). Tor of this is

E(w2i) ⊗ Γ[ww8i+6] ⊗ Γ[www4i+1]. We can rewrite this as algebras to be E(w2i) ⊗
E(www4i+1)⊗Γ[ww4i+2], which isE(w2i)⊗E(www4i+1)⊗E(ww2i). We have (w2i)

2 =
w4i. This conclusion is a bit tricky. The ww2i are all in higher filtrations and for
degree reasons, they could only square to w4i. However, if that were the case, we
would not have enough even degree exterior generators.

• K(1)
6
→ KR(1)

0

η−→ KR(1)
7

KRR607

TP4(x4i+3)⊗ E(xx4i)⊗ E(xxx8i+2)
x4i+3→y4i+3, xx4i→0−−−−−−−−−−−−−−−→

(x4i+3)2→0, xxx8i+2→0

E(yi)⊗ P (yy4i+2)
yy4i+2→(zz2i+1)

2

−−−−−−−−−−−→
y2i→z2i, y2i+1→0

E(z2i)⊗ P (zz2i+1)

The cokernel is E(y4i+1)⊗E(y2i)⊗P (yy4i+2). The kernel is E(xx4i)⊗E(xxx8i+2)⊗
E((x4i+3)

2). Tor of this is Γ[w2i+1]. We need

d2(γ2(w2i+1)) = y4i+1

To finish things off we have (w2i+1)
2 = yy4i+2.
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• KR(1)
0

η−→ KR(1)
7
→ K(1)

7
RRK077

E(xi)⊗ P (xx4i+2)
xx4i+2→(yy2i+1)

2

−−−−−−−−−−−−→
x2i→y2i, x2i+1→0

E(y2i)⊗ P (yy2i+1)

yy4i+1→z4i+1−−−−−−−−−−−−−−−−−−−−→
y2i→0, yy4i+3→0, (yy4i+1)2→0

E(z4i+1)⊗ P (zz4i+2)

The cokernel is E(yy2i+1) and the kernel is E(x2i+1). Tor of this is Γ[w2i]. We have

d2(γ2(w2i)) = yy4i−1

This leaves E(x4i+1)⊗ E(w2i). We have (w2i)
2 = w4i to get our answer.

• KR(1)
7
→ K(1)

7
→ KR(1)

1
RKR771

E(x2i)⊗ P (xx2i+1)
xx4i+1→y4i+1−−−−−−−−−−−−−−−−−−−−−→

x2i→0, xx4i+3→0, (xx4i+1)2→0

E(y4i+1)⊗ P (yy4i+2)
yy4i+2→(z2i+1)

2

−−−−−−−−−→
y4i+1→0

P (z2i+1)⊗ P (zz4i+2)

The cokernel is P (yy4i+2). The kernel is E(x2i) ⊗ P (xx4i+3) ⊗ P ((xx4i+1)
2). Tor of

this is Γ[w2i+1]⊗ E(ww4i)⊗ E(www8i+3). The way to untangle this mess is to have

d3(γ4(w2i+1)) = www8i+3

leaving P (yy4i+2) in filtration zero, E(w2i+1)⊗E(ww4i) with generators in filtration
1, and E(w4i+2) with generators in filtration 2.

The only way this can work out is

(w2i+1)
2 = yy4i+2 (ww4i+2)

2 = ww8i+4 (ww4i)
2 = ww8i

• K(1)
7
→ KR(1)

1

η−→ KR(1)
0

KRR710

E(x4i+1)⊗ P (xx4i+2)
xx4i+2→(y2i+1)

2

−−−−−−−−−→
x4i+1→0

P (y2i+1)⊗ P (yy4i+2)

y2i+1→z2i+1, yy4i+2→zz4i+2−−−−−−−−−−−−−−−−−−→
(y2i+1)2→0

E(zi)⊗ P (zz4i+2)

The cokernel is E(y2i+1) ⊗ P (yy4i+2) and the kernel is E(x4i+1). Tor of this is
Γ[w4i+2] = E(w2i).

11. APPENDIX TO THE APPENDIX: HOMOTOPY LONG EXACT SEQUENCES

Just for my purposes, I want to write down all the homotopy exact sequences associated
with the fibrations from the main paper once and for all.

i πi(KU 0)
2 // πi(KU 0) // πi(K(1)

0
)

1 0 0 0

0 Z 2 // Z // Z/(2)
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i πi(KO 1)
η // πi(KO 0) // πi(KU 0)

7 0 0 0

6 0 0 Z
=

rr5 Z 0 0

4 0 Z 2 // Z

ss
3 Z/(2) 0 0

2 Z/(2)
= // Z/(2) Z

2

ss1 Z // Z/(2) 0

0 0 Z = // Z

i πi(KO 0)
2 // πi(KO 0) // πi(KR(1)

0
)

7 0 0 0

6 0 0 0

5 0 0 0

4 Z 2 // Z // Z/(2)

3 0 0 Z/(2)
=

ss
2 Z/(2) Z/(2)

2 // Z/(4)

ss
1 Z/(2) Z/(2)

= // Z/(2)

0 Z 2 // Z // Z/(2)
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i πi(KR(1)
1
)

η // πi(KR(1)
0
) // πi(K(1)

0
)

7 0 0 0

6 0 0 Z/(2)
=

rr
5 Z/(2) 0 0

4 Z/(2)
= // Z/(2) Z/(2)

2

rr
3 Z/(4) // Z/(2)

2 Z/(2)
2 // Z/(4) // Z/(2)

1 Z/(2)
= // Z/(2) 0

0 0 Z/(2)
= // Z/(2)
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